Skip to main content
Top
Published in: Journal of Artificial Organs 2/2014

01-06-2014 | Original Article

Intima/medulla reconstruction and vascular contraction–relaxation recovery for acellular small diameter vessels prepared by hyperosmotic electrolyte solution treatment

Authors: Shunsuke Sakakibara, Yasuhisa Ishida, Kazunobu Hashikawa, Tetsuji Yamaoka, Hiroto Terashi

Published in: Journal of Artificial Organs | Issue 2/2014

Login to get access

Abstract

This study aims at the evaluation of blood vessel reconstruction process of decellularized small diameter vessels prepared by a hyperosmotic electrolyte solution treatment not only histologically but also physiologically in rat transplantation model. Complete cell removal by a hyperosmotic electrolyte solution treatment was confirmed by hematoxylin/eosin staining and scanning electron microscopic observation. All acellular vessels transplanted into the rat abdominal aorta were patent up to 14 months. One week post-transplantation, the vWF-positive cells were observed on the luminal surface but the layer formation did not complete. Five weeks following transplantation, the vWF-positive endothelial cells were located on the intima consistent with intact endothelial cells. Beneath the endothelial cells, α-SMA-positive smooth muscle cells were distributed. The harvested vessels displayed formation of tunica intima (endothelial cells) and tunica medulla (smooth muscle cell) layers. We also examined the physiological properties of the vessels 12 months post-transplantation using a wire myograph system. The transplanted vessels contracted upon addition of norepinephrine and relaxed upon addition of sodium nitroprusside as well as the native vessels. In conclusion, the acellular vessels prepared with hyperosmotic electrolytic solution showed excellent and long-term patency, which may be related to the successful preservation of vascular ECM. In addition, the acellular vessels revealed the intima/medulla regeneration with the physiological contraction–relaxation functions in response to the each substance.
Literature
1.
go back to reference Bosiers M, Torsello G, Gissler HM, Ruef J, Muller-Hulsbeck S, Jahnke T, et al. Nitinol stent implantation in long superficial femoral artery lesions: 12-month results of the DURABILITY I study. J Endovasc Ther. 2009;16:261–9.PubMedCrossRef Bosiers M, Torsello G, Gissler HM, Ruef J, Muller-Hulsbeck S, Jahnke T, et al. Nitinol stent implantation in long superficial femoral artery lesions: 12-month results of the DURABILITY I study. J Endovasc Ther. 2009;16:261–9.PubMedCrossRef
2.
go back to reference Chlupac J, Filova E, Bacakova L. Blood vessel replacement: 50 years of development and tissue engineering paradigms in vascular surgery. Physiol Res. 2009;58:S119–39.PubMed Chlupac J, Filova E, Bacakova L. Blood vessel replacement: 50 years of development and tissue engineering paradigms in vascular surgery. Physiol Res. 2009;58:S119–39.PubMed
3.
go back to reference Schaner PJ, Martin ND, Tulenko TN, Shapiro IM, Tarola NA, Leichter RF, et al. Decellularized vein as a potential scaffold for vascular tissue engineering. J Vasc Surg. 2004;40:146–53.PubMedCrossRef Schaner PJ, Martin ND, Tulenko TN, Shapiro IM, Tarola NA, Leichter RF, et al. Decellularized vein as a potential scaffold for vascular tissue engineering. J Vasc Surg. 2004;40:146–53.PubMedCrossRef
4.
go back to reference Lin PH, Chen C, Bush RL, Yao Q, Lumsden AB, Hanson SR. Small-caliber heparin-coated ePTFE grafts reduce platelet deposition and neointimal hyperplasia in a baboon model. J Vasc Surg. 2004;39:1322–8.PubMedCrossRef Lin PH, Chen C, Bush RL, Yao Q, Lumsden AB, Hanson SR. Small-caliber heparin-coated ePTFE grafts reduce platelet deposition and neointimal hyperplasia in a baboon model. J Vasc Surg. 2004;39:1322–8.PubMedCrossRef
