Skip to main content
Top
Published in: Neurocritical Care 1/2024

Open Access 12-07-2023 | Intracranial Hypertension | Take Notice: Technology

A Point-of-Care Noninvasive Technique for Surrogate ICP Waveforms Application in Neurocritical Care

Authors: Sérgio Brasil, Daniel A. Godoy, Gregory W. J. Hawryluk

Published in: Neurocritical Care | Issue 1/2024

Login to get access

Excerpt

In 2006, Sérgio Mascarenhas, a retired physics professor from the University of São Paulo (Brazil), underwent a ventriculo-peritoneal shunt procedure for normal pressure hydrocephalus (NPH) after a year of unsuccessful treatment for Parkinson’s disease. He became intrigued by the difficulties involved in diagnosing NPH and the lack of noninvasive techniques for assessing intracranial pressure (ICP). Such curiosity led to a significant breakthrough discovery. …
Literature
1.
go back to reference Wilson MH. Monro-Kellie 2.0: the dynamic vascular and venous pathophysiological components of intracranial pressure. J Cereb Blood Flow Metab. 2016;36(8):1338–50.PubMedPubMedCentral Wilson MH. Monro-Kellie 2.0: the dynamic vascular and venous pathophysiological components of intracranial pressure. J Cereb Blood Flow Metab. 2016;36(8):1338–50.PubMedPubMedCentral
2.
go back to reference Rabelo NN, da Silva BJ, da Silva JS, et al. The historic evolution of intracranial pressure and cerebrospinal fluid pulse pressure concepts: two centuries of challenges. Surg Neurol Int. 2021;12:274.PubMedPubMedCentral Rabelo NN, da Silva BJ, da Silva JS, et al. The historic evolution of intracranial pressure and cerebrospinal fluid pulse pressure concepts: two centuries of challenges. Surg Neurol Int. 2021;12:274.PubMedPubMedCentral
3.
go back to reference Mascarenhas S, Vilela GH, Carlotti C, et al. The new ICP minimally invasive method shows that the Monro-Kellie doctrine is not valid. Acta Neurochir Suppl. 2012;114:117–20.PubMed Mascarenhas S, Vilela GH, Carlotti C, et al. The new ICP minimally invasive method shows that the Monro-Kellie doctrine is not valid. Acta Neurochir Suppl. 2012;114:117–20.PubMed
4.
go back to reference Vilela GH, Cabella B, Mascarenhas S, et al. Validation of a new minimally invasive intracranial pressure monitoring method by direct comparison with an invasive technique. Acta Neurochir Suppl. 2016;122:97–100.PubMed Vilela GH, Cabella B, Mascarenhas S, et al. Validation of a new minimally invasive intracranial pressure monitoring method by direct comparison with an invasive technique. Acta Neurochir Suppl. 2016;122:97–100.PubMed
5.
go back to reference Cabella B, Vilela GH, Mascarenhas S, et al. Validation of a new noninvasive intracranial pressure monitoring method by direct comparison with an invasive technique. Acta Neurochir Suppl. 2016;122:93–6.PubMed Cabella B, Vilela GH, Mascarenhas S, et al. Validation of a new noninvasive intracranial pressure monitoring method by direct comparison with an invasive technique. Acta Neurochir Suppl. 2016;122:93–6.PubMed
6.
go back to reference Andrade RdAP, Oshiro HE, Miyazaki CK, et al. A nanometer resolution wearable wireless medical device for non invasive intracranial pressure monitoring. IEEE Sens J. 2021;21:22270–84. Andrade RdAP, Oshiro HE, Miyazaki CK, et al. A nanometer resolution wearable wireless medical device for non invasive intracranial pressure monitoring. IEEE Sens J. 2021;21:22270–84.
7.
go back to reference Cardoso ER, Rowan JO, Galbraith S. Analysis of the cerebrospinal fluid pulse wave in intracranial pressure. J Neurosurg. 1983;59(5):817–21.PubMed Cardoso ER, Rowan JO, Galbraith S. Analysis of the cerebrospinal fluid pulse wave in intracranial pressure. J Neurosurg. 1983;59(5):817–21.PubMed
