Skip to main content
Top
Published in: Brain Structure and Function 9/2018

Open Access 01-12-2018 | Original Article

Interactive histogenesis of axonal strata and proliferative zones in the human fetal cerebral wall

Authors: Iris Žunić Išasegi, Milan Radoš, Željka Krsnik, Marko Radoš, Vesna Benjak, Ivica Kostović

Published in: Brain Structure and Function | Issue 9/2018

Login to get access

Abstract

Development of the cerebral wall is characterized by partially overlapping histogenetic events. However, little is known with regards to when, where, and how growing axonal pathways interact with progenitor cell lineages in the proliferative zones of the human fetal cerebrum. We analyzed the developmental continuity and spatial distribution of the axonal sagittal strata (SS) and their relationship with proliferative zones in a series of human brains (8–40 post-conceptional weeks; PCW) by comparing histological, histochemical, and immunocytochemical data with magnetic resonance imaging (MRI). Between 8.5 and 11 PCW, thalamocortical fibers from the intermediate zone (IZ) were initially dispersed throughout the subventricular zone (SVZ), while sizeable axonal “invasion” occurred between 12.5 and 15 PCW followed by callosal fibers which “delaminated” the ventricular zone-inner SVZ from the outer SVZ (OSVZ). During midgestation, the SS extensively invaded the OSVZ, separating cell bands, and a new multilaminar axonal-cellular compartment (MACC) was formed. Preterm period reveals increased complexity of the MACC in terms of glial architecture and the thinning of proliferative bands. The addition of associative fibers and the formation of the centrum semiovale separated the SS from the subplate. In vivo MRI of the occipital SS indicates a “triplet” structure of alternating hypointense and hyperintense bands. Our results highlighted the developmental continuity of sagittally oriented “corridors” of projection, commissural and associative fibers, and histogenetic interaction with progenitors, neurons, and glia. Histogenetical changes in the MACC, and consequently, delineation of the SS on MRI, may serve as a relevant indicator of white matter microstructural integrity in the developing brain.
Literature
go back to reference Angevine JB, Bodian D, Coulombre AJ et al (1970) Embryonic vertebrate central nervous system: revised terminology. Anat Rec 166:257–261 Angevine JB, Bodian D, Coulombre AJ et al (1970) Embryonic vertebrate central nervous system: revised terminology. Anat Rec 166:257–261
go back to reference Axer M, Grässel D, Kleiner M et al (2011) High-resolution fiber tract reconstruction in the human brain by means of three-dimensional polarized light imaging. Front Neuroinform 5:34PubMedPubMedCentral Axer M, Grässel D, Kleiner M et al (2011) High-resolution fiber tract reconstruction in the human brain by means of three-dimensional polarized light imaging. Front Neuroinform 5:34PubMedPubMedCentral
go back to reference Back SA, Luo NL, Borenstein NS et al (2001) Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury. J Neurosci 21:1302–1312PubMedPubMedCentral Back SA, Luo NL, Borenstein NS et al (2001) Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury. J Neurosci 21:1302–1312PubMedPubMedCentral
go back to reference Baldwin MKL, Balaram P, Kaas JH (2017) The evolution and functions of nuclei of the visual pulvinar in primates. J Comp Neurol 525:3207–3226PubMed Baldwin MKL, Balaram P, Kaas JH (2017) The evolution and functions of nuclei of the visual pulvinar in primates. J Comp Neurol 525:3207–3226PubMed
go back to reference Barkovich AJ, Kjos BO, Jackson DE Jr et al (1988) Normal maturation of the neonatal and infant brain: MR imaging at 1.5 T. Radiology 166:173–180PubMed Barkovich AJ, Kjos BO, Jackson DE Jr et al (1988) Normal maturation of the neonatal and infant brain: MR imaging at 1.5 T. Radiology 166:173–180PubMed
go back to reference Bassi L, Ricci D, Volzone A et al (2008) Probabilistic diffusion tractography of the optic radiations and visual function in preterm infants at term equivalent age. Brain 131:573–582PubMed Bassi L, Ricci D, Volzone A et al (2008) Probabilistic diffusion tractography of the optic radiations and visual function in preterm infants at term equivalent age. Brain 131:573–582PubMed
go back to reference Battin MR, Maalouf EF, Counsell SJ et al (1998) Magnetic resonance imaging of the brain in very preterm infants: visualization of the germinal matrix, early myelination, and cortical folding. Pediatrics 101:957–962PubMed Battin MR, Maalouf EF, Counsell SJ et al (1998) Magnetic resonance imaging of the brain in very preterm infants: visualization of the germinal matrix, early myelination, and cortical folding. Pediatrics 101:957–962PubMed
go back to reference Bayatti N, Moss JA, Sun L et al (2008) A molecular neuroanatomical study of the developing human neocortex from 8 to 17 postconceptional weeks revealing the early differentiation of the subplate and subventricular zone. Cereb Cortex 18:1536–1548PubMed Bayatti N, Moss JA, Sun L et al (2008) A molecular neuroanatomical study of the developing human neocortex from 8 to 17 postconceptional weeks revealing the early differentiation of the subplate and subventricular zone. Cereb Cortex 18:1536–1548PubMed
go back to reference Bayer S, Altman J (1991) Neocortical development. Raven Press, New York Bayer S, Altman J (1991) Neocortical development. Raven Press, New York
go back to reference Bicknese AR, Sheppard AM, O’Leary DD, Pearlman AL (1994) Thalamocortical axons extend along a chondroitin sulfate proteoglycan-enriched pathway coincident with the neocortical subplate and distinct from the efferent path. J Neurosci 14:3500–3510PubMedPubMedCentral Bicknese AR, Sheppard AM, O’Leary DD, Pearlman AL (1994) Thalamocortical axons extend along a chondroitin sulfate proteoglycan-enriched pathway coincident with the neocortical subplate and distinct from the efferent path. J Neurosci 14:3500–3510PubMedPubMedCentral
