Skip to main content
Top
Published in: Acta Neuropathologica Communications 1/2015

Open Access 01-12-2015 | Research

Interaction of prion protein with acetylcholinesterase: potential pathobiological implications in prion diseases

Authors: Joan Torrent, Alba Vilchez-Acosta, Diego Muñoz-Torrero, Marie Trovaslet, Florian Nachon, Arnaud Chatonnet, Katarina Grznarova, Isabelle Acquatella-Tran Van Ba, Ronan Le Goffic, Laetitia Herzog, Vincent Béringue, Human Rezaei

Published in: Acta Neuropathologica Communications | Issue 1/2015

Login to get access

Abstract

Introduction

The prion protein (PrP) binds to various molecular partners, but little is known about their potential impact on the pathogenesis of prion diseases

Results

Here, we show that PrP can interact in vitro with acetylcholinesterase (AChE), a key protein of the cholinergic system in neural and non-neural tissues. This heterologous association induced aggregation of monomeric PrP and modified the structural properties of PrP amyloid fibrils. Following its recruitment into PrP fibrils, AChE loses its enzymatic activity and enhances PrP-mediated cytotoxicity. Using several truncated PrP variants and specific tight-binding AChE inhibitors (AChEis), we then demonstrate that the PrP-AChE interaction requires two mutually exclusive sub-sites in PrP N-terminal domain and an aromatic-rich region at the entrance of AChE active center gorge. We show that AChEis that target this site impair PrP-AChE complex formation and also limit the accumulation of pathological prion protein (PrPSc) in prion-infected cell cultures. Furthermore, reduction of AChE levels in prion-infected heterozygous AChE knock-out mice leads to slightly but significantly prolonged incubation time. Finally, we found that AChE levels were altered in prion-infected cells and tissues, suggesting that AChE might be directly associated with abnormal PrP.

Conclusion

Our results indicate that AChE deserves consideration as a new actor in expanding pathologically relevant PrP morphotypes and as a therapeutic target.
Appendix
Available only for authorised users
Literature
1.
go back to reference Castilla J, Saa P, Hetz C, Soto C (2005) In vitro generation of infectious scrapie prions. Cell 121(2):195–206, doi:10.1016/j.cell.2005.02.011PubMedCrossRef Castilla J, Saa P, Hetz C, Soto C (2005) In vitro generation of infectious scrapie prions. Cell 121(2):195–206, doi:10.1016/j.cell.2005.02.011PubMedCrossRef
2.
go back to reference Deleault NR, Harris BT, Rees JR, Supattapone S (2007) Formation of native prions from minimal components in vitro. Proc Natl Acad Sci U S A 104(23):9741–6, doi:10.1073/pnas.0702662104PubMedCentralPubMedCrossRef Deleault NR, Harris BT, Rees JR, Supattapone S (2007) Formation of native prions from minimal components in vitro. Proc Natl Acad Sci U S A 104(23):9741–6, doi:10.1073/pnas.0702662104PubMedCentralPubMedCrossRef
3.
go back to reference Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216(4542):136–44PubMedCrossRef Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216(4542):136–44PubMedCrossRef
4.
go back to reference Aguzzi A, Baumann F, Bremer J (2008) The prion’s elusive reason for being. Annu Rev Neurosci 31:439–77, doi:10.1146/annurev.neuro.31.060407.125620PubMedCrossRef Aguzzi A, Baumann F, Bremer J (2008) The prion’s elusive reason for being. Annu Rev Neurosci 31:439–77, doi:10.1146/annurev.neuro.31.060407.125620PubMedCrossRef
5.
go back to reference Lee KS, Linden R, Prado MA, Brentani RR, Martins VR (2003) Towards cellular receptors for prions. Rev Med Virol 13(6):399–408, doi:10.1002/rmv.408PubMedCrossRef Lee KS, Linden R, Prado MA, Brentani RR, Martins VR (2003) Towards cellular receptors for prions. Rev Med Virol 13(6):399–408, doi:10.1002/rmv.408PubMedCrossRef
6.
go back to reference Linden R, Martins VR, Prado MA, Cammarota M, Izquierdo I, Brentani RR (2008) Physiology of the prion protein. Physiol Rev 88(2):673–728, doi:10.1152/physrev.00007.2007PubMedCrossRef Linden R, Martins VR, Prado MA, Cammarota M, Izquierdo I, Brentani RR (2008) Physiology of the prion protein. Physiol Rev 88(2):673–728, doi:10.1152/physrev.00007.2007PubMedCrossRef
7.
go back to reference Schneider B, Pietri M, Pradines E, Loubet D, Launay JM, Kellermann O et al (2011) Understanding the neurospecificity of Prion protein signaling. Front Biosci 16:169–86CrossRef Schneider B, Pietri M, Pradines E, Loubet D, Launay JM, Kellermann O et al (2011) Understanding the neurospecificity of Prion protein signaling. Front Biosci 16:169–86CrossRef
8.
