Skip to main content
Top
Published in: Experimental Brain Research 3/2009

01-01-2009 | Research Article

Interhemispheric transfer of phosphenes generated by occipital versus parietal transcranial magnetic stimulation

Authors: Carlo A. Marzi, Francesca Mancini, Silvia Savazzi

Published in: Experimental Brain Research | Issue 3/2009

Login to get access

Abstract

Phosphenes represent a perceptual effect of transcranial magnetic stimulation (TMS) or electric stimulation of visual cortical areas. One likely neural basis for the generation of static phosphenes is the primary visual cortex (V1) although evidence is controversial. A peculiar feature of V1 is that it has sparse callosal connections with the exception of a central portion of visual field representation. In contrast, visually responsive cortical areas in the parietal lobe have widespread callosal connections. Thus, interhemispheric transfer (IT) time of off-centre phosphenes should be slower when generated by V1 than by visual parietal areas. To verify this possibility, in Exp. 1 we measured IT of phosphenes generated by TMS applied to V1 and in Exp. 2 we measured IT of phosphenes obtained by TMS applied to posterior parietal cortex. In both experiments, we obtained static bright circular phosphenes appearing in the contralateral hemifield. We measured IT time behaviorally by comparing unimanual simple reaction time to the onset of a phosphene under crossed or uncrossed hemifield-hand condition (Poffenberger paradigm). In keeping with our prediction, we found a substantially longer IT time for V1 than for parietal phosphenes. Additionally, an IT similar to that obtained with V1 stimulation was found when participants were asked to imagine the phosphenes previously experienced during TMS. In conclusion, the present results suggest that IT of phosphenes either generated by V1 TMS or imagined is subserved by slower callosal channels than those of real visual stimuli or parietal phosphenes.
Appendix
Available only for authorised users
Literature
go back to reference Aboitiz F, Scheibel AB, Fisher RS, Zaidel E (1992) Fiber composition of the human corpus callosum. Brain Res 598:143–153PubMedCrossRef Aboitiz F, Scheibel AB, Fisher RS, Zaidel E (1992) Fiber composition of the human corpus callosum. Brain Res 598:143–153PubMedCrossRef
go back to reference Amassian VE, Cracco RQ, Maccabee PJ, Cracco JB, Rudell AP, Eberle L (1998) Transcranial magnetic stimulation in study of the visual pathway. J Clin Neurophysiol 15:288–304PubMedCrossRef Amassian VE, Cracco RQ, Maccabee PJ, Cracco JB, Rudell AP, Eberle L (1998) Transcranial magnetic stimulation in study of the visual pathway. J Clin Neurophysiol 15:288–304PubMedCrossRef
go back to reference Amassian VE, Maccabee PJ, Cracco RQ, Cracco JB, Somasundaram M, Rothwell JC, Eberle L, Henry K, Rudell AP (1994) The polarity of the induced electric field influences magnetic coil inhibition of human visual cortex: implications for the site of excitation. Electroencephalogr Clin Neurophysiol 93:21–26PubMedCrossRef Amassian VE, Maccabee PJ, Cracco RQ, Cracco JB, Somasundaram M, Rothwell JC, Eberle L, Henry K, Rudell AP (1994) The polarity of the induced electric field influences magnetic coil inhibition of human visual cortex: implications for the site of excitation. Electroencephalogr Clin Neurophysiol 93:21–26PubMedCrossRef
go back to reference Anand S, Hotson J (2002) Transcranial magnetic stimulation: neurophysiological applications and safety. Brain Cogn 50:366–386PubMedCrossRef Anand S, Hotson J (2002) Transcranial magnetic stimulation: neurophysiological applications and safety. Brain Cogn 50:366–386PubMedCrossRef
go back to reference Antal A, Nitsche MA, Kincses TZ, Lampe C, Paulus W (2004) No correlation between moving phosphene and motor thresholds: a transcranial magnetic stimulation study. Neuroreport 15:297–302PubMedCrossRef Antal A, Nitsche MA, Kincses TZ, Lampe C, Paulus W (2004) No correlation between moving phosphene and motor thresholds: a transcranial magnetic stimulation study. Neuroreport 15:297–302PubMedCrossRef
