Skip to main content
Top
Published in: International Ophthalmology 3/2020

01-03-2020 | Intracranial Hypertension | Review

From international ophthalmology to space ophthalmology: the threats to vision on the way to Moon and Mars colonization

Author: Carlo Aleci

Published in: International Ophthalmology | Issue 3/2020

Login to get access

Abstract

Purpose

To report the ophthalmological risks of space travel.

Methods

The literature about the effect of microgravity and cosmic radiation on the human eye has been reviewed, focusing on the so-called “spaceflight related neuro-ocular syndrome (SANS)”, and possible remedies.

Results

The eye is the major candidate to suffer from the adverse space conditions, so much so that SANS is the main concern of the National Aeronautics and Space Administration (NASA). SANS, that affects astronauts engaged in long-duration spaceflights, is characterized by optic nerve head swelling, flattening of the posterior region of the scleral shell, choroidal folds, retinal cotton wool spots, and hyperopic shift. Even if it seems related to an increased volume of the cerebrospinal fluid in the brain and the optic nerve sheaths, its pathogenesis is still unclear. In addition, cataract is related to the effect of galactic cosmic rays on the lens. Centrifuges, pressurizing chambers, and mechanical counter-pressure suits have been advanced to counteract the upward fluid shift responsible for the SANS syndrome. Shields with a high content of hydrogen, magnetic shielding systems, and wearable radiation shielding devices are under study to mitigate the exposure to galactic cosmic rays.

Conclusions

Since 1961, the year of the first manned mission outside the Earth, history has shown that the human being may venture in space. Yet, visual impairment is the top health risk for long-duration spaceflight. Effective remediation is mandatory in anticipation of long space missions and Moon and Mars colonization.
Footnotes
1
Microgravity is defined as 1 × 10−6 ge, that is, 1 μg.
 
2
The best way to simulate a condition of microgravity on Earth is the "head-down tilt" (HDT), i.e., bed rest at a negative tilt angle of − 6° [28, 29]. However, it is worth recalling that although HDT is considered effective in recreating the microgravity-induced cephalad fluid shift, there are physiological differences with the real microgravity condition: sympathetic activity, in particular, decreases during HDT and increases in real microgravity, as indicated by platelet epinephrine and norepinephrine dosage [30].
 
