Skip to main content
Top
Published in: NeuroMolecular Medicine 4/2009

01-12-2009 | Original Paper

Interaction Between α-Synuclein and Metal Ions, Still Looking for a Role in the Pathogenesis of Parkinson’s Disease

Authors: Marco Bisaglia, Isabella Tessari, Stefano Mammi, Luigi Bubacco

Published in: NeuroMolecular Medicine | Issue 4/2009

Login to get access

Abstract

The most recent literature on the interaction between α-synuclein in its several aggregation states and metal ions is discussed. This analysis shows two major types of interactions. Binding sites are present in the C-terminal region, and similar, low affinity (in the millimolar range) is exhibited toward many different metal ions, including copper and iron. A more complex scenario emerges for these latter metal ions, which are also able to coordinate with high affinity (in the micromolar range) to the N-terminal region of α-synuclein. Moreover, these redox-active metal ions may induce chemical modifications on the protein in vitro and in the reducing intracellular environment, and these modifications might be relevant for the aggregation properties of α-synuclein. Finally, an attempt is made to contextualize the interaction between α-synuclein and these metal ions in the framework of the elusive and multifactorial pathogenesis of Parkinson’s disease.
Literature
go back to reference Abeliovich, A., Schmitz, Y., Farinas, I., Choi-Lundberg, D., Ho, W. H., Castillo, P. E., et al. (2000). Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron, 25, 239–252.CrossRefPubMed Abeliovich, A., Schmitz, Y., Farinas, I., Choi-Lundberg, D., Ho, W. H., Castillo, P. E., et al. (2000). Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron, 25, 239–252.CrossRefPubMed
go back to reference Berg, D., Youdim, M. B., & Riederer, P. (2004). Redox imbalance. Cell and Tissue Research, 318, 201–213.CrossRefPubMed Berg, D., Youdim, M. B., & Riederer, P. (2004). Redox imbalance. Cell and Tissue Research, 318, 201–213.CrossRefPubMed
go back to reference Bertoncini, C. W., Jung, Y. S., Fernandez, C. O., Hoyer, W., Griesinger, C., Jovin, T. M., et al. (2005). Release of long-range tertiary interactions potentiates aggregation of natively unstructured alpha-synuclein. Proceedings of the National Academy of Sciences of the United States of America, 102, 1430–1435.CrossRefPubMed Bertoncini, C. W., Jung, Y. S., Fernandez, C. O., Hoyer, W., Griesinger, C., Jovin, T. M., et al. (2005). Release of long-range tertiary interactions potentiates aggregation of natively unstructured alpha-synuclein. Proceedings of the National Academy of Sciences of the United States of America, 102, 1430–1435.CrossRefPubMed
go back to reference Bharathi, & Rao, K. S. (2007). Thermodynamics imprinting reveals differential binding of metals to alpha-synuclein: relevance to Parkinson’s disease. Biochemical and Biophysical Research Communications, 359, 115–120. Bharathi, & Rao, K. S. (2007). Thermodynamics imprinting reveals differential binding of metals to alpha-synuclein: relevance to Parkinson’s disease. Biochemical and Biophysical Research Communications, 359, 115–120.
go back to reference Binolfi, A., Lamberto, G. R., Duran, R., Quintanar, L., Bertoncini, C. W., Souza, J. M., et al. (2008). Site-specific interactions of Cu(II) with alpha and beta-synuclein: Bridging the molecular gap between metal binding and aggregation. Journal of the American Chemical Society, 130, 11801–11812.CrossRefPubMed Binolfi, A., Lamberto, G. R., Duran, R., Quintanar, L., Bertoncini, C. W., Souza, J. M., et al. (2008). Site-specific interactions of Cu(II) with alpha and beta-synuclein: Bridging the molecular gap between metal binding and aggregation. Journal of the American Chemical Society, 130, 11801–11812.CrossRefPubMed
go back to reference Binolfi, A., Rasia, R. M., Bertoncini, C. W., Ceolin, M., Zweckstetter, M., Griesinger, C., et al. (2006). Interaction of alpha-synuclein with divalent metal ions reveals key differences: A link between structure, binding specificity and fibrillation enhancement. Journal of the American Chemical Society, 128, 9893–9901.CrossRefPubMed Binolfi, A., Rasia, R. M., Bertoncini, C. W., Ceolin, M., Zweckstetter, M., Griesinger, C., et al. (2006). Interaction of alpha-synuclein with divalent metal ions reveals key differences: A link between structure, binding specificity and fibrillation enhancement. Journal of the American Chemical Society, 128, 9893–9901.CrossRefPubMed