go back to reference Borrell V, Reillo I (2012) Emerging roles of neural stem cells in cerebral cortex development and evolution. Dev Neurobiol 72:955–971PubMed Borrell V, Reillo I (2012) Emerging roles of neural stem cells in cerebral cortex development and evolution. Dev Neurobiol 72:955–971PubMed
go back to reference Brodmann K (1914) Physiologie des Gehirns. Die anatomische Feldertopographie der Grosshirnoberflache. In: Krause F (ed) Die Allgemeine Chirurgie der Gehirnkrankheiten. Ferdinand Enke, Stuttgart, pp 99–112 Brodmann K (1914) Physiologie des Gehirns. Die anatomische Feldertopographie der Grosshirnoberflache. In: Krause F (ed) Die Allgemeine Chirurgie der Gehirnkrankheiten. Ferdinand Enke, Stuttgart, pp 99–112
go back to reference Brody BA, Kinney HC, Kloman AS et al (1987) Sequence of central nervous system myelination in human infancy. I. An autopsy study of myelination. J Neuropathol Exp Neurol 46:283–301PubMed Brody BA, Kinney HC, Kloman AS et al (1987) Sequence of central nervous system myelination in human infancy. I. An autopsy study of myelination. J Neuropathol Exp Neurol 46:283–301PubMed
go back to reference Bystron I, Blakemore C, Rakic P (2008) Development of the human cerebral cortex: boulder committee revisited. Nat Rev Neurosci 9:110–122PubMed Bystron I, Blakemore C, Rakic P (2008) Development of the human cerebral cortex: boulder committee revisited. Nat Rev Neurosci 9:110–122PubMed
go back to reference Cao M, Huang H, He Y (2017) Developmental connectomics from infancy through early childhood. Trends Neurosci 40:494–506PubMedPubMedCentral Cao M, Huang H, He Y (2017) Developmental connectomics from infancy through early childhood. Trends Neurosci 40:494–506PubMedPubMedCentral
go back to reference Catani M, Thiebaut de Schotten M (2008) A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex 44:1105–1132PubMed Catani M, Thiebaut de Schotten M (2008) A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex 44:1105–1132PubMed
go back to reference Catani M, Jones DK, Donato R, Ffytche DH (2003) Occipito-temporal connections in the human brain. Brain 126:2093–2107PubMed Catani M, Jones DK, Donato R, Ffytche DH (2003) Occipito-temporal connections in the human brain. Brain 126:2093–2107PubMed
go back to reference Charron F (2005) Novel brain wiring functions for classical morphogens: a role as graded positional cues in axon guidance. Development 132:2251–2262PubMed Charron F (2005) Novel brain wiring functions for classical morphogens: a role as graded positional cues in axon guidance. Development 132:2251–2262PubMed
go back to reference Collin G, Van Den Heuvel MP (2013) The ontogeny of the human connectome: development and dynamic changes of brain connectivity across the life span. Neuroscientist 19:616–628PubMed Collin G, Van Den Heuvel MP (2013) The ontogeny of the human connectome: development and dynamic changes of brain connectivity across the life span. Neuroscientist 19:616–628PubMed
go back to reference Corbett-Detig J, Habas PA, Scott JA et al (2011) 3D global and regional patterns of human fetal subplate growth determined in utero. Brain Struct Funct 215:255–263PubMed Corbett-Detig J, Habas PA, Scott JA et al (2011) 3D global and regional patterns of human fetal subplate growth determined in utero. Brain Struct Funct 215:255–263PubMed
go back to reference Dehay C, Savatier P, Cortay V, Kennedy H (2001) Cell-cycle kinetics of neocortical precursors are influenced by embryonic thalamic axons. J Neurosci 21:201–214PubMedPubMedCentral Dehay C, Savatier P, Cortay V, Kennedy H (2001) Cell-cycle kinetics of neocortical precursors are influenced by embryonic thalamic axons. J Neurosci 21:201–214PubMedPubMedCentral
go back to reference Dehay C, Kennedy H, Kosik KS (2015) The outer subventricular zone and primate-specific cortical complexification. Neuron 85:683–694PubMed Dehay C, Kennedy H, Kosik KS (2015) The outer subventricular zone and primate-specific cortical complexification. Neuron 85:683–694PubMed
go back to reference Déjerine J (1895) Anatomie des centres nerveux. Rueff, Paris Déjerine J (1895) Anatomie des centres nerveux. Rueff, Paris
go back to reference Del Río JA, Martínez A, Auladell C, Soriano E (2000) Developmental history of the subplate and developing white matter in the murine neocortex. Neuronal organization and relationship with the main afferent systems at embryonic and perinatal stages. Cereb cortex 10:784–801PubMed Del Río JA, Martínez A, Auladell C, Soriano E (2000) Developmental history of the subplate and developing white matter in the murine neocortex. Neuronal organization and relationship with the main afferent systems at embryonic and perinatal stages. Cereb cortex 10:784–801PubMed
go back to reference Dubois J, Dehaene-Lambertz G, Kulikova S et al (2014) The early development of brain white matter: A review of imaging studies in fetuses, newborns and infants. Neuroscience 276:48–71PubMed Dubois J, Dehaene-Lambertz G, Kulikova S et al (2014) The early development of brain white matter: A review of imaging studies in fetuses, newborns and infants. Neuroscience 276:48–71PubMed
go back to reference Dubois J, Kostović I, Judaš M (2015) Development of structural and functional connectivity. In: Toga AW (ed) Brain mapping: an encyclopedic reference. Academic Press, pp 423–437 Dubois J, Kostović I, Judaš M (2015) Development of structural and functional connectivity. In: Toga AW (ed) Brain mapping: an encyclopedic reference. Academic Press, pp 423–437
go back to reference Duque A, Krsnik Z, Kostović I, Rakic P (2016) Secondary expansion of the transient subplate zone in the developing cerebrum of human and nonhuman primates. Proc Natl Acad Sci 113:9892–9897PubMedPubMedCentral Duque A, Krsnik Z, Kostović I, Rakic P (2016) Secondary expansion of the transient subplate zone in the developing cerebrum of human and nonhuman primates. Proc Natl Acad Sci 113:9892–9897PubMedPubMedCentral
go back to reference Eyre JA, Miller S, Clowry GJ et al (2000) Functional corticospinal projections are established prenatally in the human foetus permitting involvement in the development of spinal motor centres. Brain 123:51–64PubMed Eyre JA, Miller S, Clowry GJ et al (2000) Functional corticospinal projections are established prenatally in the human foetus permitting involvement in the development of spinal motor centres. Brain 123:51–64PubMed