Literature
7.
go back to reference National Council of Radiation Protection and Measurements (NCRP) (1989) Guidance on radiation received in space activity. NCRP, Bethesda National Council of Radiation Protection and Measurements (NCRP) (1989) Guidance on radiation received in space activity. NCRP, Bethesda
8.
go back to reference Simpson JA (1983) Elemental and isotopic composition of the galactic cosmic rays. Ann Rev Nucl Part Sci 33:323–381CrossRef Simpson JA (1983) Elemental and isotopic composition of the galactic cosmic rays. Ann Rev Nucl Part Sci 33:323–381CrossRef
9.
go back to reference Cucinotta FA, Kim MH, Ren L (2006) Evaluating shielding effectiveness for reducing space radiation cancer risks. Radiat Meas 41:1173–1185CrossRef Cucinotta FA, Kim MH, Ren L (2006) Evaluating shielding effectiveness for reducing space radiation cancer risks. Radiat Meas 41:1173–1185CrossRef
10.
11.
go back to reference Duntley SQ, Austin RW, Taylor JL (1966) Experiments S-8/D-13, visual acuity and visibility. In: Gemini midprogram conference. NASA, Washington Duntley SQ, Austin RW, Taylor JL (1966) Experiments S-8/D-13, visual acuity and visibility. In: Gemini midprogram conference. NASA, Washington
12.
go back to reference Mader TH, Gibson CR, Pass AF, Kramer LA, Lee AG, Fogarty J, Tarver WJ, Dervay JP, Hamilton DR, Sargsyan A, Phillips JL, Tran D, Lipsky W, Choi J, Stern C, Kuyumjian R, Polk JD (2011) Optic disc edema, globe flattening, choroidal folds, and hyperopic shifts observed in astronauts after long-duration space flight. Ophthalmology 118:2058–2069CrossRefPubMed Mader TH, Gibson CR, Pass AF, Kramer LA, Lee AG, Fogarty J, Tarver WJ, Dervay JP, Hamilton DR, Sargsyan A, Phillips JL, Tran D, Lipsky W, Choi J, Stern C, Kuyumjian R, Polk JD (2011) Optic disc edema, globe flattening, choroidal folds, and hyperopic shifts observed in astronauts after long-duration space flight. Ophthalmology 118:2058–2069CrossRefPubMed
13.
go back to reference Mader TH, Gibson CR, Pass AF, Lee AG, Killer HE, Hansen HC, Dervay JP, Barratt MR, Tarver WJ, Sargsyan AE, Kramer LA, Riascos R, Bedi DG, Pettit DR (2013) Optic disc edema in an astronaut after repeat long-duration space flight. J Neuroophthalmol 33:249–255CrossRefPubMed Mader TH, Gibson CR, Pass AF, Lee AG, Killer HE, Hansen HC, Dervay JP, Barratt MR, Tarver WJ, Sargsyan AE, Kramer LA, Riascos R, Bedi DG, Pettit DR (2013) Optic disc edema in an astronaut after repeat long-duration space flight. J Neuroophthalmol 33:249–255CrossRefPubMed
14.
go back to reference Kramer LA, Sargsyan AE, Hasan KM, Polk JD, Hamilton DR (2012) Orbital and intracranial effects of microgravity: findings at 3-T Mr imaging. Radiology 263:819–827CrossRefPubMed Kramer LA, Sargsyan AE, Hasan KM, Polk JD, Hamilton DR (2012) Orbital and intracranial effects of microgravity: findings at 3-T Mr imaging. Radiology 263:819–827CrossRefPubMed
15.
go back to reference Tarver WJ, Otto C (2012) NASA’s spaceflight visual impairment intracranial pressure (VIIP) risk: clinical correlations and pathophysiology. In: Aerospace medicine grand rounds. NASA, Washington Tarver WJ, Otto C (2012) NASA’s spaceflight visual impairment intracranial pressure (VIIP) risk: clinical correlations and pathophysiology. In: Aerospace medicine grand rounds. NASA, Washington
16.
go back to reference NASA (2015) Human exploration research opportunities (HERO) NNJ14ZSA001 N-MIDEXTOPICS appendix E: behavioral health & performance and human health countermeasures topics. NASA, Washington NASA (2015) Human exploration research opportunities (HERO) NNJ14ZSA001 N-MIDEXTOPICS appendix E: behavioral health & performance and human health countermeasures topics. NASA, Washington
17.