go back to reference Bisaglia, M., Mammi, S., & Bubacco, L. (2008). Structural insights on physiological functions and pathological effects of {alpha}-synuclein. FASEB Journal, 23, 329–340.CrossRefPubMed Bisaglia, M., Mammi, S., & Bubacco, L. (2008). Structural insights on physiological functions and pathological effects of {alpha}-synuclein. FASEB Journal, 23, 329–340.CrossRefPubMed
go back to reference Bisaglia, M., Schievano, E., Caporale, A., Peggion, E., & Mammi, S. (2006). The 11-mer repeats of human alpha-synuclein in vesicle interactions and lipid composition discrimination: A cooperative role. Biopolymers, 84, 310–316.CrossRefPubMed Bisaglia, M., Schievano, E., Caporale, A., Peggion, E., & Mammi, S. (2006). The 11-mer repeats of human alpha-synuclein in vesicle interactions and lipid composition discrimination: A cooperative role. Biopolymers, 84, 310–316.CrossRefPubMed
go back to reference Bisaglia, M., Tessari, I., Pinato, L., Bellanda, M., Giraudo, S., Fasano, M., et al. (2005). A topological model of the interaction between alpha-synuclein and sodium dodecyl sulfate micelles. Biochemistry, 44, 329–339.CrossRefPubMed Bisaglia, M., Tessari, I., Pinato, L., Bellanda, M., Giraudo, S., Fasano, M., et al. (2005). A topological model of the interaction between alpha-synuclein and sodium dodecyl sulfate micelles. Biochemistry, 44, 329–339.CrossRefPubMed
go back to reference Bodles, A. M., Guthrie, D. J., Greer, B., & Irvine, G. B. (2001). Identification of the region of non-Abeta component (NAC) of Alzheimer’s disease amyloid responsible for its aggregation and toxicity. Journal of Neurochemistry, 78, 384–395.CrossRefPubMed Bodles, A. M., Guthrie, D. J., Greer, B., & Irvine, G. B. (2001). Identification of the region of non-Abeta component (NAC) of Alzheimer’s disease amyloid responsible for its aggregation and toxicity. Journal of Neurochemistry, 78, 384–395.CrossRefPubMed
go back to reference Bortolus, M., Tombolato, F., Tessari, I., Bisaglia, M., Mammi, S., Bubacco, L., et al. (2008). Broken helix in vesicle and micelle-bound alpha-synuclein: Insights from site-directed spin labeling-EPR experiments and MD simulations. Journal of the American Chemical Society, 130, 6690–6691.CrossRefPubMed Bortolus, M., Tombolato, F., Tessari, I., Bisaglia, M., Mammi, S., Bubacco, L., et al. (2008). Broken helix in vesicle and micelle-bound alpha-synuclein: Insights from site-directed spin labeling-EPR experiments and MD simulations. Journal of the American Chemical Society, 130, 6690–6691.CrossRefPubMed
go back to reference Brown, D. R., Qin, K., Herms, J. W., Madlung, A., Manson, J., Strome, R., et al. (1997). The cellular prion protein binds copper in vivo. Nature, 390, 684–687.CrossRefPubMed Brown, D. R., Qin, K., Herms, J. W., Madlung, A., Manson, J., Strome, R., et al. (1997). The cellular prion protein binds copper in vivo. Nature, 390, 684–687.CrossRefPubMed
go back to reference Cabin, D. E., Shimazu, K., Murphy, D., Cole, N. B., Gottschalk, W., McIlwain, K. L., et al. (2002). Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking alpha-synuclein. Journal of Neuroscience, 22, 8797–8807.PubMed Cabin, D. E., Shimazu, K., Murphy, D., Cole, N. B., Gottschalk, W., McIlwain, K. L., et al. (2002). Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking alpha-synuclein. Journal of Neuroscience, 22, 8797–8807.PubMed
go back to reference Chartier-Harlin, M. C., Kachergus, J., Roumier, C., Mouroux, V., Douay, X., Lincoln, S., et al. (2004). Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet, 364, 1167–1169.CrossRefPubMed Chartier-Harlin, M. C., Kachergus, J., Roumier, C., Mouroux, V., Douay, X., Lincoln, S., et al. (2004). Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet, 364, 1167–1169.CrossRefPubMed
go back to reference Chen, M., Margittai, M., Chen, J., & Langen, R. (2007). Investigation of alpha-synuclein fibril structure by site-directed spin labeling. Journal of Biological Chemistry, 282, 24970–24979.CrossRefPubMed Chen, M., Margittai, M., Chen, J., & Langen, R. (2007). Investigation of alpha-synuclein fibril structure by site-directed spin labeling. Journal of Biological Chemistry, 282, 24970–24979.CrossRefPubMed