go back to reference Deleault NR, Walsh DJ, Piro JR, Wang F, Wang X, Ma J et al (2012) Cofactor molecules maintain infectious conformation and restrict strain properties in purified prions. Proc Natl Acad Sci U S A 109(28):E1938–46, doi:10.1073/pnas.1206999109PubMedCentralPubMedCrossRef Deleault NR, Walsh DJ, Piro JR, Wang F, Wang X, Ma J et al (2012) Cofactor molecules maintain infectious conformation and restrict strain properties in purified prions. Proc Natl Acad Sci U S A 109(28):E1938–46, doi:10.1073/pnas.1206999109PubMedCentralPubMedCrossRef
10.
go back to reference Aguzzi A, Heikenwalder M, Polymenidou M (2007) Insights into prion strains and neurotoxicity. Nat Rev Mol Cell Biol 8(7):552–61, doi:10.1038/nrm2204PubMedCrossRef Aguzzi A, Heikenwalder M, Polymenidou M (2007) Insights into prion strains and neurotoxicity. Nat Rev Mol Cell Biol 8(7):552–61, doi:10.1038/nrm2204PubMedCrossRef
11.
go back to reference Eichner T, Radford SE (2011) A diversity of assembly mechanisms of a generic amyloid fold. Mol Cell 43(1):8–18, doi:10.1016/j.molcel.2011.05.012PubMedCrossRef Eichner T, Radford SE (2011) A diversity of assembly mechanisms of a generic amyloid fold. Mol Cell 43(1):8–18, doi:10.1016/j.molcel.2011.05.012PubMedCrossRef
12.
go back to reference Hicks D, John D, Makova NZ, Henderson Z, Nalivaeva NN, Turner AJ (2011) Membrane targeting, shedding and protein interactions of brain acetylcholinesterase. J Neurochem 116(5):742–6, doi:10.1111/j.1471-4159.2010.07032.xPubMedCrossRef Hicks D, John D, Makova NZ, Henderson Z, Nalivaeva NN, Turner AJ (2011) Membrane targeting, shedding and protein interactions of brain acetylcholinesterase. J Neurochem 116(5):742–6, doi:10.1111/j.1471-4159.2010.07032.xPubMedCrossRef
13.
go back to reference Xie HQ, Liang D, Leung KW, Chen VP, Zhu KY, Chan WK et al (2010) Targeting acetylcholinesterase to membrane rafts: a function mediated by the proline-rich membrane anchor (PRiMA) in neurons. J Biol Chem 285(15):11537–46, doi:10.1074/jbc.M109.038711PubMedCentralPubMedCrossRef Xie HQ, Liang D, Leung KW, Chen VP, Zhu KY, Chan WK et al (2010) Targeting acetylcholinesterase to membrane rafts: a function mediated by the proline-rich membrane anchor (PRiMA) in neurons. J Biol Chem 285(15):11537–46, doi:10.1074/jbc.M109.038711PubMedCentralPubMedCrossRef
14.
go back to reference Layer PG (1995) Nonclassical roles of cholinesterases in the embryonic brain and possible links to Alzheimer disease. Alzheimer Dis Assoc Disord 9(Suppl 2):29–36PubMedCrossRef Layer PG (1995) Nonclassical roles of cholinesterases in the embryonic brain and possible links to Alzheimer disease. Alzheimer Dis Assoc Disord 9(Suppl 2):29–36PubMedCrossRef
15.
go back to reference Silman I, Sussman JL (2005) Acetylcholinesterase: ‘classical’ and ‘non-classical’ functions and pharmacology. Curr Opin Pharmacol 5(3):293–302, doi:10.1016/j.coph.2005.01.014PubMedCrossRef Silman I, Sussman JL (2005) Acetylcholinesterase: ‘classical’ and ‘non-classical’ functions and pharmacology. Curr Opin Pharmacol 5(3):293–302, doi:10.1016/j.coph.2005.01.014PubMedCrossRef
16.
go back to reference Greenfield SA, Zimmermann M, Bond CE (2008) Non-hydrolytic functions of acetylcholinesterase. The significance of C-terminal peptides. FEBS J 275(4):604–11, doi:10.1111/j.1742-4658.2007.06235.xPubMedCrossRef Greenfield SA, Zimmermann M, Bond CE (2008) Non-hydrolytic functions of acetylcholinesterase. The significance of C-terminal peptides. FEBS J 275(4):604–11, doi:10.1111/j.1742-4658.2007.06235.xPubMedCrossRef
17.
go back to reference Soreq H, Seidman S (2001) Acetylcholinesterase–new roles for an old actor. Nat Rev Neurosci 2(4):294–302, doi:10.1038/35067589PubMedCrossRef Soreq H, Seidman S (2001) Acetylcholinesterase–new roles for an old actor. Nat Rev Neurosci 2(4):294–302, doi:10.1038/35067589PubMedCrossRef
18.
go back to reference Dinamarca MC, Sagal JP, Quintanilla RA, Godoy JA, Arrazola MS, Inestrosa NC (2010) Amyloid-beta-Acetylcholinesterase complexes potentiate neurodegenerative changes induced by the Abeta peptide. Implications for the pathogenesis of Alzheimer’s disease. Mol Neurodegener 5:4, doi:10.1186/1750-1326-5-4PubMedCentralPubMedCrossRef Dinamarca MC, Sagal JP, Quintanilla RA, Godoy JA, Arrazola MS, Inestrosa NC (2010) Amyloid-beta-Acetylcholinesterase complexes potentiate neurodegenerative changes induced by the Abeta peptide. Implications for the pathogenesis of Alzheimer’s disease. Mol Neurodegener 5:4, doi:10.1186/1750-1326-5-4PubMedCentralPubMedCrossRef
19.