go back to reference Fischl B, Salat DH, Busa E et al (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33:341–355PubMed Fischl B, Salat DH, Busa E et al (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33:341–355PubMed
go back to reference Flechsig P (1920) Anatomie des menschlichen Gehirns und Ruchen-marks auf myelogenetischer Grundlage. Thieme, Leipzig Flechsig P (1920) Anatomie des menschlichen Gehirns und Ruchen-marks auf myelogenetischer Grundlage. Thieme, Leipzig
go back to reference González Gómez M, Meyer G (2014) Dynamic expression of calretinin in embryonic and early fetal human cortex. Front Neuroanat 8:41PubMedPubMedCentral González Gómez M, Meyer G (2014) Dynamic expression of calretinin in embryonic and early fetal human cortex. Front Neuroanat 8:41PubMedPubMedCentral
go back to reference Guzzetta A, D’acunto G, Rose S et al (2010) Plasticity of the visual system after early brain damage. Dev Med Child Neurol 52:891–900PubMed Guzzetta A, D’acunto G, Rose S et al (2010) Plasticity of the visual system after early brain damage. Dev Med Child Neurol 52:891–900PubMed
go back to reference Hagmann P, Cammoun L, Gigandet X et al (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6:1479–1493 Hagmann P, Cammoun L, Gigandet X et al (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6:1479–1493
go back to reference Hansen DV, Lui JH, Parker PRL, Kriegstein AR (2010) Nerurogenic radial glia in the outer subventricular zone of human neocortex. Nature 464:554–561PubMed Hansen DV, Lui JH, Parker PRL, Kriegstein AR (2010) Nerurogenic radial glia in the outer subventricular zone of human neocortex. Nature 464:554–561PubMed
go back to reference Haydar TF, Wang F, Schwartz ML, Rakic P (2000) Differential modulation of proliferation in the neocortical ventricular and subventricular zones. J Neurosci 20:5764–5774PubMedPubMedCentral Haydar TF, Wang F, Schwartz ML, Rakic P (2000) Differential modulation of proliferation in the neocortical ventricular and subventricular zones. J Neurosci 20:5764–5774PubMedPubMedCentral
go back to reference Hevner RF (2000) Development of connections in the human visual system during fetal mid-gestation: a DiI-tracing study. J Neuropathol Exp Neurol 59:385–392PubMed Hevner RF (2000) Development of connections in the human visual system during fetal mid-gestation: a DiI-tracing study. J Neuropathol Exp Neurol 59:385–392PubMed
go back to reference Hevner RF (2006) From radial glia to pyramidal-projection neuron: transcription factor cascades in cerebral cortex development. Mol Neurobiol 33:33–50PubMed Hevner RF (2006) From radial glia to pyramidal-projection neuron: transcription factor cascades in cerebral cortex development. Mol Neurobiol 33:33–50PubMed
go back to reference Hoerder-Suabedissen A, Molnár Z (2015) Development, evolution and pathology of neocortical subplate neurons. Nat Rev Neurosci 16:133–146PubMed Hoerder-Suabedissen A, Molnár Z (2015) Development, evolution and pathology of neocortical subplate neurons. Nat Rev Neurosci 16:133–146PubMed
go back to reference Hosoya T, Adachi M, Yamaguchi K, Haku T (1998) MRI anatomy of white matter layers around the trigone of the lateral ventricle. Neuroradiology 40:477–482PubMed Hosoya T, Adachi M, Yamaguchi K, Haku T (1998) MRI anatomy of white matter layers around the trigone of the lateral ventricle. Neuroradiology 40:477–482PubMed
go back to reference Huang H, Vasung L (2014) Gaining insight of fetal brain development with diffusion MRI and histology. Int J Dev Neurosci 32:11–22PubMed Huang H, Vasung L (2014) Gaining insight of fetal brain development with diffusion MRI and histology. Int J Dev Neurosci 32:11–22PubMed
go back to reference Huang H, Zhang J, Wakana S et al (2006) White and gray matter development in human fetal, newborn and pediatric brains. Neuroimage 33:27–38PubMed Huang H, Zhang J, Wakana S et al (2006) White and gray matter development in human fetal, newborn and pediatric brains. Neuroimage 33:27–38PubMed
go back to reference Huang H, Jeon T, Sedmak G et al (2013) Coupling diffusion imaging with histological and gene expression analysis to examine the dynamics of cortical areas across the fetal period of human brain development. Cereb Cortex 23:2620–2631PubMed Huang H, Jeon T, Sedmak G et al (2013) Coupling diffusion imaging with histological and gene expression analysis to examine the dynamics of cortical areas across the fetal period of human brain development. Cereb Cortex 23:2620–2631PubMed
go back to reference Jakovcevski I, Zecevic N (2005) Sequence of oligodendrocyte development in the human fetal telencephalon. Glia 49:480–491PubMed Jakovcevski I, Zecevic N (2005) Sequence of oligodendrocyte development in the human fetal telencephalon. Glia 49:480–491PubMed
go back to reference Jones E (1987) Cerebral cortex. In: Adelman G (ed) Encyclopedia of neuroscience, vol 1. Birkhäuser, Boston, pp 209–211 Jones E (1987) Cerebral cortex. In: Adelman G (ed) Encyclopedia of neuroscience, vol 1. Birkhäuser, Boston, pp 209–211
go back to reference Jovanov-Milosevic N, Culjat M, Kostovic I (2009) Growth of the human corpus callosum: modular and laminar morphogenetic zones. Front Neuroanat 3:6PubMedPubMedCentral Jovanov-Milosevic N, Culjat M, Kostovic I (2009) Growth of the human corpus callosum: modular and laminar morphogenetic zones. Front Neuroanat 3:6PubMedPubMedCentral
go back to reference Judaš M, Jovanov Milošević N, Rašin MR et al (2003) Complex patterns and simple architects: molecular guidance cues for developing axonal pathways in the telencephalon. Prog Mol Subcell Biol 32:1–32PubMed Judaš M, Jovanov Milošević N, Rašin MR et al (2003) Complex patterns and simple architects: molecular guidance cues for developing axonal pathways in the telencephalon. Prog Mol Subcell Biol 32:1–32PubMed