go back to reference Anzola GP, Bertoloni G, Buchtel HA, Rizzolatti G (1977) Spatial compatibility and anatomical factors in simple and choice reaction time. Neuropsychologia 15:295–302PubMedCrossRef Anzola GP, Bertoloni G, Buchtel HA, Rizzolatti G (1977) Spatial compatibility and anatomical factors in simple and choice reaction time. Neuropsychologia 15:295–302PubMedCrossRef
go back to reference Berlucchi G (1972) Anatomical and physiological aspects of visual functions of corpus callosum. Brain Res 37:371–392PubMedCrossRef Berlucchi G (1972) Anatomical and physiological aspects of visual functions of corpus callosum. Brain Res 37:371–392PubMedCrossRef
go back to reference Berlucchi G, Crea F, Di Stefano M, Tassinari G (1977) Influence of spatial stimulus-response compatibility on reaction time of ipsilateral and contralateral hand to lateralized light stimuli. J Exp Psychol Hum Percept Perform 3:505–517PubMedCrossRef Berlucchi G, Crea F, Di Stefano M, Tassinari G (1977) Influence of spatial stimulus-response compatibility on reaction time of ipsilateral and contralateral hand to lateralized light stimuli. J Exp Psychol Hum Percept Perform 3:505–517PubMedCrossRef
go back to reference Berlucchi G, Heron W, Hyman R, Rizzolatti G, Umiltà C (1971) Simple reaction times of ipsilateral and contralateral hand to lateralized visual stimuli. Brain 94:419–430PubMedCrossRef Berlucchi G, Heron W, Hyman R, Rizzolatti G, Umiltà C (1971) Simple reaction times of ipsilateral and contralateral hand to lateralized visual stimuli. Brain 94:419–430PubMedCrossRef
go back to reference Boroojerdi B, Prager A, Muellbacher W, Cohen LG (2000) Reduction of human visual cortex excitability using 1-Hz transcranial magnetic stimulation. Neurology 54:1529–1531PubMed Boroojerdi B, Prager A, Muellbacher W, Cohen LG (2000) Reduction of human visual cortex excitability using 1-Hz transcranial magnetic stimulation. Neurology 54:1529–1531PubMed
go back to reference Brown WS, Jeeves MA, Dietrich R, Burnison DS (1999) Bilateral field advantage and evoked potential interhemispheric transmission in commissurotomy and callosal agenesis. Neuropsychologia 37:1165–1180PubMedCrossRef Brown WS, Jeeves MA, Dietrich R, Burnison DS (1999) Bilateral field advantage and evoked potential interhemispheric transmission in commissurotomy and callosal agenesis. Neuropsychologia 37:1165–1180PubMedCrossRef
go back to reference Chiang TC, Lavidor M (2005) Magnetic stimulation and the crossed-uncrossed difference (CUD) paradigm: selective effects in the ipsilateral and contralateral hemispheres. Exp Brain Res 160:404–418PubMedCrossRef Chiang TC, Lavidor M (2005) Magnetic stimulation and the crossed-uncrossed difference (CUD) paradigm: selective effects in the ipsilateral and contralateral hemispheres. Exp Brain Res 160:404–418PubMedCrossRef
go back to reference Chiang TC, Walsh V, Lavidor M (2004) The cortical representation of foveal stimuli: evidence from quadrantanopia and TMS-induced suppression. Brain Res Cogn Brain Res 21:309–316PubMedCrossRef Chiang TC, Walsh V, Lavidor M (2004) The cortical representation of foveal stimuli: evidence from quadrantanopia and TMS-induced suppression. Brain Res Cogn Brain Res 21:309–316PubMedCrossRef
go back to reference Clarke S, Miklossy J (1990) Occipital cortex in man: organization of callosal connections, related myelo- and cytoarchitecture, and putative boundaries of functional visual areas. J Comp Neurol 298:188–214PubMedCrossRef Clarke S, Miklossy J (1990) Occipital cortex in man: organization of callosal connections, related myelo- and cytoarchitecture, and putative boundaries of functional visual areas. J Comp Neurol 298:188–214PubMedCrossRef