go back to reference Inestrosa NC, Dinamarca MC, Alvarez A (2008) Amyloid-cholinesterase interactions. Implications for Alzheimer’s disease. FEBS J 275(4):625–32, doi:10.1111/j.1742-4658.2007.06238.xPubMedCrossRef Inestrosa NC, Dinamarca MC, Alvarez A (2008) Amyloid-cholinesterase interactions. Implications for Alzheimer’s disease. FEBS J 275(4):625–32, doi:10.1111/j.1742-4658.2007.06238.xPubMedCrossRef
20.
go back to reference Reyes AE, Chacon MA, Dinamarca MC, Cerpa W, Morgan C, Inestrosa NC (2004) Acetylcholinesterase-Abeta complexes are more toxic than Abeta fibrils in rat hippocampus: effect on rat beta-amyloid aggregation, laminin expression, reactive astrocytosis, and neuronal cell loss. Am J Pathol 164(6):2163–74PubMedCentralPubMedCrossRef Reyes AE, Chacon MA, Dinamarca MC, Cerpa W, Morgan C, Inestrosa NC (2004) Acetylcholinesterase-Abeta complexes are more toxic than Abeta fibrils in rat hippocampus: effect on rat beta-amyloid aggregation, laminin expression, reactive astrocytosis, and neuronal cell loss. Am J Pathol 164(6):2163–74PubMedCentralPubMedCrossRef
21.
go back to reference Rees T, Hammond PI, Soreq H, Younkin S, Brimijoin S (2003) Acetylcholinesterase promotes beta-amyloid plaques in cerebral cortex. Neurobiol Aging 24(6):777–87PubMedCrossRef Rees T, Hammond PI, Soreq H, Younkin S, Brimijoin S (2003) Acetylcholinesterase promotes beta-amyloid plaques in cerebral cortex. Neurobiol Aging 24(6):777–87PubMedCrossRef
22.
go back to reference Rees TM, Berson A, Sklan EH, Younkin L, Younkin S, Brimijoin S et al (2005) Memory deficits correlating with acetylcholinesterase splice shift and amyloid burden in doubly transgenic mice. Curr Alzheimer Res 2(3):291–300PubMedCrossRef Rees TM, Berson A, Sklan EH, Younkin L, Younkin S, Brimijoin S et al (2005) Memory deficits correlating with acetylcholinesterase splice shift and amyloid burden in doubly transgenic mice. Curr Alzheimer Res 2(3):291–300PubMedCrossRef
23.
go back to reference De Ferrari GV, Canales MA, Shin I, Weiner LM, Silman I, Inestrosa NC (2001) A structural motif of acetylcholinesterase that promotes amyloid beta-peptide fibril formation. Biochemistry 40(35):10447–57PubMedCrossRef De Ferrari GV, Canales MA, Shin I, Weiner LM, Silman I, Inestrosa NC (2001) A structural motif of acetylcholinesterase that promotes amyloid beta-peptide fibril formation. Biochemistry 40(35):10447–57PubMedCrossRef
24.
go back to reference Sussman JL, Harel M, Frolow F, Oefner C, Goldman A, Toker L et al (1991) Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science 253(5022):872–9PubMedCrossRef Sussman JL, Harel M, Frolow F, Oefner C, Goldman A, Toker L et al (1991) Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science 253(5022):872–9PubMedCrossRef
25.
go back to reference Taylor P, Lappi S (1975) Interaction of fluorescence probes with acetylcholinesterase. The site and specificity of propidium binding. Biochemistry 14(9):1989–97PubMedCrossRef Taylor P, Lappi S (1975) Interaction of fluorescence probes with acetylcholinesterase. The site and specificity of propidium binding. Biochemistry 14(9):1989–97PubMedCrossRef
26.
go back to reference Castro A, Martinez A (2006) Targeting beta-amyloid pathogenesis through acetylcholinesterase inhibitors. Curr Pharm Des 12(33):4377–87PubMedCrossRef Castro A, Martinez A (2006) Targeting beta-amyloid pathogenesis through acetylcholinesterase inhibitors. Curr Pharm Des 12(33):4377–87PubMedCrossRef
27.
go back to reference Holzgrabe U, Kapkova P, Alptuzun V, Scheiber J, Kugelmann E (2007) Targeting acetylcholinesterase to treat neurodegeneration. Expert Opin Ther Targets 11(2):161–79, doi:10.1517/14728222.11.2.161PubMedCrossRef Holzgrabe U, Kapkova P, Alptuzun V, Scheiber J, Kugelmann E (2007) Targeting acetylcholinesterase to treat neurodegeneration. Expert Opin Ther Targets 11(2):161–79, doi:10.1517/14728222.11.2.161PubMedCrossRef
28.
go back to reference Munoz-Torrero D (2008) Acetylcholinesterase inhibitors as disease-modifying therapies for Alzheimer’s disease. Curr Med Chem 15(24):2433–55PubMedCrossRef Munoz-Torrero D (2008) Acetylcholinesterase inhibitors as disease-modifying therapies for Alzheimer’s disease. Curr Med Chem 15(24):2433–55PubMedCrossRef
29.