go back to reference Judaš M, Radoš M, Jovanov-Miloševic N et al (2005) Structural, immunocytochemical, and MR imaging properties of periventricular crossroads of growing cortical pathways in preterm infants. Am J Neuroradiol 26:2671–2684PubMedPubMedCentral Judaš M, Radoš M, Jovanov-Miloševic N et al (2005) Structural, immunocytochemical, and MR imaging properties of periventricular crossroads of growing cortical pathways in preterm infants. Am J Neuroradiol 26:2671–2684PubMedPubMedCentral
go back to reference Judaš M, Šimić G, Petanjek Z et al (2011) The Zagreb Collection of human brains: a unique, versatile, but underexploited resource for the neuroscience community. Ann N Y Acad Sci Judaš M, Šimić G, Petanjek Z et al (2011) The Zagreb Collection of human brains: a unique, versatile, but underexploited resource for the neuroscience community. Ann N Y Acad Sci
go back to reference Kasprian G, Brugger PC, Weber M et al (2008) In utero tractography of fetal white matter development. Neuroimage 43:213–224PubMed Kasprian G, Brugger PC, Weber M et al (2008) In utero tractography of fetal white matter development. Neuroimage 43:213–224PubMed
go back to reference Kidokoro H, Anderson PJ, Doyle LW et al (2011) High signal intensity on T2-weighted MR imaging at term-equivalent age in preterm infants does not predict 2-year neurodevelopmental outcomes. Am J Neuroradiol 32:2005–2010PubMedPubMedCentral Kidokoro H, Anderson PJ, Doyle LW et al (2011) High signal intensity on T2-weighted MR imaging at term-equivalent age in preterm infants does not predict 2-year neurodevelopmental outcomes. Am J Neuroradiol 32:2005–2010PubMedPubMedCentral
go back to reference Kinney HC, Brody BA, Kloman AS, Gilles FH (1988) Sequence of central nervous system myelination in human infancy. II. Patterns of myelination in autopsied infants. J Neuropathol Exp Neurol 47:217–234PubMed Kinney HC, Brody BA, Kloman AS, Gilles FH (1988) Sequence of central nervous system myelination in human infancy. II. Patterns of myelination in autopsied infants. J Neuropathol Exp Neurol 47:217–234PubMed
go back to reference Kirischuk S, Sinning A, Blanquie O et al (2017) Modulation of neocortical development by early neuronal activity: physiology and pathophysiology. Front Cell Neurosci 11:379PubMedPubMedCentral Kirischuk S, Sinning A, Blanquie O et al (2017) Modulation of neocortical development by early neuronal activity: physiology and pathophysiology. Front Cell Neurosci 11:379PubMedPubMedCentral
go back to reference Kostović I (1986) Prenatal development of nucleus basalis complex and related fiber systems in man: a histochemical study. Neuroscience 17:1047–1077PubMed Kostović I (1986) Prenatal development of nucleus basalis complex and related fiber systems in man: a histochemical study. Neuroscience 17:1047–1077PubMed
go back to reference Kostović I, Goldman-Rakić PS (1983) Transient cholinesterase staining in the mediodorsal nucleus of the thalamus and its connections in the developing human and monkey brain. J Comp Neurol 219:431–447PubMed Kostović I, Goldman-Rakić PS (1983) Transient cholinesterase staining in the mediodorsal nucleus of the thalamus and its connections in the developing human and monkey brain. J Comp Neurol 219:431–447PubMed
go back to reference Kostović I, Rakic P (1984) Development of prestriate visual projections in the monkey and human fetal cerebrum revealed by transient cholinesterase staining. J Neurosci 4:25–42PubMedPubMedCentral Kostović I, Rakic P (1984) Development of prestriate visual projections in the monkey and human fetal cerebrum revealed by transient cholinesterase staining. J Neurosci 4:25–42PubMedPubMedCentral
go back to reference Kostović I, Jovanov-Milošević N (2006) The development of cerebral connections during the first 20–45 weeks’ gestation. Semin Fetal Neonatal Med 11:415–422PubMed Kostović I, Jovanov-Milošević N (2006) The development of cerebral connections during the first 20–45 weeks’ gestation. Semin Fetal Neonatal Med 11:415–422PubMed
go back to reference Kostović I, Judaš M (2007) Transient patterns of cortical lamination during prenatal life: Do they have implications for treatment? Neurosci Biobehav Rev 31:1157–1168PubMed Kostović I, Judaš M (2007) Transient patterns of cortical lamination during prenatal life: Do they have implications for treatment? Neurosci Biobehav Rev 31:1157–1168PubMed
go back to reference Kostović I, Judaš M (2010) The development of the subplate and thalamocortical connections in the human foetal brain. Acta Paediatr 99:1119–1127PubMed Kostović I, Judaš M (2010) The development of the subplate and thalamocortical connections in the human foetal brain. Acta Paediatr 99:1119–1127PubMed
go back to reference Kostović I, Judaš M (2015) Embryonic and fetal development of the human cerebral cortex. In: Toga AW (ed) Brain mapping: an encyclopedic reference. Academic Press, pp 167–175 Kostović I, Judaš M (2015) Embryonic and fetal development of the human cerebral cortex. In: Toga AW (ed) Brain mapping: an encyclopedic reference. Academic Press, pp 167–175
go back to reference Kostović I, Rakić P (1990) Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain. J Comp Neurol 297:441–470PubMed Kostović I, Rakić P (1990) Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain. J Comp Neurol 297:441–470PubMed
go back to reference Kostović I, Štefulj-Fučić A, Mrzljak L et al (1991) Prenatal and perinatal development of the somatostatin-immunoreactive neurons in the human prefrontal cortex. Neurosci Lett 124:153–156PubMed Kostović I, Štefulj-Fučić A, Mrzljak L et al (1991) Prenatal and perinatal development of the somatostatin-immunoreactive neurons in the human prefrontal cortex. Neurosci Lett 124:153–156PubMed
go back to reference Kostović I, Judaš M, Radoš M, Hrabač P (2002a) Laminar organization of the human fetal cerebrum revealed by histochemical markers and magnetic resonance imaging. Cereb Cortex 12:536–544PubMed Kostović I, Judaš M, Radoš M, Hrabač P (2002a) Laminar organization of the human fetal cerebrum revealed by histochemical markers and magnetic resonance imaging. Cereb Cortex 12:536–544PubMed