go back to reference Chinta, S. J., & Andersen, J. K. (2008). Redox imbalance in Parkinson’s disease. Biochimica et Biophysica Acta, 1780, 1362–1367.PubMed Chinta, S. J., & Andersen, J. K. (2008). Redox imbalance in Parkinson’s disease. Biochimica et Biophysica Acta, 1780, 1362–1367.PubMed
go back to reference Cole, N. B., Murphy, D. D., Lebowitz, J., Di Noto, L., Levine, R. L., & Nussbaum, R. L. (2005). Metal-catalyzed oxidation of alpha-synuclein: Helping to define the relationship between oligomers, protofibrils, and filaments. Journal of Biological Chemistry, 280, 9678–9690.CrossRefPubMed Cole, N. B., Murphy, D. D., Lebowitz, J., Di Noto, L., Levine, R. L., & Nussbaum, R. L. (2005). Metal-catalyzed oxidation of alpha-synuclein: Helping to define the relationship between oligomers, protofibrils, and filaments. Journal of Biological Chemistry, 280, 9678–9690.CrossRefPubMed
go back to reference Conway, K. A., Lee, S. J., Rochet, J. C., Ding, T. T., Williamson, R. E., & Lansbury, P. T., Jr. (2000). Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson’s disease: Implications for pathogenesis and therapy. Proceedings of the National Academy of Sciences of the United States of America, 97, 571–576.CrossRefPubMed Conway, K. A., Lee, S. J., Rochet, J. C., Ding, T. T., Williamson, R. E., & Lansbury, P. T., Jr. (2000). Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson’s disease: Implications for pathogenesis and therapy. Proceedings of the National Academy of Sciences of the United States of America, 97, 571–576.CrossRefPubMed
go back to reference Davidson, W. S., Jonas, A., Clayton, D. F., & George, J. M. (1998). Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. Journal of Biological Chemistry, 273, 9443–9449.CrossRefPubMed Davidson, W. S., Jonas, A., Clayton, D. F., & George, J. M. (1998). Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. Journal of Biological Chemistry, 273, 9443–9449.CrossRefPubMed
go back to reference Dedmon, M. M., Lindorff-Larsen, K., Christodoulou, J., Vendruscolo, M., & Dobson, C. M. (2005). Mapping long-range interactions in alpha-synuclein using spin-label NMR and ensemble molecular dynamics simulations. Journal of the American Chemical Society, 127, 476–477.CrossRefPubMed Dedmon, M. M., Lindorff-Larsen, K., Christodoulou, J., Vendruscolo, M., & Dobson, C. M. (2005). Mapping long-range interactions in alpha-synuclein using spin-label NMR and ensemble molecular dynamics simulations. Journal of the American Chemical Society, 127, 476–477.CrossRefPubMed
go back to reference Der-Sarkissian, A., Jao, C. C., Chen, J., & Langen, R. (2003). Structural organization of alpha-synuclein fibrils studied by site-directed spin labeling. Journal of Biological Chemistry, 278, 37530–37535.CrossRefPubMed Der-Sarkissian, A., Jao, C. C., Chen, J., & Langen, R. (2003). Structural organization of alpha-synuclein fibrils studied by site-directed spin labeling. Journal of Biological Chemistry, 278, 37530–37535.CrossRefPubMed
go back to reference Dexter, D. T., Carayon, A., Javoy-Agid, F., Agid, Y., Wells, F. R., Daniel, S. E., et al. (1991). Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain, 114(Pt 4), 1953–1975.CrossRefPubMed Dexter, D. T., Carayon, A., Javoy-Agid, F., Agid, Y., Wells, F. R., Daniel, S. E., et al. (1991). Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain, 114(Pt 4), 1953–1975.CrossRefPubMed
go back to reference Dexter, D. T., Wells, F. R., Lees, A. J., Agid, F., Agid, Y., Jenner, P., et al. (1989). Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson’s disease. Journal of Neurochemistry, 52, 1830–1836.CrossRefPubMed Dexter, D. T., Wells, F. R., Lees, A. J., Agid, F., Agid, Y., Jenner, P., et al. (1989). Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson’s disease. Journal of Neurochemistry, 52, 1830–1836.CrossRefPubMed
go back to reference Ding, T. T., Lee, S. J., Rochet, J. C., & Lansbury, P. T., Jr. (2002). Annular alpha-synuclein protofibrils are produced when spherical protofibrils are incubated in solution or bound to brain-derived membranes. Biochemistry, 41, 10209–10217.CrossRefPubMed Ding, T. T., Lee, S. J., Rochet, J. C., & Lansbury, P. T., Jr. (2002). Annular alpha-synuclein protofibrils are produced when spherical protofibrils are incubated in solution or bound to brain-derived membranes. Biochemistry, 41, 10209–10217.CrossRefPubMed