go back to reference Rampa A, Belluti F, Gobbi S, Bisi A (2011) Hybrid-based multi-target ligands for the treatment of Alzheimer’s disease. Curr Top Med Chem 11(22):2716–30PubMedCrossRef Rampa A, Belluti F, Gobbi S, Bisi A (2011) Hybrid-based multi-target ligands for the treatment of Alzheimer’s disease. Curr Top Med Chem 11(22):2716–30PubMedCrossRef
30.
go back to reference Pera M, Martinez-Otero A, Colombo L, Salmona M, Ruiz-Molina D, Badia A et al (2009) Acetylcholinesterase as an amyloid enhancing factor in PrP82-146 aggregation process. Mol Cell Neurosci 40(2):217–24, doi:0.1016/j.mcn.2008.10.008PubMedCrossRef Pera M, Martinez-Otero A, Colombo L, Salmona M, Ruiz-Molina D, Badia A et al (2009) Acetylcholinesterase as an amyloid enhancing factor in PrP82-146 aggregation process. Mol Cell Neurosci 40(2):217–24, doi:0.1016/j.mcn.2008.10.008PubMedCrossRef
31.
go back to reference Pera M, Roman S, Ratia M, Camps P, Munoz-Torrero D, Colombo L et al (2006) Acetylcholinesterase triggers the aggregation of PrP 106–126. Biochem Biophys Res Commun 346(1):89–94, doi:10.1016/j.bbrc.2006.04.187PubMedCrossRef Pera M, Roman S, Ratia M, Camps P, Munoz-Torrero D, Colombo L et al (2006) Acetylcholinesterase triggers the aggregation of PrP 106–126. Biochem Biophys Res Commun 346(1):89–94, doi:10.1016/j.bbrc.2006.04.187PubMedCrossRef
32.
go back to reference Silveyra MX, Cuadrado-Corrales N, Marcos A, Barquero MS, Rabano A, Calero M et al (2006) Altered glycosylation of acetylcholinesterase in Creutzfeldt-Jakob disease. J Neurochem 96(1):97–104, doi:10.1111/j.1471-4159.2005.03514.xPubMedCrossRef Silveyra MX, Cuadrado-Corrales N, Marcos A, Barquero MS, Rabano A, Calero M et al (2006) Altered glycosylation of acetylcholinesterase in Creutzfeldt-Jakob disease. J Neurochem 96(1):97–104, doi:10.1111/j.1471-4159.2005.03514.xPubMedCrossRef
33.
go back to reference Silveyra MX, Garcia-Ayllon MS, Calero M, Saez-Valero J (2006) Altered glycosylation of acetylcholinesterase in the Creutzfeldt-Jakob cerebrospinal fluid. J Mol Neurosci: MN 30(1–2):65–6, doi:10.1385/JMN:30:1:65PubMedCrossRef Silveyra MX, Garcia-Ayllon MS, Calero M, Saez-Valero J (2006) Altered glycosylation of acetylcholinesterase in the Creutzfeldt-Jakob cerebrospinal fluid. J Mol Neurosci: MN 30(1–2):65–6, doi:10.1385/JMN:30:1:65PubMedCrossRef
34.
go back to reference Rezaei H, Marc D, Choiset Y, Takahashi M, Hui Bon Hoa G, Haertle T et al (2000) High yield purification and physico-chemical properties of full-length recombinant allelic variants of sheep prion protein linked to scrapie susceptibility. Eur J Biochem/FEBS 267(10):2833–9CrossRef Rezaei H, Marc D, Choiset Y, Takahashi M, Hui Bon Hoa G, Haertle T et al (2000) High yield purification and physico-chemical properties of full-length recombinant allelic variants of sheep prion protein linked to scrapie susceptibility. Eur J Biochem/FEBS 267(10):2833–9CrossRef
35.
go back to reference Carletti E, Li H, Li B, Ekstrom F, Nicolet Y, Loiodice M et al (2008) Aging of cholinesterases phosphylated by tabun proceeds through O-dealkylation. J Am Chem Soc 130(47):16011–20, doi:10.1021/ja804941zPubMedCrossRef Carletti E, Li H, Li B, Ekstrom F, Nicolet Y, Loiodice M et al (2008) Aging of cholinesterases phosphylated by tabun proceeds through O-dealkylation. J Am Chem Soc 130(47):16011–20, doi:10.1021/ja804941zPubMedCrossRef
36.
go back to reference Camps P, Contreras J, Font-Bardia M, Morral J, Munoz-Torrero D, Solans X (1998) Enantioselective synthesis of tacrine − huperzine A hybrids. Preparative chiral MPLC separation of their racemic mixtures and absolute configuration assignments by X-ray diffraction analysis. Tetrahedron Asymmetry 9(9):835–49CrossRef Camps P, Contreras J, Font-Bardia M, Morral J, Munoz-Torrero D, Solans X (1998) Enantioselective synthesis of tacrine − huperzine A hybrids. Preparative chiral MPLC separation of their racemic mixtures and absolute configuration assignments by X-ray diffraction analysis. Tetrahedron Asymmetry 9(9):835–49CrossRef
37.