go back to reference Kostović I, Rašin MR, Petanjek Z, Judaš M (2002b) Morphological characteristics of the cells in the subcallosal zone (nucleus septohippocampalis) of the human fetus. Neuroembryology 1:97–104 Kostović I, Rašin MR, Petanjek Z, Judaš M (2002b) Morphological characteristics of the cells in the subcallosal zone (nucleus septohippocampalis) of the human fetus. Neuroembryology 1:97–104
go back to reference Kostović I, Jovanov-Milošević N, Radoš M et al (2014a) Perinatal and early postnatal reorganization of the subplate and related cellular compartments in the human cerebral wall as revealed by histological and MRI approaches. Brain Struct Funct 219:231–253PubMed Kostović I, Jovanov-Milošević N, Radoš M et al (2014a) Perinatal and early postnatal reorganization of the subplate and related cellular compartments in the human cerebral wall as revealed by histological and MRI approaches. Brain Struct Funct 219:231–253PubMed
go back to reference Kostović I, Kostović-Srzentić M, Benjak V et al (2014b) Developmental dynamics of radial vulnerability in the cerebral compartments in preterm infants and neonates. Front Neurol 5:139PubMedPubMedCentral Kostović I, Kostović-Srzentić M, Benjak V et al (2014b) Developmental dynamics of radial vulnerability in the cerebral compartments in preterm infants and neonates. Front Neurol 5:139PubMedPubMedCentral
go back to reference Krägeloh-Mann I, Horber V (2007) The role of magnetic resonance imaging in furthering understanding of the pathogenesis of cerebral palsy. Dev Med Child Neurol 49:948PubMed Krägeloh-Mann I, Horber V (2007) The role of magnetic resonance imaging in furthering understanding of the pathogenesis of cerebral palsy. Dev Med Child Neurol 49:948PubMed
go back to reference Krsnik Ž, Majić V, Vasung L et al (2017) Growth of thalamocortical fibers to the somatosensory cortex in the human fetal brain. Front Neurosci 11:233PubMedPubMedCentral Krsnik Ž, Majić V, Vasung L et al (2017) Growth of thalamocortical fibers to the somatosensory cortex in the human fetal brain. Front Neurosci 11:233PubMedPubMedCentral
go back to reference LaMantia AS (1995) The usual suspects: GABA and glutamate may regulate proliferation in the neocortex. Neuron 15:1223–1225PubMed LaMantia AS (1995) The usual suspects: GABA and glutamate may regulate proliferation in the neocortex. Neuron 15:1223–1225PubMed
go back to reference Lennartsson F, Nilsson M, Flodmark O, Jacobson L (2014) Damage to the immature optic radiation causes severe reduction of the retinal nerve fiber layer, resulting in predictable visual field defects. Invest Ophthalmol Vis Sci 55(12):8278–8288PubMed Lennartsson F, Nilsson M, Flodmark O, Jacobson L (2014) Damage to the immature optic radiation causes severe reduction of the retinal nerve fiber layer, resulting in predictable visual field defects. Invest Ophthalmol Vis Sci 55(12):8278–8288PubMed
go back to reference Levitt P, Cooper ML, Rakic P (1981) Coexistence of neuronal and glial precursor cells in the cerebral ventricular zone of the fetal monkey: an ultrastructural immunoperoxidase analysis. J Neurosci 1:27–39PubMedPubMedCentral Levitt P, Cooper ML, Rakic P (1981) Coexistence of neuronal and glial precursor cells in the cerebral ventricular zone of the fetal monkey: an ultrastructural immunoperoxidase analysis. J Neurosci 1:27–39PubMedPubMedCentral
go back to reference Lewitus E, Kelava I, Huttner WB (2013) Conical expansion of the outer subventricular zone and the role of neocortical folding in evolution and development. Front Hum Neurosci 7:424PubMedPubMedCentral Lewitus E, Kelava I, Huttner WB (2013) Conical expansion of the outer subventricular zone and the role of neocortical folding in evolution and development. Front Hum Neurosci 7:424PubMedPubMedCentral
go back to reference LoTurco JJ, Owens DF, Heath MJS et al (1995) GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 15:1287–1298PubMed LoTurco JJ, Owens DF, Heath MJS et al (1995) GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 15:1287–1298PubMed
go back to reference Lukaszewicz A, Savatier P, Cortay V et al (2005) G1 phase regulation, area-specific cell cycle control, and cytoarchitectonics in the primate cortex. Neuron 47:353–364PubMedPubMedCentral Lukaszewicz A, Savatier P, Cortay V et al (2005) G1 phase regulation, area-specific cell cycle control, and cytoarchitectonics in the primate cortex. Neuron 47:353–364PubMedPubMedCentral
go back to reference Maas LC, Mukherjee P, Carballido-Gamio J et al (2004) Early laminar organization of the human cerebrum demonstrated with diffusion tensor imaging in extremely premature infants. Neuroimage 22:1134–1140PubMed Maas LC, Mukherjee P, Carballido-Gamio J et al (2004) Early laminar organization of the human cerebrum demonstrated with diffusion tensor imaging in extremely premature infants. Neuroimage 22:1134–1140PubMed
go back to reference Makris N, Meyer JW, Bates JF et al (1999) MRI-based topographic parcellation of human cerebral white matter and nuclei: II. Rationale and applications with systematics of cerebral connectivity. Neuroimage 9:18–45PubMed Makris N, Meyer JW, Bates JF et al (1999) MRI-based topographic parcellation of human cerebral white matter and nuclei: II. Rationale and applications with systematics of cerebral connectivity. Neuroimage 9:18–45PubMed
go back to reference Makris N, Papadimitriou G, Sorg S, Kennedy D (2007) The occipitofrontal fascicle in humans: A quantitative, in vivo, DT-MRI study. Neuroimage 37:1100–1111PubMed Makris N, Papadimitriou G, Sorg S, Kennedy D (2007) The occipitofrontal fascicle in humans: A quantitative, in vivo, DT-MRI study. Neuroimage 37:1100–1111PubMed
go back to reference Marin-Padilla M (1970) Prenatal and early postnatal ontogenesis of the human motor cortex: a Golgi study. I. The sequential development of the cortical layers. Brain Res 23:167–183PubMed Marin-Padilla M (1970) Prenatal and early postnatal ontogenesis of the human motor cortex: a Golgi study. I. The sequential development of the cortical layers. Brain Res 23:167–183PubMed