go back to reference Dorsey, E. R., Constantinescu, R., Thompson, J. P., Biglan, K. M., Holloway, R. G., Kieburtz, K., et al. (2007). Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology, 68, 384–386.CrossRefPubMed Dorsey, E. R., Constantinescu, R., Thompson, J. P., Biglan, K. M., Holloway, R. G., Kieburtz, K., et al. (2007). Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology, 68, 384–386.CrossRefPubMed
go back to reference Drew, S. C., Leong, S. L., Pham, C. L., Tew, D. J., Masters, C. L., Miles, L. A., et al. (2008). Cu2+ binding modes of recombinant alpha-synuclein—insights from EPR spectroscopy. Journal of the American Chemical Society, 130, 7766–7773.CrossRefPubMed Drew, S. C., Leong, S. L., Pham, C. L., Tew, D. J., Masters, C. L., Miles, L. A., et al. (2008). Cu2+ binding modes of recombinant alpha-synuclein—insights from EPR spectroscopy. Journal of the American Chemical Society, 130, 7766–7773.CrossRefPubMed
go back to reference Eliezer, D., Kutluay, E., Bussell, R., Jr., & Browne, G. (2001). Conformational properties of alpha-synuclein in its free and lipid-associated states. Journal of Molecular Biology, 307, 1061–1073.CrossRefPubMed Eliezer, D., Kutluay, E., Bussell, R., Jr., & Browne, G. (2001). Conformational properties of alpha-synuclein in its free and lipid-associated states. Journal of Molecular Biology, 307, 1061–1073.CrossRefPubMed
go back to reference Fink, A. L. (2006). The aggregation and fibrillation of alpha-synuclein. Accounts of Chemical Research, 39, 628–634.CrossRefPubMed Fink, A. L. (2006). The aggregation and fibrillation of alpha-synuclein. Accounts of Chemical Research, 39, 628–634.CrossRefPubMed
go back to reference Fountaine, T. M., & Wade-Martins, R. (2007). RNA interference-mediated knockdown of alpha-synuclein protects human dopaminergic neuroblastoma cells from MPP(+) toxicity and reduces dopamine transport. Journal of Neuroscience Research, 85, 351–363.CrossRefPubMed Fountaine, T. M., & Wade-Martins, R. (2007). RNA interference-mediated knockdown of alpha-synuclein protects human dopaminergic neuroblastoma cells from MPP(+) toxicity and reduces dopamine transport. Journal of Neuroscience Research, 85, 351–363.CrossRefPubMed
go back to reference Friedlich, A. L., Tanzi, R. E., & Rogers, J. T. (2007). The 5′-untranslated region of Parkinson’s disease alpha-synuclein messenger RNA contains a predicted iron responsive element. Molecular Psychiatry, 12, 222–223.CrossRefPubMed Friedlich, A. L., Tanzi, R. E., & Rogers, J. T. (2007). The 5′-untranslated region of Parkinson’s disease alpha-synuclein messenger RNA contains a predicted iron responsive element. Molecular Psychiatry, 12, 222–223.CrossRefPubMed
go back to reference Fujiwara, H., Hasegawa, M., Dohmae, N., Kawashima, A., Masliah, E., Goldberg, M. S., et al. (2002). Alpha-synuclein is phosphorylated in synucleinopathy lesions. Nature Cell Biology, 4, 160–164.CrossRefPubMed Fujiwara, H., Hasegawa, M., Dohmae, N., Kawashima, A., Masliah, E., Goldberg, M. S., et al. (2002). Alpha-synuclein is phosphorylated in synucleinopathy lesions. Nature Cell Biology, 4, 160–164.CrossRefPubMed
go back to reference Giasson, B. I., Duda, J. E., Murray, I. V., Chen, Q., Souza, J. M., Hurtig, H. I., et al. (2000). Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science, 290, 985–989.CrossRefPubMed Giasson, B. I., Duda, J. E., Murray, I. V., Chen, Q., Souza, J. M., Hurtig, H. I., et al. (2000). Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science, 290, 985–989.CrossRefPubMed
go back to reference Giasson, B. I., Murray, I. V., Trojanowski, J. Q., & Lee, V. M. (2001). A hydrophobic stretch of 12 amino acid residues in the middle of alpha-synuclein is essential for filament assembly. Journal of Biological Chemistry, 276, 2380–2386.CrossRefPubMed Giasson, B. I., Murray, I. V., Trojanowski, J. Q., & Lee, V. M. (2001). A hydrophobic stretch of 12 amino acid residues in the middle of alpha-synuclein is essential for filament assembly. Journal of Biological Chemistry, 276, 2380–2386.CrossRefPubMed