go back to reference Camps P, Formosa X, Munoz-Torrero D, Petrignet J, Badia A, Clos MV (2005) Synthesis and pharmacological evaluation of huprine-tacrine heterodimers: subnanomolar dual binding site acetylcholinesterase inhibitors. J Med Chem 48(6):1701–4, doi:10.1021/jm0496741PubMedCrossRef Camps P, Formosa X, Munoz-Torrero D, Petrignet J, Badia A, Clos MV (2005) Synthesis and pharmacological evaluation of huprine-tacrine heterodimers: subnanomolar dual binding site acetylcholinesterase inhibitors. J Med Chem 48(6):1701–4, doi:10.1021/jm0496741PubMedCrossRef
38.
go back to reference Archer F, Bachelin C, Andreoletti O, Besnard N, Perrot G, Langevin C et al (2004) Cultured peripheral neuroglial cells are highly permissive to sheep prion infection. J Virol 78(1):482–90PubMedCentralPubMedCrossRef Archer F, Bachelin C, Andreoletti O, Besnard N, Perrot G, Langevin C et al (2004) Cultured peripheral neuroglial cells are highly permissive to sheep prion infection. J Virol 78(1):482–90PubMedCentralPubMedCrossRef
39.
go back to reference Vilette D, Andreoletti O, Archer F, Madelaine MF, Vilotte JL, Lehmann S et al (2001) Ex vivo propagation of infectious sheep scrapie agent in heterologous epithelial cells expressing ovine prion protein. Proc Natl Acad Sci U S A 98(7):4055–9, doi:10.1073/pnas.061337998PubMedCentralPubMedCrossRef Vilette D, Andreoletti O, Archer F, Madelaine MF, Vilotte JL, Lehmann S et al (2001) Ex vivo propagation of infectious sheep scrapie agent in heterologous epithelial cells expressing ovine prion protein. Proc Natl Acad Sci U S A 98(7):4055–9, doi:10.1073/pnas.061337998PubMedCentralPubMedCrossRef
40.
go back to reference Feraudet C, Morel N, Simon S, Volland H, Frobert Y, Creminon C et al (2005) Screening of 145 anti-PrP monoclonal antibodies for their capacity to inhibit PrPSc replication in infected cells. J Biol Chem 280(12):11247–58, doi:10.1074/jbc.M407006200PubMedCrossRef Feraudet C, Morel N, Simon S, Volland H, Frobert Y, Creminon C et al (2005) Screening of 145 anti-PrP monoclonal antibodies for their capacity to inhibit PrPSc replication in infected cells. J Biol Chem 280(12):11247–58, doi:10.1074/jbc.M407006200PubMedCrossRef
41.
go back to reference Jennings LL, Malecki M, Komives EA, Taylor P (2003) Direct analysis of the kinetic profiles of organophosphate-acetylcholinesterase adducts by MALDI-TOF mass spectrometry. Biochemistry 42(37):11083–91, doi:10.1021/bi034756xPubMedCrossRef Jennings LL, Malecki M, Komives EA, Taylor P (2003) Direct analysis of the kinetic profiles of organophosphate-acetylcholinesterase adducts by MALDI-TOF mass spectrometry. Biochemistry 42(37):11083–91, doi:10.1021/bi034756xPubMedCrossRef
42.
go back to reference Breydo L, Makarava N, Baskakov IV (2008) Methods for conversion of prion protein into amyloid fibrils. Methods Mol Biol 459:105–15, doi:10.1007/978-1-59745-234-2_8PubMedCrossRef Breydo L, Makarava N, Baskakov IV (2008) Methods for conversion of prion protein into amyloid fibrils. Methods Mol Biol 459:105–15, doi:10.1007/978-1-59745-234-2_8PubMedCrossRef
43.
go back to reference Bocharova OV, Makarava N, Breydo L, Anderson M, Salnikov VV, Baskakov IV (2006) Annealing prion protein amyloid fibrils at high temperature results in extension of a proteinase K-resistant core. J Biol Chem 281(4):2373–9, doi:10.1074/jbc.M510840200PubMedCrossRef Bocharova OV, Makarava N, Breydo L, Anderson M, Salnikov VV, Baskakov IV (2006) Annealing prion protein amyloid fibrils at high temperature results in extension of a proteinase K-resistant core. J Biol Chem 281(4):2373–9, doi:10.1074/jbc.M510840200PubMedCrossRef
44.
go back to reference El Moustaine D, Perrier V, Acquatella-Tran Van Ba I, Meersman F, Ostapchenko VG, Baskakov IV et al (2011) Amyloid features and neuronal toxicity of mature prion fibrils are highly sensitive to high pressure. J Biol Chem 286(15):13448–59, doi:10.1074/jbc.M110.192872PubMedCentralPubMedCrossRef El Moustaine D, Perrier V, Acquatella-Tran Van Ba I, Meersman F, Ostapchenko VG, Baskakov IV et al (2011) Amyloid features and neuronal toxicity of mature prion fibrils are highly sensitive to high pressure. J Biol Chem 286(15):13448–59, doi:10.1074/jbc.M110.192872PubMedCentralPubMedCrossRef
45.