go back to reference Meyer G, Schaaps JP, Moreau L, Goffinet AM (2000) Embryonic and early fetal development of the human neocortex. J Neurosci 20:1858–1868PubMedPubMedCentral Meyer G, Schaaps JP, Moreau L, Goffinet AM (2000) Embryonic and early fetal development of the human neocortex. J Neurosci 20:1858–1868PubMedPubMedCentral
go back to reference Molliver ME, Kostović I, Van Der Loos H (1973) The development of synapses in cerebral cortex of the human fetus. Brain Res 50:403–407PubMed Molliver ME, Kostović I, Van Der Loos H (1973) The development of synapses in cerebral cortex of the human fetus. Brain Res 50:403–407PubMed
go back to reference Molnár Z, Clowry G (2012) Cerebral cortical development in rodents and primates. Prog Brain Res 195:45–70PubMed Molnár Z, Clowry G (2012) Cerebral cortical development in rodents and primates. Prog Brain Res 195:45–70PubMed
go back to reference Molnár Z, Adams R, Blakemore C (1998) Mechanisms underlying the early establishment of thalamocortical connections in the rat. J Neurosci 18:5723–5745PubMedPubMedCentral Molnár Z, Adams R, Blakemore C (1998) Mechanisms underlying the early establishment of thalamocortical connections in the rat. J Neurosci 18:5723–5745PubMedPubMedCentral
go back to reference Mori S, van Zijl PCM (2002) Fiber tracking: principles and strategies—a technical review. NMR Biomed 15:468–480PubMed Mori S, van Zijl PCM (2002) Fiber tracking: principles and strategies—a technical review. NMR Biomed 15:468–480PubMed
go back to reference Mrzljak L, Uylings HB, Kostović I, Van Eden CG (1988) Prenatal development of neurons in the human prefrontal cortex: I. A qualitative golgi study. J Comp Neurol 271:355–386PubMed Mrzljak L, Uylings HB, Kostović I, Van Eden CG (1988) Prenatal development of neurons in the human prefrontal cortex: I. A qualitative golgi study. J Comp Neurol 271:355–386PubMed
go back to reference Naidich T, Krayenbuhl N, Kollias S et al (2013) White matter. In: Naidich T, Castillo M, Cha S, Smirniotopoulos J (eds) Imaging of the brain. Elsevier Saunders, Philadelphia, pp 205–244 Naidich T, Krayenbuhl N, Kollias S et al (2013) White matter. In: Naidich T, Castillo M, Cha S, Smirniotopoulos J (eds) Imaging of the brain. Elsevier Saunders, Philadelphia, pp 205–244
go back to reference Nobin A, Björklund A (1973) Topography of the monoamine neuron systems in the human brain as revealed in fetuses. Acta Physiol Scand Suppl 388:1–40PubMed Nobin A, Björklund A (1973) Topography of the monoamine neuron systems in the human brain as revealed in fetuses. Acta Physiol Scand Suppl 388:1–40PubMed
go back to reference Nowakowski TJ, Pollen AA, Sandoval-Espinosa C, Kriegstein AR (2016) Transformation of the radial glia scaffold demarcates two stages of human cerebral cortex development. Neuron 91:1219–1227PubMedPubMedCentral Nowakowski TJ, Pollen AA, Sandoval-Espinosa C, Kriegstein AR (2016) Transformation of the radial glia scaffold demarcates two stages of human cerebral cortex development. Neuron 91:1219–1227PubMedPubMedCentral
go back to reference Olson L, Boréus LO, Seiger Å (1973) Histochemical demonstration and mapping of 5-hydroxytryptamine- and catecholamine-containing neuron systems in the human fetal brain. Z Anat Entwicklungsgesch 139:259–282PubMed Olson L, Boréus LO, Seiger Å (1973) Histochemical demonstration and mapping of 5-hydroxytryptamine- and catecholamine-containing neuron systems in the human fetal brain. Z Anat Entwicklungsgesch 139:259–282PubMed
go back to reference Polleux F, Dehay C, Goffinet A, Kennedy H (2001) Pre- and post-mitotic events contribute to the progressive acquisition of area-specific connectional fate in the neocortex. Cereb Cortex 11:1027–1039PubMed Polleux F, Dehay C, Goffinet A, Kennedy H (2001) Pre- and post-mitotic events contribute to the progressive acquisition of area-specific connectional fate in the neocortex. Cereb Cortex 11:1027–1039PubMed
go back to reference Polyak S (1932) The main afferent fiber systems of the cerebral cortex in primates, vol 2. University of California Press, Berkeley Polyak S (1932) The main afferent fiber systems of the cerebral cortex in primates, vol 2. University of California Press, Berkeley
go back to reference Polyak S (1957) The vertebrate visual system. University press, Chicago Polyak S (1957) The vertebrate visual system. University press, Chicago
go back to reference Popovitchenko T, Rasin M-R (2017) Transcriptional and post-transcriptional mechanisms of the development of neocortical lamination. Front Neuroanat 11:102PubMedPubMedCentral Popovitchenko T, Rasin M-R (2017) Transcriptional and post-transcriptional mechanisms of the development of neocortical lamination. Front Neuroanat 11:102PubMedPubMedCentral
go back to reference Radoš M, Judaš M, Kostović I (2006) In vitro MRI of brain development. Eur J Radiol 57:187–198PubMed Radoš M, Judaš M, Kostović I (2006) In vitro MRI of brain development. Eur J Radiol 57:187–198PubMed
go back to reference Rakić P (1974) Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition. Science 183(4123):425–427PubMed Rakić P (1974) Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition. Science 183(4123):425–427PubMed
go back to reference Rakić P (1988) Specification of cerebral cortical areas. Science 241(4862):170–176PubMed Rakić P (1988) Specification of cerebral cortical areas. Science 241(4862):170–176PubMed
go back to reference Rakic P, Yakovlev PI (1968) Development of the corpus callosum and cavum septi in man. J Comp Neurol 132:45–72PubMed Rakic P, Yakovlev PI (1968) Development of the corpus callosum and cavum septi in man. J Comp Neurol 132:45–72PubMed
go back to reference Rakić P (1981) Developmental events leading to laminar and areal organization of the neocortex. In: Scmhmitt F, Worden F, Adelman G, Dennis S (eds) The organization of the cerebral cortex: proceedings of a neuroscience research program colloquium. The MIT Press, Cambridge, pp 7–28 Rakić P (1981) Developmental events leading to laminar and areal organization of the neocortex. In: Scmhmitt F, Worden F, Adelman G, Dennis S (eds) The organization of the cerebral cortex: proceedings of a neuroscience research program colloquium. The MIT Press, Cambridge, pp 7–28
