Skip to main content
Top
Published in: Neurotoxicity Research 3/2017

01-04-2017 | ORIGINAL ARTICLE

Intracerebroventricular Streptozotocin as a Model of Alzheimer’s Disease: Neurochemical and Behavioral Characterization in Mice

Authors: Katherine Garcia Ravelli, Barbara dos Anjos Rosário, Rosana Camarini, Marina Sorrentino Hernandes, Luiz Roberto Britto

Published in: Neurotoxicity Research | Issue 3/2017

Login to get access

Abstract

Streptozotocin has been widely used to mimic some aspects of Alzheimer’s disease (AD). However, especially in mice, several characteristics involved in the streptozotocin (STZ)-induced AD pathology are not well known. The main purpose of this study was to evaluate temporally the expression of AD-related proteins, such as amyloid-β (Aβ), choline acetyltransferase (ChAT), synapsin, axonal neurofilaments, and phosphorylated Tau in the hippocampus following intracerebroventricular (icv) administration of STZ in adult mice. We also analyzed the impact of STZ on short- and long-term memory by novel object recognition test. Male mice were injected with STZ or citrate buffer, and AD-related proteins were evaluated by immunoblotting assays in the hippocampus at 7, 14, or 21 days after injection. No differences between the groups were found at 7 days. The majority of AD markers evaluated were found altered at 14 days, i.e., the STZ group showed increased amyloid-β protein and neurofilament expression, increased phosphorylation of Tau protein, and decreased synapsin expression levels compared to controls. Except for synapsin, all of these neurochemical changes were transient and did not last up to 21 days of STZ injection. Moreover, both short-term and long-term memory deficits were demonstrated after STZ treatment at 14 and 21 days after STZ treatment.
Literature
go back to reference Blokland A, Jolles J (1993) Spatial learning deficit and reduced hippocampal ChAT activity in rats after an ICV injection of streptozotocin. Pharmacol Biochem Behav 44:491–494CrossRefPubMed Blokland A, Jolles J (1993) Spatial learning deficit and reduced hippocampal ChAT activity in rats after an ICV injection of streptozotocin. Pharmacol Biochem Behav 44:491–494CrossRefPubMed
go back to reference Braak H, Braak E (1996) Evolution of the neuropathology of Alzheimer’s disease. Acta Neurol Scand Suppl 165:3–12CrossRefPubMed Braak H, Braak E (1996) Evolution of the neuropathology of Alzheimer’s disease. Acta Neurol Scand Suppl 165:3–12CrossRefPubMed
go back to reference Chung SH (2009) Aberrant phosphorylation in the pathogenesis of Alzheimer’s disease. BMB Rep 42:467–474CrossRefPubMed Chung SH (2009) Aberrant phosphorylation in the pathogenesis of Alzheimer’s disease. BMB Rep 42:467–474CrossRefPubMed
go back to reference Deng Y, Li B, Liu Y, Iqbal K, Grundke-Iqbal I, Gong CX (2009) Dysregulation of insulin signaling, glucose transporters, O-GlcNAcylation, and phosphorylation of tau and neurofilaments in the brain: implication for Alzheimer’s disease. In: Am J Pathol, vol 175. vol 5. United States, pp 2089–2098. doi:10.2353/ajpath.2009.090157 Deng Y, Li B, Liu Y, Iqbal K, Grundke-Iqbal I, Gong CX (2009) Dysregulation of insulin signaling, glucose transporters, O-GlcNAcylation, and phosphorylation of tau and neurofilaments in the brain: implication for Alzheimer’s disease. In: Am J Pathol, vol 175. vol 5. United States, pp 2089–2098. doi:10.​2353/​ajpath.​2009.​090157
go back to reference Elcioglu HK, Aslan E, Ahmad S, Alan S, Salva E, Elcioglu OH, Kabasakal L (2016) Tocilizumab’s effect on cognitive deficits induced by intracerebroventricular administration of streptozotocin in Alzheimer’s model. Mol Cell Biochem 420:21–28. doi:10.1007/s11010-016-2762-6 CrossRefPubMed Elcioglu HK, Aslan E, Ahmad S, Alan S, Salva E, Elcioglu OH, Kabasakal L (2016) Tocilizumab’s effect on cognitive deficits induced by intracerebroventricular administration of streptozotocin in Alzheimer’s model. Mol Cell Biochem 420:21–28. doi:10.​1007/​s11010-016-2762-6 CrossRefPubMed