5.
6.
go back to reference Matsumoto H, Hasegawa T, Fuse K, Yamamoto M, Saigusa M. A new vascular prosthesis for a small caliber artery. Surgery. 1973;74:519–23.PubMed Matsumoto H, Hasegawa T, Fuse K, Yamamoto M, Saigusa M. A new vascular prosthesis for a small caliber artery. Surgery. 1973;74:519–23.PubMed
7.
go back to reference Daenens K, Schepers S, Fourneau I, Houthoofd S, Nevelsteen A. Heparin-bonded ePTFE grafts compared with vein grafts in femoropopliteal and femorocrural bypasses: 1- and 2-year results. J Vasc Surg. 2009;49:1210–6.PubMedCrossRef Daenens K, Schepers S, Fourneau I, Houthoofd S, Nevelsteen A. Heparin-bonded ePTFE grafts compared with vein grafts in femoropopliteal and femorocrural bypasses: 1- and 2-year results. J Vasc Surg. 2009;49:1210–6.PubMedCrossRef
8.
go back to reference Heyligers JM, Verhagen HJ, Rotmans JI, Weeterings C, de Groot PG, Moll FL, et al. Heparin immobilization reduces thrombogenicity of small-caliber expanded polytetrafluoroethylene grafts. J Vasc Surg. 2006;43:587–91.PubMedCrossRef Heyligers JM, Verhagen HJ, Rotmans JI, Weeterings C, de Groot PG, Moll FL, et al. Heparin immobilization reduces thrombogenicity of small-caliber expanded polytetrafluoroethylene grafts. J Vasc Surg. 2006;43:587–91.PubMedCrossRef
9.
go back to reference Hugl B, Nevelsteen A, Daenens K, Perez MA, Heider P, Railo M, et al. PEPE II—a multicenter study with an end-point heparin-bonded expanded polytetrafluoroethylene vascular graft for above and below knee bypass surgery: determinants of patency. J Cardiovasc Surg (Torino). 2009;50:195–203. Hugl B, Nevelsteen A, Daenens K, Perez MA, Heider P, Railo M, et al. PEPE II—a multicenter study with an end-point heparin-bonded expanded polytetrafluoroethylene vascular graft for above and below knee bypass surgery: determinants of patency. J Cardiovasc Surg (Torino). 2009;50:195–203.
10.
go back to reference Bader A, Schilling T, Teebken OE, Brandes G, Herden T, Steinhoff G, et al. Tissue engineering of heart valves—human endothelial cell seeding of detergent acellularized porcine valves. Eur J Cardiothorac Surg. 1998;14:279–84.PubMedCrossRef Bader A, Schilling T, Teebken OE, Brandes G, Herden T, Steinhoff G, et al. Tissue engineering of heart valves—human endothelial cell seeding of detergent acellularized porcine valves. Eur J Cardiothorac Surg. 1998;14:279–84.PubMedCrossRef
11.
go back to reference Yeh HI, Lu SK, Tian TY, Hong RC, Lee WH, Tsai CH. Comparison of endothelial cells grown on different stent materials. J Biomed Mater Res A. 2006;76:835–41.PubMedCrossRef Yeh HI, Lu SK, Tian TY, Hong RC, Lee WH, Tsai CH. Comparison of endothelial cells grown on different stent materials. J Biomed Mater Res A. 2006;76:835–41.PubMedCrossRef
12.
go back to reference Sreerekha PR, Krishnan LK. Cultivation of endothelial progenitor cells on fibrin matrix and layering on dacron/polytetrafluoroethylene vascular grafts. Artif Organs. 2006;30:242–9.PubMedCrossRef Sreerekha PR, Krishnan LK. Cultivation of endothelial progenitor cells on fibrin matrix and layering on dacron/polytetrafluoroethylene vascular grafts. Artif Organs. 2006;30:242–9.PubMedCrossRef
13.
go back to reference Cho SW, Jeon O, Lim JE, Gwak SJ, Kim SS, Choi CY, et al. Preliminary experience with tissue engineering of a venous vascular patch by using bone marrow-derived cells and a hybrid biodegradable polymer scaffold. J Vasc Surg. 2006;44:1329–40.PubMedCrossRef Cho SW, Jeon O, Lim JE, Gwak SJ, Kim SS, Choi CY, et al. Preliminary experience with tissue engineering of a venous vascular patch by using bone marrow-derived cells and a hybrid biodegradable polymer scaffold. J Vasc Surg. 2006;44:1329–40.PubMedCrossRef
14.