go back to reference Corballis MC (2002) Hemispheric interactions in simple reaction time. Neuropsychologia 40:423–443PubMedCrossRef Corballis MC (2002) Hemispheric interactions in simple reaction time. Neuropsychologia 40:423–443PubMedCrossRef
go back to reference Cowey A, Walsh V (2000) Magnetically induced phosphenes in sighted, blind and blindsighted observers. Neuroreport 11:3269–3273PubMedCrossRef Cowey A, Walsh V (2000) Magnetically induced phosphenes in sighted, blind and blindsighted observers. Neuroreport 11:3269–3273PubMedCrossRef
go back to reference Cowey A, Walsh V (2001) Tickling the brain: studying visual sensation, perception and cognition by transcranial magnetic stimulation. Prog Brain Res 134:411–425PubMedCrossRef Cowey A, Walsh V (2001) Tickling the brain: studying visual sensation, perception and cognition by transcranial magnetic stimulation. Prog Brain Res 134:411–425PubMedCrossRef
go back to reference Deblieck C, Thompson B, Iacoboni M, Wu AD (2008) Correlation between motor and phosphene thresholds: a transcranial magnetic stimulation study. Hum Brain Mapp 29:662–670PubMedCrossRef Deblieck C, Thompson B, Iacoboni M, Wu AD (2008) Correlation between motor and phosphene thresholds: a transcranial magnetic stimulation study. Hum Brain Mapp 29:662–670PubMedCrossRef
go back to reference Fendrich R, Hutsler JJ, Gazzaniga MS (2004) Visual and tactile interhemispheric transfer compared with the method of Poffenberger. Exp Brain Res 158:67–74PubMedCrossRef Fendrich R, Hutsler JJ, Gazzaniga MS (2004) Visual and tactile interhemispheric transfer compared with the method of Poffenberger. Exp Brain Res 158:67–74PubMedCrossRef
go back to reference Fernandez E, Alfaro A, Tormos JM, Climent R, Martínez M, Vilanova H, Walsh V, Pascual-Leone A (2002) Mapping of the human visual cortex using image-guided transcranial magnetic stimulation. Brain Res Brain Res Protoc 10:115–124PubMedCrossRef Fernandez E, Alfaro A, Tormos JM, Climent R, Martínez M, Vilanova H, Walsh V, Pascual-Leone A (2002) Mapping of the human visual cortex using image-guided transcranial magnetic stimulation. Brain Res Brain Res Protoc 10:115–124PubMedCrossRef
go back to reference Ffytche DH, Howseman A, Edwards R, Sandeman DR, Zeki S (2000) Human area V5 and motion in the ipsilateral visual field. Eur J Neurosci 12:3015–3025PubMedCrossRef Ffytche DH, Howseman A, Edwards R, Sandeman DR, Zeki S (2000) Human area V5 and motion in the ipsilateral visual field. Eur J Neurosci 12:3015–3025PubMedCrossRef
go back to reference Grefkes C, Fink GR (2005) The functional organization of the intraparietal sulcus in humans and monkeys. J Anat 207:3–17PubMedCrossRef Grefkes C, Fink GR (2005) The functional organization of the intraparietal sulcus in humans and monkeys. J Anat 207:3–17PubMedCrossRef
go back to reference Gross CG, Bender DB, Mishkin M (1977) Contributions of the corpus callosum and the anterior commissure to visual activation of inferior temporal neurons. Brain Res 131:227–239PubMedCrossRef Gross CG, Bender DB, Mishkin M (1977) Contributions of the corpus callosum and the anterior commissure to visual activation of inferior temporal neurons. Brain Res 131:227–239PubMedCrossRef
go back to reference Grubbs F (1969) Procedures for detecting outlying observations in samples. Technometrics 11:1–21CrossRef Grubbs F (1969) Procedures for detecting outlying observations in samples. Technometrics 11:1–21CrossRef
go back to reference Herwig U, Satrapi P, Schönfeldt-Lecuona C (2003) Using the international 10–20 EEG system for positioning of transcranial magnetic stimulation. Brain Topogr 16:95–99PubMedCrossRef Herwig U, Satrapi P, Schönfeldt-Lecuona C (2003) Using the international 10–20 EEG system for positioning of transcranial magnetic stimulation. Brain Topogr 16:95–99PubMedCrossRef
go back to reference Hoptman MJ, Davidson RJ, Gudmundsson A, Schreiber RT, Ershler WB (1996) Age differences in visual evoked potential estimates of interhemispheric transfer. Neuropsychology 10:263–271CrossRef Hoptman MJ, Davidson RJ, Gudmundsson A, Schreiber RT, Ershler WB (1996) Age differences in visual evoked potential estimates of interhemispheric transfer. Neuropsychology 10:263–271CrossRef