go back to reference Goedert M (1996) Tau protein and the neurofibrillary pathology of Alzheimer’s disease. Ann N Y Acad Sci 777:121–131CrossRefPubMed Goedert M (1996) Tau protein and the neurofibrillary pathology of Alzheimer’s disease. Ann N Y Acad Sci 777:121–131CrossRefPubMed
go back to reference Hu YY et al (2002) Elevated levels of phosphorylated neurofilament proteins in cerebrospinal fluid of Alzheimer disease patients. Neurosci Lett 320:156–160CrossRefPubMed Hu YY et al (2002) Elevated levels of phosphorylated neurofilament proteins in cerebrospinal fluid of Alzheimer disease patients. Neurosci Lett 320:156–160CrossRefPubMed
go back to reference Kar S, Slowikowski SP, Westaway D, Mount HT (2004) Interactions between beta-amyloid and central cholinergic neurons: implications for Alzheimer’s disease. J Psychiatry Neurosci 29:427–441PubMedPubMedCentral Kar S, Slowikowski SP, Westaway D, Mount HT (2004) Interactions between beta-amyloid and central cholinergic neurons: implications for Alzheimer’s disease. J Psychiatry Neurosci 29:427–441PubMedPubMedCentral
go back to reference Knezovic A, Osmanovic-Barilar J, Curlin M, Hof PR, Simic G, Riederer P, Salkovic-Petrisic M (2015) Staging of cognitive deficits and neuropathological and ultrastructural changes in streptozotocin-induced rat model of Alzheimer’s disease. J Neural Transm (Vienna) 122:577–592. doi:10.1007/s00702-015-1394-4 CrossRef Knezovic A, Osmanovic-Barilar J, Curlin M, Hof PR, Simic G, Riederer P, Salkovic-Petrisic M (2015) Staging of cognitive deficits and neuropathological and ultrastructural changes in streptozotocin-induced rat model of Alzheimer’s disease. J Neural Transm (Vienna) 122:577–592. doi:10.​1007/​s00702-015-1394-4 CrossRef
go back to reference Lannert H, Hoyer S (1998) Intracerebroventricular administration of streptozotocin causes long-term diminutions in learning and memory abilities and in cerebral energy metabolism in adult rats. Behav Neurosci 112:1199–1208CrossRefPubMed Lannert H, Hoyer S (1998) Intracerebroventricular administration of streptozotocin causes long-term diminutions in learning and memory abilities and in cerebral energy metabolism in adult rats. Behav Neurosci 112:1199–1208CrossRefPubMed
go back to reference Lannert H, Wirtz P, Schuhmann V, Galmbacher R (1998) Effects of estradiol (−17beta) on learning, memory and cerebral energy metabolism in male rats after intracerebroventricular administration of streptozotocin. J Neural Transm 105:1045–1063CrossRefPubMed Lannert H, Wirtz P, Schuhmann V, Galmbacher R (1998) Effects of estradiol (−17beta) on learning, memory and cerebral energy metabolism in male rats after intracerebroventricular administration of streptozotocin. J Neural Transm 105:1045–1063CrossRefPubMed
go back to reference Li M, Chen L, Lee DH, Yu LC, Zhang Y (2007) The role of intracellular amyloid beta in Alzheimer’s disease. In: Prog Neurobiol, vol 83. vol 3. England, pp 131–139. doi:10.1016/j.pneurobio.2007.08.002 Li M, Chen L, Lee DH, Yu LC, Zhang Y (2007) The role of intracellular amyloid beta in Alzheimer’s disease. In: Prog Neurobiol, vol 83. vol 3. England, pp 131–139. doi:10.1016/j.pneurobio.2007.08.002
go back to reference Liu P, Zou LB, Wang LH, Jiao Q, Chi TY, Ji XF, Jin G (2014) Xanthoceraside attenuates tau hyperphosphorylation and cognitive deficits in intracerebroventricular-streptozotocin injected rats. Psychopharmacology 231:345–356. doi:10.1007/s00213-013-3240-4 CrossRefPubMed Liu P, Zou LB, Wang LH, Jiao Q, Chi TY, Ji XF, Jin G (2014) Xanthoceraside attenuates tau hyperphosphorylation and cognitive deficits in intracerebroventricular-streptozotocin injected rats. Psychopharmacology 231:345–356. doi:10.​1007/​s00213-013-3240-4 CrossRefPubMed
go back to reference Muller AP et al (2012) Physical exercise exacerbates memory deficits induced by intracerebroventricular STZ but improves insulin regulation of H(2)O(2) production in mice synaptosomes. J Alzheimers Dis 30:889–898. doi:10.3233/jad-2012-112066 PubMed Muller AP et al (2012) Physical exercise exacerbates memory deficits induced by intracerebroventricular STZ but improves insulin regulation of H(2)O(2) production in mice synaptosomes. J Alzheimers Dis 30:889–898. doi:10.​3233/​jad-2012-112066 PubMed