go back to reference Hoerstrup SP, Zund G, Sodian R, Schnell AM, Grunenfelder J, Turina MI. Tissue engineering of small caliber vascular grafts. Eur J Cardiothorac Surg. 2001;20:164–9.PubMedCrossRef Hoerstrup SP, Zund G, Sodian R, Schnell AM, Grunenfelder J, Turina MI. Tissue engineering of small caliber vascular grafts. Eur J Cardiothorac Surg. 2001;20:164–9.PubMedCrossRef
15.
go back to reference Quint C, Kondo Y, Manson RJ, Lawson JH, Dardik A, Niklason LE. Decellularized tissue-engineered blood vessel as an arterial conduit. Proc Natl Acad Sci USA. 2011;108:9214–9.PubMedCentralPubMedCrossRef Quint C, Kondo Y, Manson RJ, Lawson JH, Dardik A, Niklason LE. Decellularized tissue-engineered blood vessel as an arterial conduit. Proc Natl Acad Sci USA. 2011;108:9214–9.PubMedCentralPubMedCrossRef
16.
go back to reference Wu HC, Wang TW, Kang PL, Tsuang YH, Sun JS, Lin FH. Coculture of endothelial and smooth muscle cells on a collagen membrane in the development of a small-diameter vascular graft. Biomaterials. 2007;28:1385–92.PubMedCrossRef Wu HC, Wang TW, Kang PL, Tsuang YH, Sun JS, Lin FH. Coculture of endothelial and smooth muscle cells on a collagen membrane in the development of a small-diameter vascular graft. Biomaterials. 2007;28:1385–92.PubMedCrossRef
17.
go back to reference Haruguchi H, Teraoka S. Intimal hyperplasia and hemodynamic factors in arterial bypass and arteriovenous grafts: a review. J Artif Organs. 2003;6:227–35.PubMedCrossRef Haruguchi H, Teraoka S. Intimal hyperplasia and hemodynamic factors in arterial bypass and arteriovenous grafts: a review. J Artif Organs. 2003;6:227–35.PubMedCrossRef
18.
go back to reference Lovett M, Eng G, Kluge JA, Cannizzaro C, Vunjak-Novakovic G, Kaplan DL. Tubular silk scaffolds for small diameter vascular grafts. Organogenesis. 2010;6:217–24.PubMedCentralPubMedCrossRef Lovett M, Eng G, Kluge JA, Cannizzaro C, Vunjak-Novakovic G, Kaplan DL. Tubular silk scaffolds for small diameter vascular grafts. Organogenesis. 2010;6:217–24.PubMedCentralPubMedCrossRef
19.
go back to reference Iwasaki K, Kojima K, Kodama S, Paz AC, Chambers M, Umezu M, et al. Bioengineered three-layered robust and elastic artery using hemodynamically-equivalent pulsatile bioreactor. Circulation. 2008;118:S52–7.PubMedCrossRef Iwasaki K, Kojima K, Kodama S, Paz AC, Chambers M, Umezu M, et al. Bioengineered three-layered robust and elastic artery using hemodynamically-equivalent pulsatile bioreactor. Circulation. 2008;118:S52–7.PubMedCrossRef
20.
go back to reference Enomoto S, Sumi M, Kajimoto K, Nakazawa Y, Takahashi R, Takabayashi C, et al. Long-term patency of small-diameter vascular graft made from fibroin, a silk-based biodegradable material. J Vasc Surg. 2010;51:155–64.PubMedCrossRef Enomoto S, Sumi M, Kajimoto K, Nakazawa Y, Takahashi R, Takabayashi C, et al. Long-term patency of small-diameter vascular graft made from fibroin, a silk-based biodegradable material. J Vasc Surg. 2010;51:155–64.PubMedCrossRef
21.
go back to reference Nemcova S, Noel AA, Jost CJ, Gloviczki P, Miller VM, Brockbank KG. Evaluation of a xenogeneic acellular collagen matrix as a small-diameter vascular graft in dogs—preliminary observations. J Invest Surg. 2001;14:321–30.PubMedCrossRef Nemcova S, Noel AA, Jost CJ, Gloviczki P, Miller VM, Brockbank KG. Evaluation of a xenogeneic acellular collagen matrix as a small-diameter vascular graft in dogs—preliminary observations. J Invest Surg. 2001;14:321–30.PubMedCrossRef
22.
go back to reference Isenburg JC, Simionescu DT, Vyavahare NR. Elastin stabilization in cardiovascular implants: improved resistance to enzymatic degradation by treatment with tannic acid. Biomaterials. 2004;25:3293–302.PubMedCrossRef Isenburg JC, Simionescu DT, Vyavahare NR. Elastin stabilization in cardiovascular implants: improved resistance to enzymatic degradation by treatment with tannic acid. Biomaterials. 2004;25:3293–302.PubMedCrossRef