8.
go back to reference Nucci CG, De Bonis P, Mangiola A, et al. Intracranial pressure wave morphological classification: automated analysis and clinical validation. Acta Neurochir (Wien). 2016;158(3):581–8.PubMed Nucci CG, De Bonis P, Mangiola A, et al. Intracranial pressure wave morphological classification: automated analysis and clinical validation. Acta Neurochir (Wien). 2016;158(3):581–8.PubMed
9.
go back to reference Czosnyka M, Czosnyka Z. Origin of intracranial pressure pulse waveform. Acta Neurochir (Wien). 2020;162(8):1815–7.PubMed Czosnyka M, Czosnyka Z. Origin of intracranial pressure pulse waveform. Acta Neurochir (Wien). 2020;162(8):1815–7.PubMed
10.
go back to reference Czosnyka M, Smielewski P, Timofeev I, et al. Intracranial pressure: more than a number. Neurosurg Focus. 2007;22(5):E10.PubMed Czosnyka M, Smielewski P, Timofeev I, et al. Intracranial pressure: more than a number. Neurosurg Focus. 2007;22(5):E10.PubMed
11.
go back to reference Harary M, Dolmans RGF, Gormley WB. Intracranial pressure monitoring-review and avenues for development. Sensors (Basel). 2018;18(2):465.PubMed Harary M, Dolmans RGF, Gormley WB. Intracranial pressure monitoring-review and avenues for development. Sensors (Basel). 2018;18(2):465.PubMed
12.
go back to reference Uryga A, Ziolkowski A, Kazimierska A, et al. Analysis of intracranial pressure pulse waveform in traumatic brain injury patients: a CENTER-TBI study. J Neurosurg. 2022;139:1–11. Uryga A, Ziolkowski A, Kazimierska A, et al. Analysis of intracranial pressure pulse waveform in traumatic brain injury patients: a CENTER-TBI study. J Neurosurg. 2022;139:1–11.
13.
14.
go back to reference Klostranec JM, Vucevic D, Bhatia KD, et al. Current concepts in intracranial interstitial fluid transport and the glymphatic system: part I-anatomy and physiology. Radiology. 2021;301(3):502–14.PubMed Klostranec JM, Vucevic D, Bhatia KD, et al. Current concepts in intracranial interstitial fluid transport and the glymphatic system: part I-anatomy and physiology. Radiology. 2021;301(3):502–14.PubMed
15.
go back to reference Czosnyka M, Czosnyka Z, Agarwal-Harding KJ, Pickard JD. Modeling of CSF dynamics: legacy of professor Anthony Marmarou. In: Aygok GA, Rekate HL, editors. Hydrocephalus. Vienna: Springer Vienna; 2012. p. 9–14. Czosnyka M, Czosnyka Z, Agarwal-Harding KJ, Pickard JD. Modeling of CSF dynamics: legacy of professor Anthony Marmarou. In: Aygok GA, Rekate HL, editors. Hydrocephalus. Vienna: Springer Vienna; 2012. p. 9–14.
16.
go back to reference Kasprowicz M, Lalou DA, Czosnyka M, Garnett M, Czosnyka Z. Intracranial pressure, its components and cerebrospinal fluid pressure-volume compensation. Acta Neurol Scand. 2016;134(3):168–80.PubMed Kasprowicz M, Lalou DA, Czosnyka M, Garnett M, Czosnyka Z. Intracranial pressure, its components and cerebrospinal fluid pressure-volume compensation. Acta Neurol Scand. 2016;134(3):168–80.PubMed
17.
go back to reference Ziolkowski A, Pudelko A, Kazimierska A, Czosnyka Z, Czosnyka M, Kasprowicz M. Analysis of relative changes in pulse shapes of intracranial pressure and cerebral blood flow velocity. Physiol Meas. 2021;42(12):125004. Ziolkowski A, Pudelko A, Kazimierska A, Czosnyka Z, Czosnyka M, Kasprowicz M. Analysis of relative changes in pulse shapes of intracranial pressure and cerebral blood flow velocity. Physiol Meas. 2021;42(12):125004.
18.
go back to reference Czosnyka M, Guazzo E, Whitehouse M, et al. Significance of intracranial pressure waveform analysis after head injury. Acta Neurochir (Wien). 1996;138(5):531–41.PubMed Czosnyka M, Guazzo E, Whitehouse M, et al. Significance of intracranial pressure waveform analysis after head injury. Acta Neurochir (Wien). 1996;138(5):531–41.PubMed