go back to reference Iacoboni M (2006) Visuo-motor integration and control in the human posterior parietal cortex: evidence from TMS and fMRI. Neuropsychologia 44:2691–2699PubMedCrossRef Iacoboni M (2006) Visuo-motor integration and control in the human posterior parietal cortex: evidence from TMS and fMRI. Neuropsychologia 44:2691–2699PubMedCrossRef
go back to reference Iacoboni M, Zaidel E (2004) Interhemispheric visuo-motor integration in humans: the role of the superior parietal cortex. Neuropsychologia 42:419–425PubMedCrossRef Iacoboni M, Zaidel E (2004) Interhemispheric visuo-motor integration in humans: the role of the superior parietal cortex. Neuropsychologia 42:419–425PubMedCrossRef
go back to reference Ilmoniemi RJ, Virtanen J, Ruohonen J, Karhu J, Aronen HJ, Näätänen R, Katila T (1997) Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity. NeuroReport 8:3537–3540PubMedCrossRef Ilmoniemi RJ, Virtanen J, Ruohonen J, Karhu J, Aronen HJ, Näätänen R, Katila T (1997) Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity. NeuroReport 8:3537–3540PubMedCrossRef
go back to reference Ipata A, Girelli M, Miniussi C, Marzi CA (1997) Interhemispheric transfer of visual information in humans: the role of different callosal channels. Arch Ital Biol 135:169–182PubMed Ipata A, Girelli M, Miniussi C, Marzi CA (1997) Interhemispheric transfer of visual information in humans: the role of different callosal channels. Arch Ital Biol 135:169–182PubMed
go back to reference Kammer T (1999) Phosphenes and transient scotomas induced by magnetic stimulation of the occipital lobe: their topographic relationship. Neuropsychologia 37:191–198PubMedCrossRef Kammer T (1999) Phosphenes and transient scotomas induced by magnetic stimulation of the occipital lobe: their topographic relationship. Neuropsychologia 37:191–198PubMedCrossRef
go back to reference Kammer T (2007) Masking visual stimuli by transcranial magnetic stimulation. Psychol Res 71:659–666PubMedCrossRef Kammer T (2007) Masking visual stimuli by transcranial magnetic stimulation. Psychol Res 71:659–666PubMedCrossRef
go back to reference Kammer T, Beck S, Erb M, Grodd W (2001) The influence of current direction on phosphene thresholds evoked by transcranial magnetic stimulation. Clin Neurophysiol 112:2015–2021PubMedCrossRef Kammer T, Beck S, Erb M, Grodd W (2001) The influence of current direction on phosphene thresholds evoked by transcranial magnetic stimulation. Clin Neurophysiol 112:2015–2021PubMedCrossRef
go back to reference Kammer T, Puls K, Erb M, Grodd W (2005) Transcranial magnetic stimulation in the visual system. II. Characterization of induced phosphenes and scotomas. Exp Brain Res 160:129–140PubMedCrossRef Kammer T, Puls K, Erb M, Grodd W (2005) Transcranial magnetic stimulation in the visual system. II. Characterization of induced phosphenes and scotomas. Exp Brain Res 160:129–140PubMedCrossRef
go back to reference Kastner S, Paul I, Ziemann U (1998) Transient visual field defects induced by transcranial magnetic stimulation over the occipital lobe. Exp Brain Res 118:19–26PubMedCrossRef Kastner S, Paul I, Ziemann U (1998) Transient visual field defects induced by transcranial magnetic stimulation over the occipital lobe. Exp Brain Res 118:19–26PubMedCrossRef
go back to reference Kosslyn SM, Thompson WL (2003) When is early visual cortex activated during visual mental imagery? Psychol Bull 129:723–746PubMedCrossRef Kosslyn SM, Thompson WL (2003) When is early visual cortex activated during visual mental imagery? Psychol Bull 129:723–746PubMedCrossRef
go back to reference Kosslyn SM, Ganis G, Thompson WL (2001) Neural foundations of imagery. Nat Rev Neurosci 2:635–642PubMedCrossRef Kosslyn SM, Ganis G, Thompson WL (2001) Neural foundations of imagery. Nat Rev Neurosci 2:635–642PubMedCrossRef