go back to reference Reillo I, Borrell V (2012) Germinal zones in the developing cerebral cortex of ferret: ontogeny, cell cycle kinetics, and diversity of progenitors. Cereb Cortex 22:2039–2054PubMed Reillo I, Borrell V (2012) Germinal zones in the developing cerebral cortex of ferret: ontogeny, cell cycle kinetics, and diversity of progenitors. Cereb Cortex 22:2039–2054PubMed
go back to reference Reillo I, De Juan Romero C, García-Cabezas M, Borrell V (2011) A role for intermediate radial glia in the tangential expansion of the mammalian cerebral cortex. Cereb Cortex 21:1674–1694PubMed Reillo I, De Juan Romero C, García-Cabezas M, Borrell V (2011) A role for intermediate radial glia in the tangential expansion of the mammalian cerebral cortex. Cereb Cortex 21:1674–1694PubMed
go back to reference Ren T, Anderson A, Shen WB et al (2006) Imaging, anatomical, and molecular analysis of callosal formation in the developing human fetal brain. Anat Rec Part A Discov Mol Cell Evol Biol 288:191–204 Ren T, Anderson A, Shen WB et al (2006) Imaging, anatomical, and molecular analysis of callosal formation in the developing human fetal brain. Anat Rec Part A Discov Mol Cell Evol Biol 288:191–204
go back to reference Rutherford MA, Pennock JM, Counsell SJ et al (1998) Abnormal magnetic resonance signal in the internal capsule predicts poor neurodevelopmental outcome in infants with hypoxic-ischemic encephalopathy. Pediatrics 102:323–328PubMed Rutherford MA, Pennock JM, Counsell SJ et al (1998) Abnormal magnetic resonance signal in the internal capsule predicts poor neurodevelopmental outcome in infants with hypoxic-ischemic encephalopathy. Pediatrics 102:323–328PubMed
go back to reference Sachs H (1892) Das Hemisphaerenmark des menschlichen Grosshirns. I. Der Hinterhauptlappen. Georg Thieme Verlag, Leipzig Sachs H (1892) Das Hemisphaerenmark des menschlichen Grosshirns. I. Der Hinterhauptlappen. Georg Thieme Verlag, Leipzig
go back to reference Sarnat HB (2013) Clinical neuropathology practice guide 5-2013: markers of neuronal maturation. Clin Neuropathol 32:340–369PubMedPubMedCentral Sarnat HB (2013) Clinical neuropathology practice guide 5-2013: markers of neuronal maturation. Clin Neuropathol 32:340–369PubMedPubMedCentral
go back to reference Schmahmann JD, Pandya DN (2006) Fibre pathways of the brain. Oxford University Press, Oxford Schmahmann JD, Pandya DN (2006) Fibre pathways of the brain. Oxford University Press, Oxford
go back to reference Schmahmann JD, Pandya DN (2007) Cerebral white matter—historical evolution of facts and notions concerning the organization of the fiber pathways of the brain. J Hist Neurosci 16:237–267PubMed Schmahmann JD, Pandya DN (2007) Cerebral white matter—historical evolution of facts and notions concerning the organization of the fiber pathways of the brain. J Hist Neurosci 16:237–267PubMed
go back to reference Selden N (1998) Trajectories of cholinergic pathways within the cerebral hemispheres of the human brain. Brain 121:2249–2257PubMed Selden N (1998) Trajectories of cholinergic pathways within the cerebral hemispheres of the human brain. Brain 121:2249–2257PubMed
go back to reference Smart IH, Dehay C, Giroud P et al (2002) Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb Cortex 12:37–53PubMed Smart IH, Dehay C, Giroud P et al (2002) Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb Cortex 12:37–53PubMed
go back to reference Spitzer NC (2006) Electrical activity in early neuronal development. Nature 444:707–712PubMed Spitzer NC (2006) Electrical activity in early neuronal development. Nature 444:707–712PubMed
go back to reference Sporns O, Tononi G, Kötter R (2005) The human connectome: a structural description of the human brain. PLoS Comput Biol 1:0245–0251 Sporns O, Tononi G, Kötter R (2005) The human connectome: a structural description of the human brain. PLoS Comput Biol 1:0245–0251
go back to reference Staudt M (2007) (Re-)organization of the developing human brain following periventricular white matter lesions. Neurosci Biobehav Rev 31:1150–1156PubMed Staudt M (2007) (Re-)organization of the developing human brain following periventricular white matter lesions. Neurosci Biobehav Rev 31:1150–1156PubMed
go back to reference Takahashi E, Folkerth RD, Galaburda AM, Grant PE (2012) Emerging cerebral connectivity in the human fetal Brain: an MR tractography study. Cereb Cortex 22:455–464PubMed Takahashi E, Folkerth RD, Galaburda AM, Grant PE (2012) Emerging cerebral connectivity in the human fetal Brain: an MR tractography study. Cereb Cortex 22:455–464PubMed
go back to reference Tamura H, Takahashi S, Kurihara N et al (2003) Practical visualization of internal structure of white matter for image interpretation: staining a spin-echo T2-weighted image with three echo-planar diffusion-weighted images. Am J Neuroradiol 24:401–409PubMedPubMedCentral Tamura H, Takahashi S, Kurihara N et al (2003) Practical visualization of internal structure of white matter for image interpretation: staining a spin-echo T2-weighted image with three echo-planar diffusion-weighted images. Am J Neuroradiol 24:401–409PubMedPubMedCentral
go back to reference Tessier-Lavigne M (1992) Axon guidance by molecular gradients. Curr Opin Neurobiol 2:60–65PubMed Tessier-Lavigne M (1992) Axon guidance by molecular gradients. Curr Opin Neurobiol 2:60–65PubMed
go back to reference Tymofiyeva O, Hess CP, Xu D, Barkovich AJ (2014) Structural MRI connectome in development: challenges of the changing brain. Br J Radiol 87:20140086PubMedPubMedCentral Tymofiyeva O, Hess CP, Xu D, Barkovich AJ (2014) Structural MRI connectome in development: challenges of the changing brain. Br J Radiol 87:20140086PubMedPubMedCentral
go back to reference Vasung L, Huang H, Jovanov-Milošević N et al (2010) Development of axonal pathways in the human fetal fronto-limbic brain: histochemical characterization and diffusion tensor imaging. J Anat 217:400–417PubMedPubMedCentral Vasung L, Huang H, Jovanov-Milošević N et al (2010) Development of axonal pathways in the human fetal fronto-limbic brain: histochemical characterization and diffusion tensor imaging. J Anat 217:400–417PubMedPubMedCentral