go back to reference Herault S, Fomina G, Alferova I, Kotovskaya A, Poliakov V, Arbeille P (2000) Cardiac, arterial and venous adaptation to weightlessness during 6-month MIR spaceflights with and without thigh cuffs (bracelets). Eur J Appl Physiol 81(5):384–390CrossRefPubMed Herault S, Fomina G, Alferova I, Kotovskaya A, Poliakov V, Arbeille P (2000) Cardiac, arterial and venous adaptation to weightlessness during 6-month MIR spaceflights with and without thigh cuffs (bracelets). Eur J Appl Physiol 81(5):384–390CrossRefPubMed
18.
go back to reference Arbeille P, Fomina G, Roumy J, Alferova I, Tobal N, Herault S (2001) Adaptation of the left heart, cerebral and femoral arteries, and jugular and femoral veins during short- and long-term head-down tilt and spaceflights. Eur J Appl Physiol 86(2):157–168CrossRefPubMed Arbeille P, Fomina G, Roumy J, Alferova I, Tobal N, Herault S (2001) Adaptation of the left heart, cerebral and femoral arteries, and jugular and femoral veins during short- and long-term head-down tilt and spaceflights. Eur J Appl Physiol 86(2):157–168CrossRefPubMed
19.
go back to reference Wiener TC (2012) Space obstructive syndrome: intracranial hypertension, intraocular pressure, and papilledema in space. Aviat Space Environ Med 83(1):64–66CrossRefPubMed Wiener TC (2012) Space obstructive syndrome: intracranial hypertension, intraocular pressure, and papilledema in space. Aviat Space Environ Med 83(1):64–66CrossRefPubMed
20.
go back to reference Alperin N, Lee SH, Mazda M, Hushek SG, Roitberg B, Goddwin J, Lichtor T (2005) Evidence for the importance of extracranial venous flow in patients with idiopathic intracranial hypertension (IIH). Acta Neurochir Suppl 95:129–132CrossRefPubMed Alperin N, Lee SH, Mazda M, Hushek SG, Roitberg B, Goddwin J, Lichtor T (2005) Evidence for the importance of extracranial venous flow in patients with idiopathic intracranial hypertension (IIH). Acta Neurochir Suppl 95:129–132CrossRefPubMed
21.
go back to reference Davson H, Hollingsworth G, Segal MB (1970) The mechanism of drainage of the cerebrospinal fluid. Brain 93:665–678CrossRefPubMed Davson H, Hollingsworth G, Segal MB (1970) The mechanism of drainage of the cerebrospinal fluid. Brain 93:665–678CrossRefPubMed
22.
go back to reference Hargens AR (1994) Recent bed rest results and countermeasure development at NASA. Acta Physiol Scand Suppl 616:103–114PubMed Hargens AR (1994) Recent bed rest results and countermeasure development at NASA. Acta Physiol Scand Suppl 616:103–114PubMed
23.
go back to reference Murthy G, Marchbanks RJ, Watenpaugh DE, Meyer JU, Eliashberg N, Hargens AR (1992) Increased intracranial pressure in humans during simulated microgravity. Physiologist 35(1 Suppl):S184–S185PubMed Murthy G, Marchbanks RJ, Watenpaugh DE, Meyer JU, Eliashberg N, Hargens AR (1992) Increased intracranial pressure in humans during simulated microgravity. Physiologist 35(1 Suppl):S184–S185PubMed
24.
go back to reference Roberts DR, Albrecht MH, Collins HR, Asemani D, Chatterjee AR, Spampinato V, Zhu X, Chimowitz MI, Antonucci MU (2017) Effects of spaceflight on astronaut brain structure as indicated on MRI. N Engl J Med 377(18):1746–1753CrossRefPubMed Roberts DR, Albrecht MH, Collins HR, Asemani D, Chatterjee AR, Spampinato V, Zhu X, Chimowitz MI, Antonucci MU (2017) Effects of spaceflight on astronaut brain structure as indicated on MRI. N Engl J Med 377(18):1746–1753CrossRefPubMed
26.
go back to reference Roberts DR, Zhu X, Tabesh A, Duffy EW, Ramsey DA, Brown TR (2015) Structural brain changes following long-term 6 head-down tilt bed rest as an analog for spaceflight. AJNR Am J Neuroradiol 36:2048–2054CrossRefPubMedPubMedCentral Roberts DR, Zhu X, Tabesh A, Duffy EW, Ramsey DA, Brown TR (2015) Structural brain changes following long-term 6 head-down tilt bed rest as an analog for spaceflight. AJNR Am J Neuroradiol 36:2048–2054CrossRefPubMedPubMedCentral