go back to reference Lines CR, Rugg MD, Milner AD (1984) The effect of stimulus intensity on visual evoked potential estimates of interhemispheric transmission time. Exp Brain Res 57:89–98PubMedCrossRef Lines CR, Rugg MD, Milner AD (1984) The effect of stimulus intensity on visual evoked potential estimates of interhemispheric transmission time. Exp Brain Res 57:89–98PubMedCrossRef
go back to reference Marg E, Rudiak D (1994) Phosphenes induced by magnetic stimulation over the occipital brain: description and probable site of stimulation. Optom Vis Sci 71:301–311PubMedCrossRef Marg E, Rudiak D (1994) Phosphenes induced by magnetic stimulation over the occipital brain: description and probable site of stimulation. Optom Vis Sci 71:301–311PubMedCrossRef
go back to reference Marzi CA (1999) The Poffenberger paradigm: a first, simple, behavioural tool to study interhemispheric transmission in humans. Brain Res Bull 50:421–422PubMedCrossRef Marzi CA (1999) The Poffenberger paradigm: a first, simple, behavioural tool to study interhemispheric transmission in humans. Brain Res Bull 50:421–422PubMedCrossRef
go back to reference Marzi CA, Antonini A, Di Stefano M, Legg CR (1982) The contribution of the corpus callosum to receptive fields in the lateral suprasylvian visual areas of the cat. Behav Brain Res 4:155–176PubMedCrossRef Marzi CA, Antonini A, Di Stefano M, Legg CR (1982) The contribution of the corpus callosum to receptive fields in the lateral suprasylvian visual areas of the cat. Behav Brain Res 4:155–176PubMedCrossRef
go back to reference Marzi CA, Bisiacchi P, Nicoletti R (1991) Is interhemispheric transfer of visuomotor information asymmetric? Evidence from a meta-analysis. Neuropsychologia 29:1163–1177PubMedCrossRef Marzi CA, Bisiacchi P, Nicoletti R (1991) Is interhemispheric transfer of visuomotor information asymmetric? Evidence from a meta-analysis. Neuropsychologia 29:1163–1177PubMedCrossRef
go back to reference Marzi CA, Mancini F, Metitieri T, Savazzi S (2006) Retinal eccentricity effects on reaction time to imagined stimuli. Neuropsychologia 44:1489–1495PubMedCrossRef Marzi CA, Mancini F, Metitieri T, Savazzi S (2006) Retinal eccentricity effects on reaction time to imagined stimuli. Neuropsychologia 44:1489–1495PubMedCrossRef
go back to reference Marzi CA, Miniussi C, Maravita A, Bertolasi L, Zanette G, Rothwell JC, Sanes JN (1998) Transcranial magnetic stimulation selectively impairs interhemispheric transfer of visuo-motor information in humans. Exp Brain Res 118:435–438PubMedCrossRef Marzi CA, Miniussi C, Maravita A, Bertolasi L, Zanette G, Rothwell JC, Sanes JN (1998) Transcranial magnetic stimulation selectively impairs interhemispheric transfer of visuo-motor information in humans. Exp Brain Res 118:435–438PubMedCrossRef
go back to reference Meyer BU, Diehl R, Steinmetz H, Britton TC, Benecke R (1991) Magnetic stimuli applied over motor and visual cortex: influence of coil position and field polarity on motor responses, phosphenes and eye movements. EEG Clin Neurophysiol Suppl 43:121–134 Meyer BU, Diehl R, Steinmetz H, Britton TC, Benecke R (1991) Magnetic stimuli applied over motor and visual cortex: influence of coil position and field polarity on motor responses, phosphenes and eye movements. EEG Clin Neurophysiol Suppl 43:121–134
go back to reference Milner AD, Lines CR (1982) Interhemispheric pathways in simple reaction time to lateralized light flash. Neuropsychologia 20:171–179PubMedCrossRef Milner AD, Lines CR (1982) Interhemispheric pathways in simple reaction time to lateralized light flash. Neuropsychologia 20:171–179PubMedCrossRef
go back to reference Omura K, Tsukamoto T, Kotani Y, Ohgami Y, Minami M, Inoue Y (2004) Different mechanisms involved in interhemispheric transfer of visuomotor information. Neuroreport 15:2707–2711PubMedCrossRef Omura K, Tsukamoto T, Kotani Y, Ohgami Y, Minami M, Inoue Y (2004) Different mechanisms involved in interhemispheric transfer of visuomotor information. Neuroreport 15:2707–2711PubMedCrossRef