go back to reference Glinka, Y., Tipton, K. F., & Youdim, M. B. (1996). Nature of inhibition of mitochondrial respiratory complex I by 6-Hydroxydopamine. Journal of Neurochemistry, 66, 2004–2010.PubMedCrossRef Glinka, Y., Tipton, K. F., & Youdim, M. B. (1996). Nature of inhibition of mitochondrial respiratory complex I by 6-Hydroxydopamine. Journal of Neurochemistry, 66, 2004–2010.PubMedCrossRef
go back to reference Golts, N., Snyder, H., Frasier, M., Theisler, C., Choi, P., & Wolozin, B. (2002). Magnesium inhibits spontaneous and iron-induced aggregation of alpha-synuclein. Journal of Biological Chemistry, 277, 16116–16123.CrossRefPubMed Golts, N., Snyder, H., Frasier, M., Theisler, C., Choi, P., & Wolozin, B. (2002). Magnesium inhibits spontaneous and iron-induced aggregation of alpha-synuclein. Journal of Biological Chemistry, 277, 16116–16123.CrossRefPubMed
go back to reference Heise, H., Hoyer, W., Becker, S., Andronesi, O. C., Riedel, D., & Baldus, M. (2005). Molecular-level secondary structure, polymorphism, and dynamics of full-length alpha-synuclein fibrils studied by solid-state NMR. Proceedings of the National Academy of Sciences of the United States of America, 102, 15871–15876.CrossRefPubMed Heise, H., Hoyer, W., Becker, S., Andronesi, O. C., Riedel, D., & Baldus, M. (2005). Molecular-level secondary structure, polymorphism, and dynamics of full-length alpha-synuclein fibrils studied by solid-state NMR. Proceedings of the National Academy of Sciences of the United States of America, 102, 15871–15876.CrossRefPubMed
go back to reference Hong, L., & Simon, J. D. (2009). Binding of Cu(II) to human alpha-synucleins: Comparison of wild type and the point mutations associated with the familial Parkinson’s disease. Journal of Physical Chemistry B, 113, 9551–9561.CrossRef Hong, L., & Simon, J. D. (2009). Binding of Cu(II) to human alpha-synucleins: Comparison of wild type and the point mutations associated with the familial Parkinson’s disease. Journal of Physical Chemistry B, 113, 9551–9561.CrossRef
go back to reference Hughes, A. J., Daniel, S. E., Ben-Shlomo, Y., & Lees, A. J. (2002). The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service. Brain, 125, 861–870.CrossRefPubMed Hughes, A. J., Daniel, S. E., Ben-Shlomo, Y., & Lees, A. J. (2002). The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service. Brain, 125, 861–870.CrossRefPubMed
go back to reference Inglis, K. J., Chereau, D., Brigham, E. F., Chiou, S. S., Schobel, S., Frigon, N. L., et al. (2009). Polo-like kinase 2 (PLK2) phosphorylates alpha-synuclein at serine 129 in central nervous system. Journal of Biological Chemistry, 284, 2598–2602.CrossRefPubMed Inglis, K. J., Chereau, D., Brigham, E. F., Chiou, S. S., Schobel, S., Frigon, N. L., et al. (2009). Polo-like kinase 2 (PLK2) phosphorylates alpha-synuclein at serine 129 in central nervous system. Journal of Biological Chemistry, 284, 2598–2602.CrossRefPubMed
go back to reference Iwai, A., Masliah, E., Yoshimoto, M., Ge, N., Flanagan, L., de Silva, H. A., et al. (1995). The precursor protein of non-A beta component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system. Neuron, 14, 467–475.CrossRefPubMed Iwai, A., Masliah, E., Yoshimoto, M., Ge, N., Flanagan, L., de Silva, H. A., et al. (1995). The precursor protein of non-A beta component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system. Neuron, 14, 467–475.CrossRefPubMed
go back to reference Kostka, M., Hogen, T., Danzer, K. M., Levin, J., Habeck, M., Wirth, A., et al. (2008). Single particle characterization of iron-induced pore-forming alpha-synuclein oligomers. Journal of Biological Chemistry, 283, 10992–11003.CrossRefPubMed Kostka, M., Hogen, T., Danzer, K. M., Levin, J., Habeck, M., Wirth, A., et al. (2008). Single particle characterization of iron-induced pore-forming alpha-synuclein oligomers. Journal of Biological Chemistry, 283, 10992–11003.CrossRefPubMed
go back to reference Kowalik-Jankowska, T., Rajewska, A., Jankowska, E., & Grzonka, Z. (2006a). Copper(II) binding by fragments of alpha-synuclein containing M1-D2- and -H50-residues: A combined potentiometric and spectroscopic study. Dalton Transactions, 5068–5076. Kowalik-Jankowska, T., Rajewska, A., Jankowska, E., & Grzonka, Z. (2006a). Copper(II) binding by fragments of alpha-synuclein containing M1-D2- and -H50-residues: A combined potentiometric and spectroscopic study. Dalton Transactions, 5068–5076.