go back to reference Tixador P, Herzog L, Reine F, Jaumain E, Chapuis J, Le Dur A et al (2010) The physical relationship between infectivity and prion protein aggregates is strain-dependent. PLoS Pathog 6(4):e1000859, doi:10.1371/journal.ppat.1000859PubMedCentralPubMedCrossRef Tixador P, Herzog L, Reine F, Jaumain E, Chapuis J, Le Dur A et al (2010) The physical relationship between infectivity and prion protein aggregates is strain-dependent. PLoS Pathog 6(4):e1000859, doi:10.1371/journal.ppat.1000859PubMedCentralPubMedCrossRef
46.
go back to reference Beringue V, Andreoletti O, Le Dur A, Essalmani R, Vilotte JL, Lacroux C et al (2007) A bovine prion acquires an epidemic bovine spongiform encephalopathy strain-like phenotype on interspecies transmission. J Neurosci: Offic J Soc Neurosci 27(26):6965–71, doi:10.1523/JNEUROSCI. 0693-07.2007CrossRef Beringue V, Andreoletti O, Le Dur A, Essalmani R, Vilotte JL, Lacroux C et al (2007) A bovine prion acquires an epidemic bovine spongiform encephalopathy strain-like phenotype on interspecies transmission. J Neurosci: Offic J Soc Neurosci 27(26):6965–71, doi:10.1523/JNEUROSCI. 0693-07.2007CrossRef
47.
go back to reference Oumata N, Nguyen PH, Beringue V, Soubigou F, Pang Y, Desban N et al (2013) The toll-like receptor agonist imiquimod is active against prions. PLoS One 8(8):e72112, doi:10.1371/journal.pone.0072112PubMedCentralPubMedCrossRef Oumata N, Nguyen PH, Beringue V, Soubigou F, Pang Y, Desban N et al (2013) The toll-like receptor agonist imiquimod is active against prions. PLoS One 8(8):e72112, doi:10.1371/journal.pone.0072112PubMedCentralPubMedCrossRef
48.
go back to reference Tribouillard-Tanvier D, Beringue V, Desban N, Gug F, Bach S, Voisset C et al (2008) Antihypertensive drug guanabenz is active in vivo against both yeast and mammalian prions. PLoS One 3(4):e1981, doi:10.1371/journal.pone.0001981PubMedCentralPubMedCrossRef Tribouillard-Tanvier D, Beringue V, Desban N, Gug F, Bach S, Voisset C et al (2008) Antihypertensive drug guanabenz is active in vivo against both yeast and mammalian prions. PLoS One 3(4):e1981, doi:10.1371/journal.pone.0001981PubMedCentralPubMedCrossRef
49.
go back to reference Camps P, El Achab R, Morral J, Munoz-Torrero D, Badia A, Banos JE et al (2000) New tacrine-huperzine A hybrids (huprines): highly potent tight-binding acetylcholinesterase inhibitors of interest for the treatment of Alzheimer’s disease. J Med Chem 43(24):4657–66PubMedCrossRef Camps P, El Achab R, Morral J, Munoz-Torrero D, Badia A, Banos JE et al (2000) New tacrine-huperzine A hybrids (huprines): highly potent tight-binding acetylcholinesterase inhibitors of interest for the treatment of Alzheimer’s disease. J Med Chem 43(24):4657–66PubMedCrossRef
50.
go back to reference Rezaei H, Choiset Y, Eghiaian F, Treguer E, Mentre P, Debey P et al (2002) Amyloidogenic unfolding intermediates differentiate sheep prion protein variants. J Mol Biol 322(4):799–814PubMedCrossRef Rezaei H, Choiset Y, Eghiaian F, Treguer E, Mentre P, Debey P et al (2002) Amyloidogenic unfolding intermediates differentiate sheep prion protein variants. J Mol Biol 322(4):799–814PubMedCrossRef
51.
go back to reference Baskakov IV, Legname G, Baldwin MA, Prusiner SB, Cohen FE (2002) Pathway complexity of prion protein assembly into amyloid. J Biol Chem 277(24):21140–8, doi:10.1074/jbc.M111402200PubMedCrossRef Baskakov IV, Legname G, Baldwin MA, Prusiner SB, Cohen FE (2002) Pathway complexity of prion protein assembly into amyloid. J Biol Chem 277(24):21140–8, doi:10.1074/jbc.M111402200PubMedCrossRef
52.
go back to reference Espallergues J, Galvan L, Sabatier F, Rana-Poussine V, Maurice T, Chatonnet A (2010) Behavioral phenotyping of heterozygous acetylcholinesterase knockout (AChE+/−) mice showed no memory enhancement but hyposensitivity to amnesic drugs. Behav Brain Res 206(2):263–73, doi:10.1016/j.bbr.2009.09.024PubMedCrossRef Espallergues J, Galvan L, Sabatier F, Rana-Poussine V, Maurice T, Chatonnet A (2010) Behavioral phenotyping of heterozygous acetylcholinesterase knockout (AChE+/−) mice showed no memory enhancement but hyposensitivity to amnesic drugs. Behav Brain Res 206(2):263–73, doi:10.1016/j.bbr.2009.09.024PubMedCrossRef
53.
go back to reference Collinge J (2001) Prion diseases of humans and animals: their causes and molecular basis. Annu Rev Neurosci 24:519–50, doi:10.1146/annurev.neuro.24.1.519PubMedCrossRef Collinge J (2001) Prion diseases of humans and animals: their causes and molecular basis. Annu Rev Neurosci 24:519–50, doi:10.1146/annurev.neuro.24.1.519PubMedCrossRef
55.