go back to reference Orban GA, Claeys K, Nelissen K, Smans R, Sunaert S, Todd JT, Wardak C, Durand JB, Vanduffel W (2006) Mapping the parietal cortex of human and non-human primates. Neuropsychologia 44:2647–2667PubMedCrossRef Orban GA, Claeys K, Nelissen K, Smans R, Sunaert S, Todd JT, Wardak C, Durand JB, Vanduffel W (2006) Mapping the parietal cortex of human and non-human primates. Neuropsychologia 44:2647–2667PubMedCrossRef
go back to reference Pandya DN, Seltzer B (1986) The topography of commissural fibers. In: Lepore F, Ptito M, Jaspers HH (eds) Two hemispheres—one brain: functions of the corpus callosum. Alan R. Liss, New York, pp 47–73 Pandya DN, Seltzer B (1986) The topography of commissural fibers. In: Lepore F, Ptito M, Jaspers HH (eds) Two hemispheres—one brain: functions of the corpus callosum. Alan R. Liss, New York, pp 47–73
go back to reference Pascual-Leone A, Walsh V (2001) Fast backprojections from the motion to the primary visual area necessary for visual awareness. Science 292:510–512PubMedCrossRef Pascual-Leone A, Walsh V (2001) Fast backprojections from the motion to the primary visual area necessary for visual awareness. Science 292:510–512PubMedCrossRef
go back to reference Pascual-Leone A, Walsh V, Rothwell J (2000) Transcranial magnetic stimulation in cognitive neuroscience-virtual lesion, chronometry, and functional connectivity. Curr Opin Neurobiol 10:232–237PubMedCrossRef Pascual-Leone A, Walsh V, Rothwell J (2000) Transcranial magnetic stimulation in cognitive neuroscience-virtual lesion, chronometry, and functional connectivity. Curr Opin Neurobiol 10:232–237PubMedCrossRef
go back to reference Poffenberger AT (1912) Reaction time to retinal stimulation with special reference to the time lost in conduction through nervous centers. Arch Psychol 23:1–73 Poffenberger AT (1912) Reaction time to retinal stimulation with special reference to the time lost in conduction through nervous centers. Arch Psychol 23:1–73
go back to reference Pollen DA (2006) Brain stimulation and conscious experience: electrical stimulation of the cortical surface at a threshold current evokes sustained neuronal activity only after a prolonged latency. Conscious Cogn 15:560–565PubMedCrossRef Pollen DA (2006) Brain stimulation and conscious experience: electrical stimulation of the cortical surface at a threshold current evokes sustained neuronal activity only after a prolonged latency. Conscious Cogn 15:560–565PubMedCrossRef
go back to reference Ray PG, Meador KJ, Epstein CM, Loring DW, Day LJ (1998) Magnetic stimulation of visual cortex: factors influencing the perception of phosphenes. J Clin Neurophysiol 15:351–357PubMedCrossRef Ray PG, Meador KJ, Epstein CM, Loring DW, Day LJ (1998) Magnetic stimulation of visual cortex: factors influencing the perception of phosphenes. J Clin Neurophysiol 15:351–357PubMedCrossRef
go back to reference Rugg MD, Lines CR, Milner AD (1984) Visual evoked potentials to lateralized visual stimuli and the measurement of interhemispheric transmission time. Neuropsychologia 22:215–225PubMedCrossRef Rugg MD, Lines CR, Milner AD (1984) Visual evoked potentials to lateralized visual stimuli and the measurement of interhemispheric transmission time. Neuropsychologia 22:215–225PubMedCrossRef
go back to reference Saron CD, Foxe JJ, Simpson GV, Vaughan HG (2003) Interhemispheric visuomotor activation: spatiotemporal electrophysyiology related to reaction time. In: Zaidel E, Iacoboni M (eds) The parallel brain: the cognitive neuroscience of the corpus callosum. MIT Press, Cambridge, MA, pp 171–219 Saron CD, Foxe JJ, Simpson GV, Vaughan HG (2003) Interhemispheric visuomotor activation: spatiotemporal electrophysyiology related to reaction time. In: Zaidel E, Iacoboni M (eds) The parallel brain: the cognitive neuroscience of the corpus callosum. MIT Press, Cambridge, MA, pp 171–219