go back to reference Kowalik-Jankowska, T., Rajewska, A., Jankowska, E., Wisniewska, K., & Grzonka, Z. (2006b). Products of Cu(II)-catalyzed oxidation of the N-terminal fragments of alpha-synuclein in the presence of hydrogen peroxide. Journal of Inorganic Biochemistry, 100, 1623–1631.CrossRefPubMed Kowalik-Jankowska, T., Rajewska, A., Jankowska, E., Wisniewska, K., & Grzonka, Z. (2006b). Products of Cu(II)-catalyzed oxidation of the N-terminal fragments of alpha-synuclein in the presence of hydrogen peroxide. Journal of Inorganic Biochemistry, 100, 1623–1631.CrossRefPubMed
go back to reference Krantz, D. E., Peter, D., Liu, Y., & Edwards, R. H. (1997). Phosphorylation of a vesicular monoamine transporter by casein kinase II. Journal of Biological Chemistry, 272, 6752–6759.CrossRefPubMed Krantz, D. E., Peter, D., Liu, Y., & Edwards, R. H. (1997). Phosphorylation of a vesicular monoamine transporter by casein kinase II. Journal of Biological Chemistry, 272, 6752–6759.CrossRefPubMed
go back to reference Kruger, R., Kuhn, W., Muller, T., Woitalla, D., Graeber, M., Kosel, S., et al. (1998). Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nature Genetics, 18, 106–108.CrossRefPubMed Kruger, R., Kuhn, W., Muller, T., Woitalla, D., Graeber, M., Kosel, S., et al. (1998). Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nature Genetics, 18, 106–108.CrossRefPubMed
go back to reference Lai, B. C., Marion, S. A., Teschke, K., & Tsui, J. K. (2002). Occupational and environmental risk factors for Parkinson’s disease. Parkinsonism & Related Disorders, 8, 297–309.CrossRef Lai, B. C., Marion, S. A., Teschke, K., & Tsui, J. K. (2002). Occupational and environmental risk factors for Parkinson’s disease. Parkinsonism & Related Disorders, 8, 297–309.CrossRef
go back to reference Larsen, K. E., Schmitz, Y., Troyer, M. D., Mosharov, E., Dietrich, P., Quazi, A. Z., et al. (2006). Alpha-synuclein overexpression in PC12 and chromaffin cells impairs catecholamine release by interfering with a late step in exocytosis. Journal of Neuroscience, 26, 11915–11922.CrossRefPubMed Larsen, K. E., Schmitz, Y., Troyer, M. D., Mosharov, E., Dietrich, P., Quazi, A. Z., et al. (2006). Alpha-synuclein overexpression in PC12 and chromaffin cells impairs catecholamine release by interfering with a late step in exocytosis. Journal of Neuroscience, 26, 11915–11922.CrossRefPubMed
go back to reference Lashuel, H. A., Hartley, D., Petre, B. M., Walz, T., & Lansbury, P. T., Jr. (2002). Neurodegenerative disease: Amyloid pores from pathogenic mutations. Nature, 418, 291.CrossRefPubMed Lashuel, H. A., Hartley, D., Petre, B. M., Walz, T., & Lansbury, P. T., Jr. (2002). Neurodegenerative disease: Amyloid pores from pathogenic mutations. Nature, 418, 291.CrossRefPubMed
go back to reference Lee, J. C., Gray, H. B., & Winkler, J. R. (2008). Copper(II) binding to alpha-synuclein, the Parkinson’s protein. Journal of the American Chemical Society, 130, 6898–6899.CrossRefPubMed Lee, J. C., Gray, H. B., & Winkler, J. R. (2008). Copper(II) binding to alpha-synuclein, the Parkinson’s protein. Journal of the American Chemical Society, 130, 6898–6899.CrossRefPubMed
go back to reference Lee, E. N., Lee, S. Y., Lee, D., Kim, J., & Paik, S. R. (2003). Lipid interaction of alpha-synuclein during the metal-catalyzed oxidation in the presence of Cu2+ and H2O2. Journal of Neurochemistry, 84, 1128–1142.CrossRefPubMed Lee, E. N., Lee, S. Y., Lee, D., Kim, J., & Paik, S. R. (2003). Lipid interaction of alpha-synuclein during the metal-catalyzed oxidation in the presence of Cu2+ and H2O2. Journal of Neurochemistry, 84, 1128–1142.CrossRefPubMed
go back to reference Lee, F. J., Liu, F., Pristupa, Z. B., & Niznik, H. B. (2001). Direct binding and functional coupling of alpha-synuclein to the dopamine transporters accelerate dopamine-induced apoptosis. FASEB Journal, 15, 916–926.CrossRefPubMed Lee, F. J., Liu, F., Pristupa, Z. B., & Niznik, H. B. (2001). Direct binding and functional coupling of alpha-synuclein to the dopamine transporters accelerate dopamine-induced apoptosis. FASEB Journal, 15, 916–926.CrossRefPubMed
go back to reference Lesage, S., & Brice, A. (2009). Parkinson’s disease: from monogenic forms to genetic susceptibility factors. Human Molecular Genetics, 18, R48–R59.CrossRefPubMed Lesage, S., & Brice, A. (2009). Parkinson’s disease: from monogenic forms to genetic susceptibility factors. Human Molecular Genetics, 18, R48–R59.CrossRefPubMed