27.
go back to reference Liu D, Kahn M (1993) Measurement and relationship of subarachnoid pressure of the optic nerve to intracranial pressures in fresh cadavers. Am J Ophthalmol 116(5):548–556CrossRefPubMed Liu D, Kahn M (1993) Measurement and relationship of subarachnoid pressure of the optic nerve to intracranial pressures in fresh cadavers. Am J Ophthalmol 116(5):548–556CrossRefPubMed
28.
go back to reference Meck JV, Dreyer SA, Warren LE (2009) Long-duration head-down bed rest: project overview, vital signs, and fluid balance. Aviat Space Environ Med 80:A1–A8CrossRefPubMed Meck JV, Dreyer SA, Warren LE (2009) Long-duration head-down bed rest: project overview, vital signs, and fluid balance. Aviat Space Environ Med 80:A1–A8CrossRefPubMed
29.
go back to reference Regnard J, Heer M, Drummer C, Norsk P (2001) Validity of microgravity simulation models on earth. Am J Kidney Dis 38:668–674CrossRefPubMed Regnard J, Heer M, Drummer C, Norsk P (2001) Validity of microgravity simulation models on earth. Am J Kidney Dis 38:668–674CrossRefPubMed
30.
go back to reference Christensen NJ, Heer M, Ivanova K, Norsk P (2005) Sympathetic nervous activity decreases during head down bed rest but not during microgravity. J Appl Physiol 99(4):1552–1557CrossRefPubMed Christensen NJ, Heer M, Ivanova K, Norsk P (2005) Sympathetic nervous activity decreases during head down bed rest but not during microgravity. J Appl Physiol 99(4):1552–1557CrossRefPubMed
31.
go back to reference Hayreh SS (1976) Pathogenesis of optic disc oedema in raised intracranial pressure. Trans Ophthalmol Soc UK 96:404–407PubMed Hayreh SS (1976) Pathogenesis of optic disc oedema in raised intracranial pressure. Trans Ophthalmol Soc UK 96:404–407PubMed
32.
go back to reference Hayreh SS (1977) Optic disc edema in raised intracranial pressure. V. Pathogenesis. Arch Ophthalmol 95:1553–1565CrossRefPubMed Hayreh SS (1977) Optic disc edema in raised intracranial pressure. V. Pathogenesis. Arch Ophthalmol 95:1553–1565CrossRefPubMed
33.
go back to reference Hayreh SS, March W, Anderson DR (1979) Pathogenesis of block of rapid orthograde axonal transport by elevated intraocular pressure. Exp Eye Res 28:515–523CrossRefPubMed Hayreh SS, March W, Anderson DR (1979) Pathogenesis of block of rapid orthograde axonal transport by elevated intraocular pressure. Exp Eye Res 28:515–523CrossRefPubMed
35.
go back to reference Lee AG, Tarver WJ, Mader TH, Gibson CR, Hart SF, Otto CA (2016) Neuro-ophthalmology of space flight. J Neuroophthalmol 36:85–91CrossRefPubMed Lee AG, Tarver WJ, Mader TH, Gibson CR, Hart SF, Otto CA (2016) Neuro-ophthalmology of space flight. J Neuroophthalmol 36:85–91CrossRefPubMed
36.
go back to reference Killer HE, Jaggi GP, Flammer J, Miller NR, Huber AR, Mironov A (2007) Cerebrospinal fluid dynamics between the intracranial and the subarachnoid space of the optic nerve. Is it always bidirectional? Brain 130(Pt 2):514–520CrossRefPubMed Killer HE, Jaggi GP, Flammer J, Miller NR, Huber AR, Mironov A (2007) Cerebrospinal fluid dynamics between the intracranial and the subarachnoid space of the optic nerve. Is it always bidirectional? Brain 130(Pt 2):514–520CrossRefPubMed
39.
go back to reference Killer HE, Laeng HR, Flammer J, Groscurth P (2003) Architecture of arachnoid trabeculae, pillars, and septa in the subarachnoidal space of the human optic nerve: anatomy and clinical considerations. Br J Ophthalmol 87(6):777–781CrossRefPubMedPubMedCentral Killer HE, Laeng HR, Flammer J, Groscurth P (2003) Architecture of arachnoid trabeculae, pillars, and septa in the subarachnoidal space of the human optic nerve: anatomy and clinical considerations. Br J Ophthalmol 87(6):777–781CrossRefPubMedPubMedCentral
43.