go back to reference Savazzi S, Mancini F, Marzi CA (2008) Interhemispheric transfer and integration of imagined visual stimuli. Neuropsychologia 46:803–880PubMedCrossRef Savazzi S, Mancini F, Marzi CA (2008) Interhemispheric transfer and integration of imagined visual stimuli. Neuropsychologia 46:803–880PubMedCrossRef
go back to reference Savazzi S, Fabri M, Rubboli G, Paggi A, Tassinari CA, Marzi CA (2007) Interhemispheric transfer following callosotomy in humans: role of the superior colliculus. Neuropsychologia 45:2417–2427PubMedCrossRef Savazzi S, Fabri M, Rubboli G, Paggi A, Tassinari CA, Marzi CA (2007) Interhemispheric transfer following callosotomy in humans: role of the superior colliculus. Neuropsychologia 45:2417–2427PubMedCrossRef
go back to reference Schluppeck D, Glimcher P, Heeger DJ (2005) Topographic organization for delayed saccades in human posterior parietal cortex. J Neurophysiol 94:1372–1384PubMedCrossRef Schluppeck D, Glimcher P, Heeger DJ (2005) Topographic organization for delayed saccades in human posterior parietal cortex. J Neurophysiol 94:1372–1384PubMedCrossRef
go back to reference Schönfeldt-Lecuona C, Thielscher A, Freudenmann RW, Kron M, Spitzer M, Herwig U (2005) Accuracy of stereotaxic positioning of transcranial magnetic stimulation. Brain Topogr 17:253–259PubMedCrossRef Schönfeldt-Lecuona C, Thielscher A, Freudenmann RW, Kron M, Spitzer M, Herwig U (2005) Accuracy of stereotaxic positioning of transcranial magnetic stimulation. Brain Topogr 17:253–259PubMedCrossRef
go back to reference Sereno MI, Pitzalis S, Martinez A (2001) Mapping of contralateral space in retinotopic coordinates by a parietal cortical area in humans. Science 294:1350–1354PubMedCrossRef Sereno MI, Pitzalis S, Martinez A (2001) Mapping of contralateral space in retinotopic coordinates by a parietal cortical area in humans. Science 294:1350–1354PubMedCrossRef
go back to reference Silvanto J, Cowey A, Lavie N, Walsh V (2005) Striate cortex (V1) activity gates awareness of motion. Nat Neurosci 8:143–144PubMedCrossRef Silvanto J, Cowey A, Lavie N, Walsh V (2005) Striate cortex (V1) activity gates awareness of motion. Nat Neurosci 8:143–144PubMedCrossRef
go back to reference Silvanto J, Cowey A, Lavie N, Walsh V (2007) Making the blindsighted see. Neuropsychologia 45:3346–3350PubMedCrossRef Silvanto J, Cowey A, Lavie N, Walsh V (2007) Making the blindsighted see. Neuropsychologia 45:3346–3350PubMedCrossRef
go back to reference Silver MA, Ress D, Heeger DJ (2005) Topographic maps of visual spatial attention in human parietal cortex. J Neurophysiol 94:1358–1371PubMedCrossRef Silver MA, Ress D, Heeger DJ (2005) Topographic maps of visual spatial attention in human parietal cortex. J Neurophysiol 94:1358–1371PubMedCrossRef
go back to reference Sparing R, Buelte D, Meister IG, Paus T, Fink GR (2008) Transcranial magnetic stimulation and the challenge of coil placement: a comparison of conventional and stereotaxic neuronavigational strategies. Hum Brain Mapp 29:82–96PubMedCrossRef Sparing R, Buelte D, Meister IG, Paus T, Fink GR (2008) Transcranial magnetic stimulation and the challenge of coil placement: a comparison of conventional and stereotaxic neuronavigational strategies. Hum Brain Mapp 29:82–96PubMedCrossRef
go back to reference Sparing R, Dambeck N, Stock K, Meister IG, Huetter D, Boroojerdi B (2005) Investigation of the primary visual cortex using short-interval paired-pulse transcranial magnetic stimulation (TMS). Neurosci Lett 382:312–316PubMedCrossRef Sparing R, Dambeck N, Stock K, Meister IG, Huetter D, Boroojerdi B (2005) Investigation of the primary visual cortex using short-interval paired-pulse transcranial magnetic stimulation (TMS). Neurosci Lett 382:312–316PubMedCrossRef