go back to reference Makarava N, Kovacs GG, Bocharova O, Savtchenko R, Alexeeva I, Budka H et al (2010) Recombinant prion protein induces a new transmissible prion disease in wild-type animals. Acta Neuropathol 119(2):177–87, doi:10.1007/s00401-009-0633-xPubMedCentralPubMedCrossRef Makarava N, Kovacs GG, Bocharova O, Savtchenko R, Alexeeva I, Budka H et al (2010) Recombinant prion protein induces a new transmissible prion disease in wild-type animals. Acta Neuropathol 119(2):177–87, doi:10.1007/s00401-009-0633-xPubMedCentralPubMedCrossRef
56.
go back to reference Zhang Z, Zhang Y, Wang F, Wang X, Xu Y, Yang H, et al (2013) De novo generation of infectious prions with bacterially expressed recombinant prion protein. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. doi:10.1096/fj.13-233965 Zhang Z, Zhang Y, Wang F, Wang X, Xu Y, Yang H, et al (2013) De novo generation of infectious prions with bacterially expressed recombinant prion protein. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. doi:10.1096/fj.13-233965
57.
go back to reference Duysen EG, Li B, Xie W, Schopfer LM, Anderson RS, Broomfield CA et al (2001) Evidence for nonacetylcholinesterase targets of organophosphorus nerve agent: supersensitivity of acetylcholinesterase knockout mouse to VX lethality. J Pharmacol Exp Ther 299(2):528–35PubMed Duysen EG, Li B, Xie W, Schopfer LM, Anderson RS, Broomfield CA et al (2001) Evidence for nonacetylcholinesterase targets of organophosphorus nerve agent: supersensitivity of acetylcholinesterase knockout mouse to VX lethality. J Pharmacol Exp Ther 299(2):528–35PubMed
58.
go back to reference Moore RA, Timmes A, Wilmarth PA, Priola SA (2010) Comparative profiling of highly enriched 22 L and Chandler mouse scrapie prion protein preparations. Proteomics 10(15):2858–69, doi:10.1002/pmic.201000104PubMedCentralPubMedCrossRef Moore RA, Timmes A, Wilmarth PA, Priola SA (2010) Comparative profiling of highly enriched 22 L and Chandler mouse scrapie prion protein preparations. Proteomics 10(15):2858–69, doi:10.1002/pmic.201000104PubMedCentralPubMedCrossRef
59.
go back to reference Galdeano C, Viayna E, Sola I, Formosa X, Camps P, Badia A et al (2012) Huprine-tacrine heterodimers as anti-amyloidogenic compounds of potential interest against Alzheimer’s and prion diseases. J Med Chem 55(2):661–9, doi:10.1021/jm200840cPubMedCrossRef Galdeano C, Viayna E, Sola I, Formosa X, Camps P, Badia A et al (2012) Huprine-tacrine heterodimers as anti-amyloidogenic compounds of potential interest against Alzheimer’s and prion diseases. J Med Chem 55(2):661–9, doi:10.1021/jm200840cPubMedCrossRef
60.
go back to reference Cobb NJ, Sonnichsen FD, McHaourab H, Surewicz WK (2007) Molecular architecture of human prion protein amyloid: a parallel, in-register beta-structure. Proc Natl Acad Sci U S A 104(48):18946–51, doi:10.1073/pnas.0706522104PubMedCentralPubMedCrossRef Cobb NJ, Sonnichsen FD, McHaourab H, Surewicz WK (2007) Molecular architecture of human prion protein amyloid: a parallel, in-register beta-structure. Proc Natl Acad Sci U S A 104(48):18946–51, doi:10.1073/pnas.0706522104PubMedCentralPubMedCrossRef
61.
go back to reference Lu X, Wintrode PL, Surewicz WK (2007) Beta-sheet core of human prion protein amyloid fibrils as determined by hydrogen/deuterium exchange. Proc Natl Acad Sci U S A 104(5):1510–5, doi:10.1073/pnas.0608447104PubMedCentralPubMedCrossRef Lu X, Wintrode PL, Surewicz WK (2007) Beta-sheet core of human prion protein amyloid fibrils as determined by hydrogen/deuterium exchange. Proc Natl Acad Sci U S A 104(5):1510–5, doi:10.1073/pnas.0608447104PubMedCentralPubMedCrossRef
62.
go back to reference Makarava N, Baskakov IV (2008) The same primary structure of the prion protein yields two distinct self-propagating states. J Biol Chem 283(23):15988–96, doi:10.1074/jbc.M800562200PubMedCentralPubMedCrossRef Makarava N, Baskakov IV (2008) The same primary structure of the prion protein yields two distinct self-propagating states. J Biol Chem 283(23):15988–96, doi:10.1074/jbc.M800562200PubMedCentralPubMedCrossRef
63.
go back to reference Ostapchenko VG, Sawaya MR, Makarava N, Savtchenko R, Nilsson KP, Eisenberg D et al (2010) Two amyloid States of the prion protein display significantly different folding patterns. J Mol Biol 400(4):908–21, doi:10.1016/j.jmb.2010.05.051PubMedCentralPubMedCrossRef Ostapchenko VG, Sawaya MR, Makarava N, Savtchenko R, Nilsson KP, Eisenberg D et al (2010) Two amyloid States of the prion protein display significantly different folding patterns. J Mol Biol 400(4):908–21, doi:10.1016/j.jmb.2010.05.051PubMedCentralPubMedCrossRef
64.