go back to reference Alexander DJ, Gibson CR, Hamilton DR, Lee SMC, Mader TH, Otto C, Oubre CM, Pass AF, Platts S, Scott JM, Smith SM, Stenger MB, Westby CM, Zanello SB (2012) Evidence report: risk of spaceflight-induced intracranial hypertension and vision alterations. NASA, Washington Alexander DJ, Gibson CR, Hamilton DR, Lee SMC, Mader TH, Otto C, Oubre CM, Pass AF, Platts S, Scott JM, Smith SM, Stenger MB, Westby CM, Zanello SB (2012) Evidence report: risk of spaceflight-induced intracranial hypertension and vision alterations. NASA, Washington
44.
go back to reference Smith SM, Kloeris VL, Heer M (2009) Nutritional biochemistry of space flight. Nova Science Publishers, New York Smith SM, Kloeris VL, Heer M (2009) Nutritional biochemistry of space flight. Nova Science Publishers, New York
47.
go back to reference Berdahl JP, Fleischman D, Allingham RR, Fautsch M (2012) Disc swelling and space flight. Ophthalmology 119(6):1290CrossRefPubMed Berdahl JP, Fleischman D, Allingham RR, Fautsch M (2012) Disc swelling and space flight. Ophthalmology 119(6):1290CrossRefPubMed
48.
go back to reference Zhang LF, Hargens AR (2014) Intraocular/intracranial pressure mismatch hypothesis for visual impairment syndrome in space. Aviat Space Environ Med J85(1):78–80CrossRef Zhang LF, Hargens AR (2014) Intraocular/intracranial pressure mismatch hypothesis for visual impairment syndrome in space. Aviat Space Environ Med J85(1):78–80CrossRef
50.
go back to reference Morgan WH, Chauhan BC, Yu DY, Cringle SJ, Alder VA, House PH (2002) Optic disc movement with variations in intraocular and cerebrospinal fluid pressure. Invest Ophthalmol Vis Sci 43(10):3236–3242PubMed Morgan WH, Chauhan BC, Yu DY, Cringle SJ, Alder VA, House PH (2002) Optic disc movement with variations in intraocular and cerebrospinal fluid pressure. Invest Ophthalmol Vis Sci 43(10):3236–3242PubMed
51.
52.
go back to reference Westfall AC, Ng JD, Samples JR, Weissman JL (2004) Hypotonus maculopathy: magnetic resonance appearance. Am J Ophthalmol 137(3):563–566CrossRefPubMed Westfall AC, Ng JD, Samples JR, Weissman JL (2004) Hypotonus maculopathy: magnetic resonance appearance. Am J Ophthalmol 137(3):563–566CrossRefPubMed
53.
go back to reference Draeger J, Schwartz R, Groenhoff S, Stern C (1995) Self-tonometry under microgravity conditions. Aviat Space Environ Med 66(6):568–570PubMed Draeger J, Schwartz R, Groenhoff S, Stern C (1995) Self-tonometry under microgravity conditions. Aviat Space Environ Med 66(6):568–570PubMed
54.
go back to reference Jaworski A, Wolffsohn JS, Napper GA (1999) Aetiology and management of choroidal folds. Clin Exp Optom 82(5):169–176CrossRefPubMed Jaworski A, Wolffsohn JS, Napper GA (1999) Aetiology and management of choroidal folds. Clin Exp Optom 82(5):169–176CrossRefPubMed
56.
go back to reference Newell FW (1973) Choroidal folds. The seventh Harry Searls Gradle Memorial lecture. Am J Ophthalmol 75(6):930–942CrossRefPubMed Newell FW (1973) Choroidal folds. The seventh Harry Searls Gradle Memorial lecture. Am J Ophthalmol 75(6):930–942CrossRefPubMed
57.
go back to reference Schmidt D (2008) The mystery of cotton-wool spots—a review of recent and historical descriptions. Eur J Med Res 13(6):231–266PubMed Schmidt D (2008) The mystery of cotton-wool spots—a review of recent and historical descriptions. Eur J Med Res 13(6):231–266PubMed
58.
go back to reference Carlson KH, McLaren JW, Topper JE, Brubaker RF (1987) Effect of body position on intraocular pressure and aqueous flow. Invest Ophthalmol Vis Sci 28(8):1346–1352PubMed Carlson KH, McLaren JW, Topper JE, Brubaker RF (1987) Effect of body position on intraocular pressure and aqueous flow. Invest Ophthalmol Vis Sci 28(8):1346–1352PubMed
60.