go back to reference Sparing R, Mottaghy FM, Ganis G, Thompson WL, Topper R, Kosslyn SM, Pascual-Leone A (2002) Visual cortex excitability increases during visual mental imagery—a TMS study in healthy human subjects. Brain Res 938:92–97PubMedCrossRef Sparing R, Mottaghy FM, Ganis G, Thompson WL, Topper R, Kosslyn SM, Pascual-Leone A (2002) Visual cortex excitability increases during visual mental imagery—a TMS study in healthy human subjects. Brain Res 938:92–97PubMedCrossRef
go back to reference Stoerig P (2001) The neuroanatomy of phenomenal vision: a psychological perspective. Ann N Y Acad Sci 929:176–194PubMedCrossRef Stoerig P (2001) The neuroanatomy of phenomenal vision: a psychological perspective. Ann N Y Acad Sci 929:176–194PubMedCrossRef
go back to reference Swisher JD, Halko MA, Merabet LB, McMains SA, Somers DC (2007) Visual topography of human intraparietal sulcus. J Neurosci 27:5326–5337PubMedCrossRef Swisher JD, Halko MA, Merabet LB, McMains SA, Somers DC (2007) Visual topography of human intraparietal sulcus. J Neurosci 27:5326–5337PubMedCrossRef
go back to reference Tettamanti M, Paulesu E, Scifo P, Maravita A, Fazio F, Perani D, Marzi CA (2002) Interhemispheric transmission of visuomotor information in humans: fMRI evidence. J Neurophysiol 88:1051–1058PubMed Tettamanti M, Paulesu E, Scifo P, Maravita A, Fazio F, Perani D, Marzi CA (2002) Interhemispheric transmission of visuomotor information in humans: fMRI evidence. J Neurophysiol 88:1051–1058PubMed
go back to reference Tlauka M, McKenna FP (1998) Mental imagery yields stimulus–response compatibility. Acta Psychologica 98:67–79PubMedCrossRef Tlauka M, McKenna FP (1998) Mental imagery yields stimulus–response compatibility. Acta Psychologica 98:67–79PubMedCrossRef
go back to reference Wassermann EM (1998) Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the international workshop on the safety of repetitive transcranial magnetic stimulation. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section 108:1–16 Wassermann EM (1998) Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the international workshop on the safety of repetitive transcranial magnetic stimulation. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section 108:1–16
go back to reference Weber B, Treyer V, Oberholzer N, Jaermann T, Boesiger P, Brugger P, Regard M, Buck A, Savazzi S, Marzi CA (2005) Attention and interhemispheric transfer: a behavioral and fMRI study. J Cogn Neurosci 17:113–123PubMedCrossRef Weber B, Treyer V, Oberholzer N, Jaermann T, Boesiger P, Brugger P, Regard M, Buck A, Savazzi S, Marzi CA (2005) Attention and interhemispheric transfer: a behavioral and fMRI study. J Cogn Neurosci 17:113–123PubMedCrossRef
go back to reference Zaidel E, Iacoboni M (2003) Introduction: Poffenberger’s simple reaction time paradigm for measuring interhemispheric transfer time. In: Zaidel E, Iacoboni M (eds) The parallel brain: the cognitive neuroscience of the corpus callosum. MIT Press, Cambridge, MA, pp 1–7 Zaidel E, Iacoboni M (2003) Introduction: Poffenberger’s simple reaction time paradigm for measuring interhemispheric transfer time. In: Zaidel E, Iacoboni M (eds) The parallel brain: the cognitive neuroscience of the corpus callosum. MIT Press, Cambridge, MA, pp 1–7
go back to reference Zarei M, Johansen-Berg H, Smith S, Ciccarelli O, Thompson AJ, Matthews PM (2006) Functional anatomy of interhemispheric cortical connections in the human brain. J Anat 209:311–320PubMedCrossRef Zarei M, Johansen-Berg H, Smith S, Ciccarelli O, Thompson AJ, Matthews PM (2006) Functional anatomy of interhemispheric cortical connections in the human brain. J Anat 209:311–320PubMedCrossRef
Metadata
Title
Interhemispheric transfer of phosphenes generated by occipital versus parietal transcranial magnetic stimulation
Authors
Carlo A. Marzi
Francesca Mancini
Silvia Savazzi
Publication date
01-01-2009
Publisher
Springer-Verlag
Published in
Experimental Brain Research / Issue 3/2009
Print ISSN: 0014-4819
Electronic ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-008-1496-4

Other articles of this Issue 3/2009

Experimental Brain Research 3/2009 Go to the issue