19.
go back to reference Scalzo F, Liebeskind D, Hu X. Reducing false intracranial pressure alarms using morphological waveform features. IEEE Trans Biomed Eng. 2013;60(1):235–9.PubMed Scalzo F, Liebeskind D, Hu X. Reducing false intracranial pressure alarms using morphological waveform features. IEEE Trans Biomed Eng. 2013;60(1):235–9.PubMed
20.
go back to reference Brasil S, Solla DJF, Nogueira RC, Jacobsen Teixeira M, Malbouisson LMS, Paiva WS. Intracranial compliance assessed by intracranial pressure pulse waveform. Brain Sci. 2021;11(8):971.PubMedPubMedCentral Brasil S, Solla DJF, Nogueira RC, Jacobsen Teixeira M, Malbouisson LMS, Paiva WS. Intracranial compliance assessed by intracranial pressure pulse waveform. Brain Sci. 2021;11(8):971.PubMedPubMedCentral
21.
go back to reference Aries MJ, Czosnyka M, Budohoski KP, et al. Continuous monitoring of cerebrovascular reactivity using pulse waveform of intracranial pressure. Neurocrit Care. 2012;17(1):67–76.PubMed Aries MJ, Czosnyka M, Budohoski KP, et al. Continuous monitoring of cerebrovascular reactivity using pulse waveform of intracranial pressure. Neurocrit Care. 2012;17(1):67–76.PubMed
22.
go back to reference Kim DJ, Czosnyka Z, Keong N, et al. Index of cerebrospinal compensatory reserve in hydrocephalus. Neurosurgery. 2009;64(3):494–501.PubMed Kim DJ, Czosnyka Z, Keong N, et al. Index of cerebrospinal compensatory reserve in hydrocephalus. Neurosurgery. 2009;64(3):494–501.PubMed
23.
go back to reference Robba C, Pozzebon S, Moro B, Vincent JL, Creteur J, Taccone FS. Multimodal non-invasive assessment of intracranial hypertension: an observational study. Crit Care. 2020;24(1):379.PubMedPubMedCentral Robba C, Pozzebon S, Moro B, Vincent JL, Creteur J, Taccone FS. Multimodal non-invasive assessment of intracranial hypertension: an observational study. Crit Care. 2020;24(1):379.PubMedPubMedCentral
24.
go back to reference Rasulo FA, Calza S, Robba C, et al. Transcranial Doppler as a screening test to exclude intracranial hypertension in brain-injured patients: the IMPRESSIT-2 prospective multicenter international study. Crit Care. 2022;26(1):110.PubMedPubMedCentral Rasulo FA, Calza S, Robba C, et al. Transcranial Doppler as a screening test to exclude intracranial hypertension in brain-injured patients: the IMPRESSIT-2 prospective multicenter international study. Crit Care. 2022;26(1):110.PubMedPubMedCentral
25.
go back to reference Jahns FP, Miroz JP, Messerer M, et al. Quantitative pupillometry for the monitoring of intracranial hypertension in patients with severe traumatic brain injury. Crit Care. 2019;23(1):155.PubMedPubMedCentral Jahns FP, Miroz JP, Messerer M, et al. Quantitative pupillometry for the monitoring of intracranial hypertension in patients with severe traumatic brain injury. Crit Care. 2019;23(1):155.PubMedPubMedCentral
26.
go back to reference Robba C, Frigieri G, Brasil S, Taccone FS. Early prognostic value of non-invasive intracranial pressure methods in brain-injured patients. Intensive Care Med. 2022;48(12):1812–4.PubMed Robba C, Frigieri G, Brasil S, Taccone FS. Early prognostic value of non-invasive intracranial pressure methods in brain-injured patients. Intensive Care Med. 2022;48(12):1812–4.PubMed
27.
go back to reference Evensen KB, O’Rourke M, Prieur F, Holm S, Eide PK. Non-invasive estimation of the intracranial pressure waveform from the central arterial blood pressure waveform in idiopathic normal pressure hydrocephalus patients. Sci Rep. 2018;8(1):4714.PubMedPubMedCentral Evensen KB, O’Rourke M, Prieur F, Holm S, Eide PK. Non-invasive estimation of the intracranial pressure waveform from the central arterial blood pressure waveform in idiopathic normal pressure hydrocephalus patients. Sci Rep. 2018;8(1):4714.PubMedPubMedCentral