go back to reference Mader TH, Taylor GR, Hunter N, Caputo M, Meehan RT (1990) Intraocular pressure, retinal vascular, and visual acuity changes during 48 hours of 10 degrees head-down tilt. Aviat Space Environ Med 61(9):810–813PubMed Mader TH, Taylor GR, Hunter N, Caputo M, Meehan RT (1990) Intraocular pressure, retinal vascular, and visual acuity changes during 48 hours of 10 degrees head-down tilt. Aviat Space Environ Med 61(9):810–813PubMed
61.
go back to reference Mader TH, Gibson CR, Caputo M, Hunter N, Taylor G, Charles J, Meehan RT (1993) Intraocular pressure and retinal vascular changes during transient exposure to microgravity. Am J Ophthalmol 115(3):347–350CrossRefPubMed Mader TH, Gibson CR, Caputo M, Hunter N, Taylor G, Charles J, Meehan RT (1993) Intraocular pressure and retinal vascular changes during transient exposure to microgravity. Am J Ophthalmol 115(3):347–350CrossRefPubMed
62.
go back to reference Xu X, Li L, Cao R, Tao Y, Guo Q, Geng J, Li Y, Zhang Z (2010) Intraocular pressure and ocular perfusion pressure in myopes during 21 min head-down rest. Aviat Space Environ Med 81(4):418–422CrossRefPubMed Xu X, Li L, Cao R, Tao Y, Guo Q, Geng J, Li Y, Zhang Z (2010) Intraocular pressure and ocular perfusion pressure in myopes during 21 min head-down rest. Aviat Space Environ Med 81(4):418–422CrossRefPubMed
63.
go back to reference Chiquet C, Custaud MA, Le Traon AP, Millet C, Gharib C, Denis P (2003) Changes in intraocular pressure during prolonged (7-day) head-down tilt bedrest. J Glaucoma 12(3):204–208CrossRefPubMed Chiquet C, Custaud MA, Le Traon AP, Millet C, Gharib C, Denis P (2003) Changes in intraocular pressure during prolonged (7-day) head-down tilt bedrest. J Glaucoma 12(3):204–208CrossRefPubMed
64.
go back to reference Friberg TR, Sanborn G, Weinreb RN (1987) Intraocular and episcleral venous pressure increase during inverted posture. Am J Ophthalmol 103(4):523–526CrossRefPubMed Friberg TR, Sanborn G, Weinreb RN (1987) Intraocular and episcleral venous pressure increase during inverted posture. Am J Ophthalmol 103(4):523–526CrossRefPubMed
65.
go back to reference Kiel JW (1994) Choroidal myogenic autoregulation and intraocular pressure. Exp Eye Res 58(5):529–543CrossRefPubMed Kiel JW (1994) Choroidal myogenic autoregulation and intraocular pressure. Exp Eye Res 58(5):529–543CrossRefPubMed
66.
go back to reference Ansari RR, Manuel FK, Suh KI, King JF, Messer RK, Moret F (2003) Choroidal blood flow measurements in zero gravity (space-like) environment using laser-doppler flowmetry. Invest Ophthalmol Vis Sci 44:960 Ansari RR, Manuel FK, Suh KI, King JF, Messer RK, Moret F (2003) Choroidal blood flow measurements in zero gravity (space-like) environment using laser-doppler flowmetry. Invest Ophthalmol Vis Sci 44:960
68.
go back to reference Longo A, Geiser MH, Riva CE (2004) Posture changes and subfoveal choroidal blood flow. Invest Ophthalmol Vis Sci 45(2):546–551CrossRefPubMed Longo A, Geiser MH, Riva CE (2004) Posture changes and subfoveal choroidal blood flow. Invest Ophthalmol Vis Sci 45(2):546–551CrossRefPubMed
71.
go back to reference Fuglesang C, Narici L, Picozza P, Sannita WG (2006) Phosphenes in low earth orbit: survey responses from 59 astronauts. Aviat Space Environ Med 77(4):449–452PubMed Fuglesang C, Narici L, Picozza P, Sannita WG (2006) Phosphenes in low earth orbit: survey responses from 59 astronauts. Aviat Space Environ Med 77(4):449–452PubMed
72.