23.
go back to reference Malone JM, Brendel K, Duhamel RC, Reinert RL. Detergent-extracted small-diameter vascular prostheses. J Vasc Surg. 1984;1:181–91.PubMedCrossRef Malone JM, Brendel K, Duhamel RC, Reinert RL. Detergent-extracted small-diameter vascular prostheses. J Vasc Surg. 1984;1:181–91.PubMedCrossRef
24.
go back to reference Schmidt CE, Baier JM. Acellular vascular tissues: natural biomaterials for tissue repair and tissue engineering. Biomaterials. 2000;21:2215–31.PubMedCrossRef Schmidt CE, Baier JM. Acellular vascular tissues: natural biomaterials for tissue repair and tissue engineering. Biomaterials. 2000;21:2215–31.PubMedCrossRef
25.
go back to reference Teebken OE, Bader A, Steinhoff G, Haverich A. Tissue engineering of vascular grafts: human cell seeding of decellularised porcine matrix. Eur J Vasc Endovasc Surg. 2000;19:381–6.PubMedCrossRef Teebken OE, Bader A, Steinhoff G, Haverich A. Tissue engineering of vascular grafts: human cell seeding of decellularised porcine matrix. Eur J Vasc Endovasc Surg. 2000;19:381–6.PubMedCrossRef
26.
go back to reference Wilson GJ, Yeger H, Klement P, Lee JM, Courtman DW. Acellular matrix allograft small caliber vascular prostheses. ASAIO Trans. 1990;36:M340–3.PubMed Wilson GJ, Yeger H, Klement P, Lee JM, Courtman DW. Acellular matrix allograft small caliber vascular prostheses. ASAIO Trans. 1990;36:M340–3.PubMed
27.
go back to reference Yang D, Guo T, Nie C, Morris SF. Tissue-engineered blood vessel graft produced by self-derived cells and allogenic acellular matrix: a functional performance and histologic study. Ann Plast Surg. 2009;62:297–303.PubMedCrossRef Yang D, Guo T, Nie C, Morris SF. Tissue-engineered blood vessel graft produced by self-derived cells and allogenic acellular matrix: a functional performance and histologic study. Ann Plast Surg. 2009;62:297–303.PubMedCrossRef
28.
go back to reference Lalka SG, Oelker LM, Malone JM, Duhamel RC, Kevorkian MA, Raper BA, et al. Acellular vascular matrix: a natural endothelial cell substrate. Ann Vasc Surg. 1989;3:108–17.PubMedCrossRef Lalka SG, Oelker LM, Malone JM, Duhamel RC, Kevorkian MA, Raper BA, et al. Acellular vascular matrix: a natural endothelial cell substrate. Ann Vasc Surg. 1989;3:108–17.PubMedCrossRef
29.
go back to reference Ahn JM, Kim SJ, Kim H, Park C, Kim WH, Park JH. Triton X-100 induces apoptosis in human hepatoma cell lines. Yonsei Med J. 1997;38:52–9.PubMed Ahn JM, Kim SJ, Kim H, Park C, Kim WH, Park JH. Triton X-100 induces apoptosis in human hepatoma cell lines. Yonsei Med J. 1997;38:52–9.PubMed
30.
go back to reference Ehashi T, Nishigaito A, Fujisato T, Moritan Y, Yamaoka T. Peripheral nerve regeneration and electrophysiological recovery with CIP-treated allogeneic acellular nerves. J Biomater Sci Polym Ed. 2011;22:627–40.PubMedCrossRef Ehashi T, Nishigaito A, Fujisato T, Moritan Y, Yamaoka T. Peripheral nerve regeneration and electrophysiological recovery with CIP-treated allogeneic acellular nerves. J Biomater Sci Polym Ed. 2011;22:627–40.PubMedCrossRef
31.
go back to reference Veith FJ, Moss CM, Sprayregen S, Montefusco C. Preoperative saphenous venography in arterial reconstructive surgery of the lower extremity. Surgery. 1979;85:253–6.PubMed Veith FJ, Moss CM, Sprayregen S, Montefusco C. Preoperative saphenous venography in arterial reconstructive surgery of the lower extremity. Surgery. 1979;85:253–6.PubMed
32.
go back to reference Kawada H, Fujita J, Kinjo K, Matsuzaki Y, Tsuma M, Miyatake H, et al. Nonhematopoietic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction. Blood. 2004;104:3581–7.PubMedCrossRef Kawada H, Fujita J, Kinjo K, Matsuzaki Y, Tsuma M, Miyatake H, et al. Nonhematopoietic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction. Blood. 2004;104:3581–7.PubMedCrossRef