28.
go back to reference Dixon B, Sharkey JM, Teo EJ, et al. Assessment of a non-invasive brain pulse monitor to measure intra-cranial pressure following acute brain injury. Med Devices (Auckl). 2023;16:15–26.PubMed Dixon B, Sharkey JM, Teo EJ, et al. Assessment of a non-invasive brain pulse monitor to measure intra-cranial pressure following acute brain injury. Med Devices (Auckl). 2023;16:15–26.PubMed
29.
go back to reference Brasil S, Solla DJF, Nogueira RdC, Teixeira MJ, Malbouisson LMS, Paiva WdS. A novel noninvasive technique for intracranial pressure waveform monitoring in critical care. J Pers Med. 2021;11(12):1302.PubMedPubMedCentral Brasil S, Solla DJF, Nogueira RdC, Teixeira MJ, Malbouisson LMS, Paiva WdS. A novel noninvasive technique for intracranial pressure waveform monitoring in critical care. J Pers Med. 2021;11(12):1302.PubMedPubMedCentral
30.
go back to reference de Moraes FM, Rocha E, Barros FCD, et al. Waveform morphology as a surrogate for ICP monitoring: a comparison between an invasive and a noninvasive method. Neurocrit Care. 2022;37:219.PubMedPubMedCentral de Moraes FM, Rocha E, Barros FCD, et al. Waveform morphology as a surrogate for ICP monitoring: a comparison between an invasive and a noninvasive method. Neurocrit Care. 2022;37:219.PubMedPubMedCentral
31.
go back to reference Brasil S, Frigieri G, Taccone FS, et al. Noninvasive intracranial pressure waveforms for estimation of intracranial hypertension and outcome prediction in acute brain-injured patients. J Clin Monit Comput. 2022;37:753.PubMedPubMedCentral Brasil S, Frigieri G, Taccone FS, et al. Noninvasive intracranial pressure waveforms for estimation of intracranial hypertension and outcome prediction in acute brain-injured patients. J Clin Monit Comput. 2022;37:753.PubMedPubMedCentral
33.
go back to reference Ballestero MFM, Frigieri G, Cabella BCT, de Oliveira SM, de Oliveira RS. Prediction of intracranial hypertension through noninvasive intracranial pressure waveform analysis in pediatric hydrocephalus. Childs Nerv Syst. 2017;33(9):1517–24.PubMed Ballestero MFM, Frigieri G, Cabella BCT, de Oliveira SM, de Oliveira RS. Prediction of intracranial hypertension through noninvasive intracranial pressure waveform analysis in pediatric hydrocephalus. Childs Nerv Syst. 2017;33(9):1517–24.PubMed
34.
go back to reference Saba GT, Quintao VC, Zeferino SP, et al. Noninvasive intracranial pressure real-time waveform analysis monitor during prostatectomy robotic surgery and Trendelenburg position: case report. Braz J Anesthesiol. 2021;71(6):656–9.PubMedPubMedCentral Saba GT, Quintao VC, Zeferino SP, et al. Noninvasive intracranial pressure real-time waveform analysis monitor during prostatectomy robotic surgery and Trendelenburg position: case report. Braz J Anesthesiol. 2021;71(6):656–9.PubMedPubMedCentral
35.
go back to reference Brasil S, Taccone F, Wayhs S, et al. Cerebral hemodynamics and intracranial compliance impairment in critically ill covid-19 patients: a pilot study. Sci Rep. 2021;11:874. Brasil S, Taccone F, Wayhs S, et al. Cerebral hemodynamics and intracranial compliance impairment in critically ill covid-19 patients: a pilot study. Sci Rep. 2021;11:874.
36.
go back to reference Brasil S, Renck AC, Taccone FS, et al. Obesity and its implications on cerebral circulation and intracranial compliance in severe COVID-19. Obes Sci Pract. 2021;7(6):751–9.PubMedPubMedCentral Brasil S, Renck AC, Taccone FS, et al. Obesity and its implications on cerebral circulation and intracranial compliance in severe COVID-19. Obes Sci Pract. 2021;7(6):751–9.PubMedPubMedCentral