go back to reference Avdeev S, Bidoli V, Casolino M, De Grandis E, Furano G, Morselli A, Narici L, De Pascale MP, Picozza P, Reali E, Sparvoli R, Boezio M, Carlson P, Bonvicini W, Vacchi A, Zampa N, Castellini G, Fuglesang C, Galper A, Khodarovich A, Ozerov Y, Popov A, Vavilov N, Mazzenga G, Ricci M, Sannita WG, Spillantini P (2002) Eye light flashes on the Mir space station. Acta Astronaut 50(8):511–525. https://doi.org/10.1016/S0094-5765(01)00190-4 CrossRefPubMed Avdeev S, Bidoli V, Casolino M, De Grandis E, Furano G, Morselli A, Narici L, De Pascale MP, Picozza P, Reali E, Sparvoli R, Boezio M, Carlson P, Bonvicini W, Vacchi A, Zampa N, Castellini G, Fuglesang C, Galper A, Khodarovich A, Ozerov Y, Popov A, Vavilov N, Mazzenga G, Ricci M, Sannita WG, Spillantini P (2002) Eye light flashes on the Mir space station. Acta Astronaut 50(8):511–525. https://​doi.​org/​10.​1016/​S0094-5765(01)00190-4 CrossRefPubMed
73.
go back to reference Hoffman RA, Pinsky LA, Osborne WZ, Bailey JZ (1977) NASA report SP-377, pp 127–130 Hoffman RA, Pinsky LA, Osborne WZ, Bailey JZ (1977) NASA report SP-377, pp 127–130
74.
go back to reference Casolino M, Bidoli V, Morselli A, Narici L, De Pascale MP, Picozza P, Reali E, Sparvoli R, Mazzenga G, Ricci M, Spillantini P, Boezio M, Bonvicini V, Vacchi A, Zampa N, Castellini G, Sannita WG, Carlson P, Galper A, Korotkov M, Popov A, Vavilov N, Avdeev S, Fuglesang C (2003) Dual origins of light flashes seen in space. Nature 422:680CrossRefPubMed Casolino M, Bidoli V, Morselli A, Narici L, De Pascale MP, Picozza P, Reali E, Sparvoli R, Mazzenga G, Ricci M, Spillantini P, Boezio M, Bonvicini V, Vacchi A, Zampa N, Castellini G, Sannita WG, Carlson P, Galper A, Korotkov M, Popov A, Vavilov N, Avdeev S, Fuglesang C (2003) Dual origins of light flashes seen in space. Nature 422:680CrossRefPubMed
75.
go back to reference Fazio GG, Jelley JV, Charman WN (1970) Generation of Cherenkov light flashes by cosmic radiation within the eyes of the Apollo astronauts. Nature 228:260–264CrossRefPubMed Fazio GG, Jelley JV, Charman WN (1970) Generation of Cherenkov light flashes by cosmic radiation within the eyes of the Apollo astronauts. Nature 228:260–264CrossRefPubMed
76.
go back to reference Yamaguchi H, Uchihori Y, Yasuda N, Takada M, Kitamura H (2005) Estimation of yields of OH radicals in water irradiated by ionizing radiation. J Radiat Res 46(3):333–341CrossRefPubMed Yamaguchi H, Uchihori Y, Yasuda N, Takada M, Kitamura H (2005) Estimation of yields of OH radicals in water irradiated by ionizing radiation. J Radiat Res 46(3):333–341CrossRefPubMed
77.
go back to reference Catalá A (2006) An overview of lipid peroxidation with emphasis in outer segments of photoreceptors and the chemiluminescence assay. Int J Biochem Cell Biol 38(9):1482–1495CrossRefPubMed Catalá A (2006) An overview of lipid peroxidation with emphasis in outer segments of photoreceptors and the chemiluminescence assay. Int J Biochem Cell Biol 38(9):1482–1495CrossRefPubMed
79.
go back to reference Cucinotta FA, Manuel FK, Jones J, Iszard G, Murrey J, Djojonegro B, Wear M (2001) Space radiation and cataracts in astronauts. Radiat Res 156(5 Pt 1):460–466 (Erratum in Radiat Res 2001, 156(6):811) CrossRefPubMed Cucinotta FA, Manuel FK, Jones J, Iszard G, Murrey J, Djojonegro B, Wear M (2001) Space radiation and cataracts in astronauts. Radiat Res 156(5 Pt 1):460–466 (Erratum in Radiat Res 2001, 156(6):811) CrossRefPubMed
81.
go back to reference Chylack LT Jr, Peterson LE, Feiveson AH, Wear ML, Manuel FK, Tung WH, Hardy DS, Marak LJ, Cucinotta FA (2009) NASA study of cataract in astronauts (NASCA). Report 1: cross-sectional study of the relationship of exposure to space radiation and risk of lens opacity. Radiat Res 172:10–20CrossRefPubMed Chylack LT Jr, Peterson LE, Feiveson AH, Wear ML, Manuel FK, Tung WH, Hardy DS, Marak LJ, Cucinotta FA (2009) NASA study of cataract in astronauts (NASCA). Report 1: cross-sectional study of the relationship of exposure to space radiation and risk of lens opacity. Radiat Res 172:10–20CrossRefPubMed
82.