go back to reference Vasung L, Jovanov-Milošević N, Pletikos M et al (2011) Prominent periventricular fiber system related to ganglionic eminence and striatum in the human fetal cerebrum. Brain Struct Funct 215:237–253PubMed Vasung L, Jovanov-Milošević N, Pletikos M et al (2011) Prominent periventricular fiber system related to ganglionic eminence and striatum in the human fetal cerebrum. Brain Struct Funct 215:237–253PubMed
go back to reference Vasung L, Lepage C, Radoš M et al (2016) Quantitative and qualitative analysis of transient fetal compartments during prenatal human brain development. Front Neuroanat 10:11PubMedPubMedCentral Vasung L, Lepage C, Radoš M et al (2016) Quantitative and qualitative analysis of transient fetal compartments during prenatal human brain development. Front Neuroanat 10:11PubMedPubMedCentral
go back to reference Vasung L, Raguz M, Kostovic I, Takahashi E (2017) Spatiotemporal relationship of brain pathways during human fetal development using high-angular resolution diffusion MR imaging and histology. Front Neurosci 11:348PubMedPubMedCentral Vasung L, Raguz M, Kostovic I, Takahashi E (2017) Spatiotemporal relationship of brain pathways during human fetal development using high-angular resolution diffusion MR imaging and histology. Front Neurosci 11:348PubMedPubMedCentral
go back to reference Volpe JJ (2009) Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol 8:110–124PubMedPubMedCentral Volpe JJ (2009) Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol 8:110–124PubMedPubMedCentral
go back to reference Volpe JJ, Kinney HC, Jensen FE, Rosenberg PA (2011) The developing oligodendrocyte: key cellular target in brain injury in the premature infant. Int J Dev Neurosci 29:423–440PubMedPubMedCentral Volpe JJ, Kinney HC, Jensen FE, Rosenberg PA (2011) The developing oligodendrocyte: key cellular target in brain injury in the premature infant. Int J Dev Neurosci 29:423–440PubMedPubMedCentral
go back to reference Von Monakow C (1905) Gehirnpathologie. Alfred Hölder, Wienn Von Monakow C (1905) Gehirnpathologie. Alfred Hölder, Wienn
go back to reference Wang X, Pettersson DR, Studholme C, Kroenke CD (2015) Characterization of laminar zones in the mid-gestation primate brain with magnetic resonance imaging and histological methods. Front Neuroanat 9:147PubMedPubMedCentral Wang X, Pettersson DR, Studholme C, Kroenke CD (2015) Characterization of laminar zones in the mid-gestation primate brain with magnetic resonance imaging and histological methods. Front Neuroanat 9:147PubMedPubMedCentral
go back to reference Wichmann W, Müller-Forell W (2006) Anatomy. In: Müller-Forell W (ed) Imaging of orbital and visual pathway pathology. Springer, Germany, pp 25–60 Wichmann W, Müller-Forell W (2006) Anatomy. In: Müller-Forell W (ed) Imaging of orbital and visual pathway pathology. Springer, Germany, pp 25–60
go back to reference Widjaja E, Geibprasert S, Mahmoodabadi SZ et al (2010) Alteration of human fetal subplate layer and intermediate zone during normal development on MR and diffusion tensor imaging. Am J Neuroradiol 31:1091–1099PubMedPubMedCentral Widjaja E, Geibprasert S, Mahmoodabadi SZ et al (2010) Alteration of human fetal subplate layer and intermediate zone during normal development on MR and diffusion tensor imaging. Am J Neuroradiol 31:1091–1099PubMedPubMedCentral
go back to reference Xu G, Takahashi E, Folkerth RD et al (2014) Radial coherence of diffusion tractography in the cerebral white matter of the human fetus: neuroanatomic insights. Cereb Cortex 24:579–592PubMed Xu G, Takahashi E, Folkerth RD et al (2014) Radial coherence of diffusion tractography in the cerebral white matter of the human fetus: neuroanatomic insights. Cereb Cortex 24:579–592PubMed
go back to reference Yakovlev PI, Lecours AR (1967) The myelogenetic cycles of regional maturation of the brain. In: Minkowski A (ed) Regional development of brain in early life. Blackwell, Oxford, pp 3–70 Yakovlev PI, Lecours AR (1967) The myelogenetic cycles of regional maturation of the brain. In: Minkowski A (ed) Regional development of brain in early life. Blackwell, Oxford, pp 3–70
go back to reference Zecevic N, Verney C (1995) Development of the catecholamine neurons in human embryos and fetuses, with special emphasis on the innervation of the cerebral cortex. J Comp Neurol 351:509–535PubMed Zecevic N, Verney C (1995) Development of the catecholamine neurons in human embryos and fetuses, with special emphasis on the innervation of the cerebral cortex. J Comp Neurol 351:509–535PubMed
go back to reference Zecevic N, Chen Y, Filipovic R (2005) Contributions of cortical subventricular zone to the development of the human cerebral cortex. J Comp Neurol 491:109–122PubMedPubMedCentral Zecevic N, Chen Y, Filipovic R (2005) Contributions of cortical subventricular zone to the development of the human cerebral cortex. J Comp Neurol 491:109–122PubMedPubMedCentral
go back to reference Zilles K, Palomero-Gallagher N, Gräßel D et al (2016) High-resolution fiber and fiber tract imaging using polarized light microscopy in the human, monkey, rat, and mouse brain. In: Rockland K (ed) Axons and brain architecture. Elsevier, Amsterdam, pp 369–389 Zilles K, Palomero-Gallagher N, Gräßel D et al (2016) High-resolution fiber and fiber tract imaging using polarized light microscopy in the human, monkey, rat, and mouse brain. In: Rockland K (ed) Axons and brain architecture. Elsevier, Amsterdam, pp 369–389
Metadata
Title
Interactive histogenesis of axonal strata and proliferative zones in the human fetal cerebral wall
Authors
Iris Žunić Išasegi
Milan Radoš
Željka Krsnik
Marko Radoš
Vesna Benjak
Ivica Kostović
Publication date
01-12-2018
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 9/2018
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-018-1721-2

Other articles of this Issue 9/2018

Brain Structure and Function 9/2018 Go to the issue