go back to reference Li, W., West, N., Colla, E., Pletnikova, O., Troncoso, J. C., Marsh, L., et al. (2005). Aggregation promoting C-terminal truncation of alpha-synuclein is a normal cellular process and is enhanced by the familial Parkinson’s disease-linked mutations. Proceedings of the National Academy of Sciences of the United States of America, 102, 2162–2167.CrossRefPubMed Li, W., West, N., Colla, E., Pletnikova, O., Troncoso, J. C., Marsh, L., et al. (2005). Aggregation promoting C-terminal truncation of alpha-synuclein is a normal cellular process and is enhanced by the familial Parkinson’s disease-linked mutations. Proceedings of the National Academy of Sciences of the United States of America, 102, 2162–2167.CrossRefPubMed
go back to reference Liu, L. L., & Franz, K. J. (2007). Phosphorylation-dependent metal binding by alpha-synuclein peptide fragments. JBIC Journal of Biological Inorganic Chemistry, 12, 234–247.CrossRef Liu, L. L., & Franz, K. J. (2007). Phosphorylation-dependent metal binding by alpha-synuclein peptide fragments. JBIC Journal of Biological Inorganic Chemistry, 12, 234–247.CrossRef
go back to reference Lotharius, J., Barg, S., Wiekop, P., Lundberg, C., Raymon, H. K., & Brundin, P. (2002). Effect of mutant alpha-synuclein on dopamine homeostasis in a new human mesencephalic cell line. Journal of Biological Chemistry, 277, 38884–38894.CrossRefPubMed Lotharius, J., Barg, S., Wiekop, P., Lundberg, C., Raymon, H. K., & Brundin, P. (2002). Effect of mutant alpha-synuclein on dopamine homeostasis in a new human mesencephalic cell line. Journal of Biological Chemistry, 277, 38884–38894.CrossRefPubMed
go back to reference Murphy, D. D., Rueter, S. M., Trojanowski, J. Q., & Lee, V. M. (2000). Synucleins are developmentally expressed, and alpha-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. Journal of Neuroscience, 20, 3214–3220.PubMed Murphy, D. D., Rueter, S. M., Trojanowski, J. Q., & Lee, V. M. (2000). Synucleins are developmentally expressed, and alpha-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. Journal of Neuroscience, 20, 3214–3220.PubMed
go back to reference Murray, I. V., Giasson, B. I., Quinn, S. M., Koppaka, V., Axelsen, P. H., Ischiropoulos, H., et al. (2003). Role of alpha-synuclein carboxy-terminus on fibril formation in vitro. Biochemistry, 42, 8530–8540.CrossRefPubMed Murray, I. V., Giasson, B. I., Quinn, S. M., Koppaka, V., Axelsen, P. H., Ischiropoulos, H., et al. (2003). Role of alpha-synuclein carboxy-terminus on fibril formation in vitro. Biochemistry, 42, 8530–8540.CrossRefPubMed
go back to reference Nakajo, S., Shioda, S., Nakai, Y., & Nakaya, K. (1994). Localization of phosphoneuroprotein 14 (PNP 14) and its mRNA expression in rat brain determined by immunocytochemistry and in situ hybridization. Brain Research. Molecular Brain Research, 27, 81–86.CrossRefPubMed Nakajo, S., Shioda, S., Nakai, Y., & Nakaya, K. (1994). Localization of phosphoneuroprotein 14 (PNP 14) and its mRNA expression in rat brain determined by immunocytochemistry and in situ hybridization. Brain Research. Molecular Brain Research, 27, 81–86.CrossRefPubMed
go back to reference Paik, S. R., Shin, H. J., & Lee, J. H. (2000). Metal-catalyzed oxidation of alpha-synuclein in the presence of Copper(II) and hydrogen peroxide. Archives of Biochemistry and Biophysics, 378, 269–277.CrossRefPubMed Paik, S. R., Shin, H. J., & Lee, J. H. (2000). Metal-catalyzed oxidation of alpha-synuclein in the presence of Copper(II) and hydrogen peroxide. Archives of Biochemistry and Biophysics, 378, 269–277.CrossRefPubMed
go back to reference Paik, S. R., Shin, H. J., Lee, J. H., Chang, C. S., & Kim, J. (1999). Copper(II)-induced self-oligomerization of alpha-synuclein. Biochemical Journal, 340(Pt 3), 821–828.CrossRefPubMed Paik, S. R., Shin, H. J., Lee, J. H., Chang, C. S., & Kim, J. (1999). Copper(II)-induced self-oligomerization of alpha-synuclein. Biochemical Journal, 340(Pt 3), 821–828.CrossRefPubMed