go back to reference Jones JA, McCarten M, Manuel K, Djojonegoro B, Murray J, Feiversen A, Wear M (2007) Cataract formation mechanisms and risk in aviation and space crews. Aviat Space Environ Med 78(4 Suppl):A56–A66PubMed Jones JA, McCarten M, Manuel K, Djojonegoro B, Murray J, Feiversen A, Wear M (2007) Cataract formation mechanisms and risk in aviation and space crews. Aviat Space Environ Med 78(4 Suppl):A56–A66PubMed
83.
go back to reference Rastegar N, Eckart P, Mertz M (2002) Radiation-induced cataract in astronauts and cosmonauts. Graefes Arch Clin Exp Ophthalmol 240(7):543–547CrossRefPubMed Rastegar N, Eckart P, Mertz M (2002) Radiation-induced cataract in astronauts and cosmonauts. Graefes Arch Clin Exp Ophthalmol 240(7):543–547CrossRefPubMed
84.
go back to reference Frey MA (2009) Radiation health: mechanisms of radiation-induced cataracts in astronauts. Aviat Space Environ Med 80(6):575–576CrossRefPubMed Frey MA (2009) Radiation health: mechanisms of radiation-induced cataracts in astronauts. Aviat Space Environ Med 80(6):575–576CrossRefPubMed
86.
go back to reference Iwase S (2005) Effectiveness of centrifuge-induced artificial gravity with ergometric exercise as a countermeasure during simulated microgravity exposure in humans. Acta Astronaut 57(2–8):75–80CrossRefPubMed Iwase S (2005) Effectiveness of centrifuge-induced artificial gravity with ergometric exercise as a countermeasure during simulated microgravity exposure in humans. Acta Astronaut 57(2–8):75–80CrossRefPubMed
88.
go back to reference Kozlovskaya IB, Grigoriev AI, Stepantzov VI (1995) Countermeasure of the negative effects of weightlessness on physical systems in long-term space flights. Acta Astronaut 36(8–12):661–668CrossRefPubMed Kozlovskaya IB, Grigoriev AI, Stepantzov VI (1995) Countermeasure of the negative effects of weightlessness on physical systems in long-term space flights. Acta Astronaut 36(8–12):661–668CrossRefPubMed
89.
go back to reference Guell A (1995) Lower body negative pressure (LBNP) as a countermeasure for long term spaceflight. Acta Astronaut 35(4–5):271–280CrossRefPubMed Guell A (1995) Lower body negative pressure (LBNP) as a countermeasure for long term spaceflight. Acta Astronaut 35(4–5):271–280CrossRefPubMed
90.
go back to reference Cucinotta FA, Wilson JW, Williams JR, Dicello JF (2000) Analysis of Mir-18 results for physical and biological dosimetry: radiation shielding effectiveness in LEO. Radiat Meas 31:181–191CrossRef Cucinotta FA, Wilson JW, Williams JR, Dicello JF (2000) Analysis of Mir-18 results for physical and biological dosimetry: radiation shielding effectiveness in LEO. Radiat Meas 31:181–191CrossRef
95.
go back to reference Langell J, Jennings R, Clark J, Ward JB Jr (2008) Pharmacological agents for the prevention and treatment of toxic radiation exposure in spaceflight. Aviat Space Environ Med 79(7):651–660CrossRefPubMed Langell J, Jennings R, Clark J, Ward JB Jr (2008) Pharmacological agents for the prevention and treatment of toxic radiation exposure in spaceflight. Aviat Space Environ Med 79(7):651–660CrossRefPubMed
96.
go back to reference Kaway Y, Doi M, Setogawa A, Shimoyama R, Ueda K, Asai Y, Tatebayashi K (2003) Effect of microgravity on cerebral hemodynamics. Yanago Acta Med 46:1–468 Kaway Y, Doi M, Setogawa A, Shimoyama R, Ueda K, Asai Y, Tatebayashi K (2003) Effect of microgravity on cerebral hemodynamics. Yanago Acta Med 46:1–468
Metadata
Title
From international ophthalmology to space ophthalmology: the threats to vision on the way to Moon and Mars colonization
Author
Carlo Aleci
Publication date
01-03-2020
Publisher
Springer Netherlands
Published in
International Ophthalmology / Issue 3/2020
Print ISSN: 0165-5701
Electronic ISSN: 1573-2630
DOI
https://doi.org/10.1007/s10792-019-01212-7

Other articles of this Issue 3/2020

International Ophthalmology 3/2020 Go to the issue