33.
go back to reference Krenning G, Moonen JR, van Luyn MJ, Harmsen MC. Generating new blood flow: integrating developmental biology and tissue engineering. Trends Cardiovasc Med. 2008;18:312–23.PubMedCrossRef Krenning G, Moonen JR, van Luyn MJ, Harmsen MC. Generating new blood flow: integrating developmental biology and tissue engineering. Trends Cardiovasc Med. 2008;18:312–23.PubMedCrossRef
34.
go back to reference Saiura A, Sata M, Hirata Y, Nagai R, Makuuchi M. Circulating smooth muscle progenitor cells contribute to atherosclerosis. Nat Med. 2001;7:382–3.PubMedCrossRef Saiura A, Sata M, Hirata Y, Nagai R, Makuuchi M. Circulating smooth muscle progenitor cells contribute to atherosclerosis. Nat Med. 2001;7:382–3.PubMedCrossRef
35.
go back to reference Haruna Y, Morita Y, Komai N, Yada T, Sakuta T, Tomita N, et al. Endothelial dysfunction in rat adjuvant-induced arthritis: vascular superoxide production by NAD(P)H oxidase and uncoupled endothelial nitric oxide synthase. Arthritis Rheum. 2006;54:1847–55.PubMedCrossRef Haruna Y, Morita Y, Komai N, Yada T, Sakuta T, Tomita N, et al. Endothelial dysfunction in rat adjuvant-induced arthritis: vascular superoxide production by NAD(P)H oxidase and uncoupled endothelial nitric oxide synthase. Arthritis Rheum. 2006;54:1847–55.PubMedCrossRef
36.
go back to reference Tanaka Y, Mochizuki Y, Tanaka H, Shigenobu K. Significant role of neuronal non-N-type calcium channels in the sympathetic neurogenic contraction of rat mesenteric artery. Br J Pharmacol. 1999;128:1602–8.PubMedCentralPubMedCrossRef Tanaka Y, Mochizuki Y, Tanaka H, Shigenobu K. Significant role of neuronal non-N-type calcium channels in the sympathetic neurogenic contraction of rat mesenteric artery. Br J Pharmacol. 1999;128:1602–8.PubMedCentralPubMedCrossRef
37.
go back to reference Sbitany H, Serletti JM. Acellular dermis-assisted prosthetic breast reconstruction: a systematic and critical review of efficacy and associated morbidity. Plast Reconstr Surg. 2011;128:1162–9.PubMedCrossRef Sbitany H, Serletti JM. Acellular dermis-assisted prosthetic breast reconstruction: a systematic and critical review of efficacy and associated morbidity. Plast Reconstr Surg. 2011;128:1162–9.PubMedCrossRef
38.
go back to reference Glasberg SB, Light D. AlloDerm and Strattice in breast reconstruction: a comparison and techniques for optimizing outcomes. Plast Reconstr Surg. 2012;129:1223–33.PubMedCrossRef Glasberg SB, Light D. AlloDerm and Strattice in breast reconstruction: a comparison and techniques for optimizing outcomes. Plast Reconstr Surg. 2012;129:1223–33.PubMedCrossRef
39.
go back to reference Meyer SR, Chiu B, Churchill TA, Zhu L, Lakey JR, Ross DB. Comparison of aortic valve allograft decellularization techniques in the rat. J Biomed Mater Res A. 2006;79:254–62.PubMedCrossRef Meyer SR, Chiu B, Churchill TA, Zhu L, Lakey JR, Ross DB. Comparison of aortic valve allograft decellularization techniques in the rat. J Biomed Mater Res A. 2006;79:254–62.PubMedCrossRef
Metadata
Title
Intima/medulla reconstruction and vascular contraction–relaxation recovery for acellular small diameter vessels prepared by hyperosmotic electrolyte solution treatment
Authors
Shunsuke Sakakibara
Yasuhisa Ishida
Kazunobu Hashikawa
Tetsuji Yamaoka
Hiroto Terashi
Publication date
01-06-2014
Publisher
Springer Japan
Published in
Journal of Artificial Organs / Issue 2/2014
Print ISSN: 1434-7229
Electronic ISSN: 1619-0904
DOI
https://doi.org/10.1007/s10047-014-0760-6

Other articles of this Issue 2/2014

Journal of Artificial Organs 2/2014 Go to the issue