go back to reference Muller D, Nitsch RM, Wurtman RJ, Hoyer S (1998) Streptozotocin increases free fatty acids and decreases phospholipids in rat brain. J Neural Transm 105:1271–1281CrossRefPubMed Muller D, Nitsch RM, Wurtman RJ, Hoyer S (1998) Streptozotocin increases free fatty acids and decreases phospholipids in rat brain. J Neural Transm 105:1271–1281CrossRefPubMed
go back to reference Muller-Spahn F, Hock C (1999) Risk factors and differential diagnosis of Alzheimer’s disease. Eur Arch Psychiatry Clin Neurosci 249(Suppl 3):37–42CrossRefPubMed Muller-Spahn F, Hock C (1999) Risk factors and differential diagnosis of Alzheimer’s disease. Eur Arch Psychiatry Clin Neurosci 249(Suppl 3):37–42CrossRefPubMed
go back to reference Nakamura Y et al (1997) Abnormal distribution of neurofilament L in neurons with Alzheimer’s disease. Neurosci Lett 225:201–204CrossRefPubMed Nakamura Y et al (1997) Abnormal distribution of neurofilament L in neurons with Alzheimer’s disease. Neurosci Lett 225:201–204CrossRefPubMed
go back to reference Perdahl E, Adolfsson R, Alafuzoff I, Albert KA, Nestler EJ, Greengard P, Winblad B (1984) Synapsin I (protein I) in different brain regions in senile dementia of Alzheimer type and in multi-infarct. Dementia. J Neural Transm 60:133–141CrossRefPubMed Perdahl E, Adolfsson R, Alafuzoff I, Albert KA, Nestler EJ, Greengard P, Winblad B (1984) Synapsin I (protein I) in different brain regions in senile dementia of Alzheimer type and in multi-infarct. Dementia. J Neural Transm 60:133–141CrossRefPubMed
go back to reference Pinton S, da Rocha JT, Zeni G, Nogueira CW (2010) Organoselenium improves memory decline in mice: involvement of acetylcholinesterase activity. In: Neurosci Lett, vol 472. vol 1. 2010 Elsevier Ireland Ltd, Ireland, pp 56–60. doi:10.1016/j.neulet.2010.01.057 Pinton S, da Rocha JT, Zeni G, Nogueira CW (2010) Organoselenium improves memory decline in mice: involvement of acetylcholinesterase activity. In: Neurosci Lett, vol 472. vol 1. 2010 Elsevier Ireland Ltd, Ireland, pp 56–60. doi:10.​1016/​j.​neulet.​2010.​01.​057
go back to reference Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766PubMed Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766PubMed
go back to reference Sharma B, Singh N, Singh M, Jaggi AS (2008) Exploitation of HIV protease inhibitor Indinavir as a memory restorative agent in experimental dementia. In: Pharmacol Biochem Behav, vol 89. vol 4. United States, pp 535–545. doi:10.1016/j.pbb.2008.02.012 Sharma B, Singh N, Singh M, Jaggi AS (2008) Exploitation of HIV protease inhibitor Indinavir as a memory restorative agent in experimental dementia. In: Pharmacol Biochem Behav, vol 89. vol 4. United States, pp 535–545. doi:10.​1016/​j.​pbb.​2008.​02.​012
go back to reference Szkudelski T (2001) The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res 50:537–546PubMed Szkudelski T (2001) The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res 50:537–546PubMed
go back to reference Wang J, Tung YC, Wang Y, Li XT, Iqbal K, Grundke-Iqbal I (2001) Hyperphosphorylation and accumulation of neurofilament proteins in Alzheimer disease brain and in okadaic acid-treated SY5Y cells. FEBS Lett 507:81–87CrossRefPubMed Wang J, Tung YC, Wang Y, Li XT, Iqbal K, Grundke-Iqbal I (2001) Hyperphosphorylation and accumulation of neurofilament proteins in Alzheimer disease brain and in okadaic acid-treated SY5Y cells. FEBS Lett 507:81–87CrossRefPubMed
Metadata
Title
Intracerebroventricular Streptozotocin as a Model of Alzheimer’s Disease: Neurochemical and Behavioral Characterization in Mice
Authors
Katherine Garcia Ravelli
Barbara dos Anjos Rosário
Rosana Camarini
Marina Sorrentino Hernandes
Luiz Roberto Britto
Publication date
01-04-2017
Publisher
Springer US
Published in
Neurotoxicity Research / Issue 3/2017
Print ISSN: 1029-8428
Electronic ISSN: 1476-3524
DOI
https://doi.org/10.1007/s12640-016-9684-7

Other articles of this Issue 3/2017

Neurotoxicity Research 3/2017 Go to the issue