37.
go back to reference Rickli C, Cosmoski LD, Dos Santos FA, et al. Use of non-invasive intracranial pressure pulse waveform to monitor patients with end-stage renal disease (ESRD). PLoS ONE. 2021;16(7):e0240570.PubMedPubMedCentral Rickli C, Cosmoski LD, Dos Santos FA, et al. Use of non-invasive intracranial pressure pulse waveform to monitor patients with end-stage renal disease (ESRD). PLoS ONE. 2021;16(7):e0240570.PubMedPubMedCentral
38.
go back to reference Ideta MML, Oliveira LM, Gonçalves DB, et al. Qualitative evaluation of intracranial pressure slopes in patients undergoing brain death protocol. Brain Sci. 2023;13(3):401.PubMedPubMedCentral Ideta MML, Oliveira LM, Gonçalves DB, et al. Qualitative evaluation of intracranial pressure slopes in patients undergoing brain death protocol. Brain Sci. 2023;13(3):401.PubMedPubMedCentral
39.
go back to reference Hassett CE, Uysal SP, Butler R, Moore NZ, Cardim D, Gomes JA. Assessment of cerebral autoregulation using invasive and noninvasive methods of intracranial pressure monitoring. Neurocrit Care. 2022;38:591–9.PubMed Hassett CE, Uysal SP, Butler R, Moore NZ, Cardim D, Gomes JA. Assessment of cerebral autoregulation using invasive and noninvasive methods of intracranial pressure monitoring. Neurocrit Care. 2022;38:591–9.PubMed
40.
go back to reference Frigieri G, Robba C, Machado FS, Gomes JA, Brasil S. Application of non-invasive ICP waveform analysis in acute brain injury: intracranial compliance scale. Intensive Care Med Exp. 2023;11(1):5.PubMedPubMedCentral Frigieri G, Robba C, Machado FS, Gomes JA, Brasil S. Application of non-invasive ICP waveform analysis in acute brain injury: intracranial compliance scale. Intensive Care Med Exp. 2023;11(1):5.PubMedPubMedCentral
41.
go back to reference Hawryluk GWJ, Citerio G, Hutchinson P, et al. Intracranial pressure: current perspectives on physiology and monitoring. Intensive Care Med. 2022;48:1471.PubMed Hawryluk GWJ, Citerio G, Hutchinson P, et al. Intracranial pressure: current perspectives on physiology and monitoring. Intensive Care Med. 2022;48:1471.PubMed
42.
go back to reference Godoy DA, Brasil S, Iaccarino C, Paiva W, Rubiano AM. The intracranial compartmental syndrome: a proposed model for acute brain injury monitoring and management. Crit Care. 2023;27(1):137.PubMedPubMedCentral Godoy DA, Brasil S, Iaccarino C, Paiva W, Rubiano AM. The intracranial compartmental syndrome: a proposed model for acute brain injury monitoring and management. Crit Care. 2023;27(1):137.PubMedPubMedCentral
43.
go back to reference Habboub G, Hassett C, Kondylis E, Gomes J. 332 Estimation of intracranial pressure using non-invasive monitor and machine learning. Neurosurgery. 2023;69(Supplement_1):50. Habboub G, Hassett C, Kondylis E, Gomes J. 332 Estimation of intracranial pressure using non-invasive monitor and machine learning. Neurosurgery. 2023;69(Supplement_1):50.
Metadata
Title
A Point-of-Care Noninvasive Technique for Surrogate ICP Waveforms Application in Neurocritical Care
Authors
Sérgio Brasil
Daniel A. Godoy
Gregory W. J. Hawryluk
Publication date
12-07-2023
Publisher
Springer US
Published in
Neurocritical Care / Issue 1/2024
Print ISSN: 1541-6933
Electronic ISSN: 1556-0961
DOI
https://doi.org/10.1007/s12028-023-01786-2

Other articles of this Issue 1/2024

Neurocritical Care 1/2024 Go to the issue

Pediatric Neurocritical Care and Neuromonitoring

Perioperative neuromonitoring in children with congenital heart disease

Pediatric Neurocritical Care and Neuromonitoring

Neuromonitoring in Children with Traumatic Brain Injury