go back to reference Tycko R, Savtchenko R, Ostapchenko VG, Makarava N, Baskakov IV (2010) The alpha-helical C-terminal domain of full-length recombinant PrP converts to an in-register parallel beta-sheet structure in PrP fibrils: evidence from solid state nuclear magnetic resonance. Biochemistry 49(44):9488–97, doi:10.1021/bi1013134PubMedCentralPubMedCrossRef Tycko R, Savtchenko R, Ostapchenko VG, Makarava N, Baskakov IV (2010) The alpha-helical C-terminal domain of full-length recombinant PrP converts to an in-register parallel beta-sheet structure in PrP fibrils: evidence from solid state nuclear magnetic resonance. Biochemistry 49(44):9488–97, doi:10.1021/bi1013134PubMedCentralPubMedCrossRef
65.
go back to reference Dvir H, Silman I, Harel M, Rosenberry TL, Sussman JL (2010) Acetylcholinesterase: from 3D structure to function. Chem Biol Interact 187(1–3):10–22, doi:10.1016/j.cbi.2010.01.042PubMedCentralPubMedCrossRef Dvir H, Silman I, Harel M, Rosenberry TL, Sussman JL (2010) Acetylcholinesterase: from 3D structure to function. Chem Biol Interact 187(1–3):10–22, doi:10.1016/j.cbi.2010.01.042PubMedCentralPubMedCrossRef
66.
go back to reference Beringue V, Herzog L, Jaumain E, Reine F, Sibille P, Le Dur A et al (2012) Facilitated cross-species transmission of prions in extraneural tissue. Science 335(6067):472–5, doi:10.1126/science.1215659PubMedCrossRef Beringue V, Herzog L, Jaumain E, Reine F, Sibille P, Le Dur A et al (2012) Facilitated cross-species transmission of prions in extraneural tissue. Science 335(6067):472–5, doi:10.1126/science.1215659PubMedCrossRef
68.
go back to reference Bellinger DL, Lorton D, Hamill RW, Felten SY, Felten DL (1993) Acetylcholinesterase staining and choline acetyltransferase activity in the young adult rat spleen: lack of evidence for cholinergic innervation. Brain Behav Immun 7(3):191–204, doi:10.1006/brbi.1993.1021PubMedCrossRef Bellinger DL, Lorton D, Hamill RW, Felten SY, Felten DL (1993) Acetylcholinesterase staining and choline acetyltransferase activity in the young adult rat spleen: lack of evidence for cholinergic innervation. Brain Behav Immun 7(3):191–204, doi:10.1006/brbi.1993.1021PubMedCrossRef
69.
go back to reference Lampert IA, Van Noorden S (1996) Acetyl cholinesterase is expressed in the follicular dendritic cells of germinal centres: differences between normal and neoplastic follicles. J Pathol 180(2):169–74, doi:10.1002/(SICI)1096-9896(199610)180:2<169::AID-PATH621>3.0.CO;2-DPubMedCrossRef Lampert IA, Van Noorden S (1996) Acetyl cholinesterase is expressed in the follicular dendritic cells of germinal centres: differences between normal and neoplastic follicles. J Pathol 180(2):169–74, doi:10.1002/(SICI)1096-9896(199610)180:2<169::AID-PATH621>3.0.CO;2-DPubMedCrossRef
70.
go back to reference Dron M, Moudjou M, Chapuis J, Salamat MK, Bernard J, Cronier S et al (2010) Endogenous proteolytic cleavage of disease-associated prion protein to produce C2 fragments is strongly cell- and tissue-dependent. J Biol Chem 285(14):10252–64, doi:10.1074/jbc.M109.083857PubMedCentralPubMedCrossRef Dron M, Moudjou M, Chapuis J, Salamat MK, Bernard J, Cronier S et al (2010) Endogenous proteolytic cleavage of disease-associated prion protein to produce C2 fragments is strongly cell- and tissue-dependent. J Biol Chem 285(14):10252–64, doi:10.1074/jbc.M109.083857PubMedCentralPubMedCrossRef
71.
go back to reference Lauren J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM (2009) Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 457(7233):1128–32, doi:10.1038/nature07761PubMedCentralPubMedCrossRef Lauren J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM (2009) Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 457(7233):1128–32, doi:10.1038/nature07761PubMedCentralPubMedCrossRef
Metadata
Title
Interaction of prion protein with acetylcholinesterase: potential pathobiological implications in prion diseases
Authors
Joan Torrent
Alba Vilchez-Acosta
Diego Muñoz-Torrero
Marie Trovaslet
Florian Nachon
Arnaud Chatonnet
Katarina Grznarova
Isabelle Acquatella-Tran Van Ba
Ronan Le Goffic
Laetitia Herzog
Vincent Béringue
Human Rezaei
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Acta Neuropathologica Communications / Issue 1/2015
Electronic ISSN: 2051-5960
DOI
https://doi.org/10.1186/s40478-015-0188-0

Other articles of this Issue 1/2015

Acta Neuropathologica Communications 1/2015 Go to the issue