go back to reference Pall, H. S., Williams, A. C., Blake, D. R., Lunec, J., Gutteridge, J. M., Hall, M., et al. (1987). Raised cerebrospinal-fluid copper concentration in Parkinson’s disease. Lancet, 2, 238–241.CrossRefPubMed Pall, H. S., Williams, A. C., Blake, D. R., Lunec, J., Gutteridge, J. M., Hall, M., et al. (1987). Raised cerebrospinal-fluid copper concentration in Parkinson’s disease. Lancet, 2, 238–241.CrossRefPubMed
go back to reference Peng, J., Peng, L., Stevenson, F. F., Doctrow, S. R., & Andersen, J. K. (2007). Iron and paraquat as synergistic environmental risk factors in sporadic Parkinson’s disease accelerate age-related neurodegeneration. Journal of Neuroscience, 27, 6914–6922.CrossRefPubMed Peng, J., Peng, L., Stevenson, F. F., Doctrow, S. R., & Andersen, J. K. (2007). Iron and paraquat as synergistic environmental risk factors in sporadic Parkinson’s disease accelerate age-related neurodegeneration. Journal of Neuroscience, 27, 6914–6922.CrossRefPubMed
go back to reference Perez, R. G., Waymire, J. C., Lin, E., Liu, J. J., Guo, F., & Zigmond, M. J. (2002). A role for alpha-synuclein in the regulation of dopamine biosynthesis. Journal of Neuroscience, 22, 3090–3099.PubMed Perez, R. G., Waymire, J. C., Lin, E., Liu, J. J., Guo, F., & Zigmond, M. J. (2002). A role for alpha-synuclein in the regulation of dopamine biosynthesis. Journal of Neuroscience, 22, 3090–3099.PubMed
go back to reference Polymeropoulos, M. H., Lavedan, C., Leroy, E., Ide, S. E., Dehejia, A., Dutra, A., et al. (1997). Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science, 276, 2045–2047.CrossRefPubMed Polymeropoulos, M. H., Lavedan, C., Leroy, E., Ide, S. E., Dehejia, A., Dutra, A., et al. (1997). Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science, 276, 2045–2047.CrossRefPubMed
go back to reference Ponka, P., Beaumont, C., & Richardson, D. R. (1998). Function and regulation of transferrin and ferritin. Seminars in Hematology, 35, 35–54.PubMed Ponka, P., Beaumont, C., & Richardson, D. R. (1998). Function and regulation of transferrin and ferritin. Seminars in Hematology, 35, 35–54.PubMed
go back to reference Pronin, A. N., Morris, A. J., Surguchov, A., & Benovic, J. L. (2000). Synucleins are a novel class of substrates for G protein-coupled receptor kinases. Journal of Biological Chemistry, 275, 26515–26522.CrossRefPubMed Pronin, A. N., Morris, A. J., Surguchov, A., & Benovic, J. L. (2000). Synucleins are a novel class of substrates for G protein-coupled receptor kinases. Journal of Biological Chemistry, 275, 26515–26522.CrossRefPubMed
go back to reference Rasia, R. M., Bertoncini, C. W., Marsh, D., Hoyer, W., Cherny, D., Zweckstetter, M., et al. (2005). Structural characterization of copper(II) binding to alpha-synuclein: Insights into the bioinorganic chemistry of Parkinson’s disease. Proceedings of the National Academy of Sciences of the United States of America, 102, 4294–4299.CrossRefPubMed Rasia, R. M., Bertoncini, C. W., Marsh, D., Hoyer, W., Cherny, D., Zweckstetter, M., et al. (2005). Structural characterization of copper(II) binding to alpha-synuclein: Insights into the bioinorganic chemistry of Parkinson’s disease. Proceedings of the National Academy of Sciences of the United States of America, 102, 4294–4299.CrossRefPubMed
go back to reference Riederer, P., Sofic, E., Rausch, W. D., Schmidt, B., Reynolds, G. P., Jellinger, K., et al. (1989). Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. Journal of Neurochemistry, 52, 515–520.CrossRefPubMed Riederer, P., Sofic, E., Rausch, W. D., Schmidt, B., Reynolds, G. P., Jellinger, K., et al. (1989). Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. Journal of Neurochemistry, 52, 515–520.CrossRefPubMed
go back to reference Rochet, J. C., Conway, K. A., & Lansbury, P. T., Jr. (2000). Inhibition of fibrillization and accumulation of prefibrillar oligomers in mixtures of human and mouse alpha-synuclein. Biochemistry, 39, 10619–10626.CrossRefPubMed Rochet, J. C., Conway, K. A., & Lansbury, P. T., Jr. (2000). Inhibition of fibrillization and accumulation of prefibrillar oligomers in mixtures of human and mouse alpha-synuclein. Biochemistry, 39, 10619–10626.CrossRefPubMed
go back to reference Ross, C. A., & Poirier, M. A. (2005). Opinion: What is the role of protein aggregation in neurodegeneration? Nature Reviews. Molecular Cell Biology, 6, 891–898.CrossRefPubMed Ross, C. A., & Poirier, M. A. (2005). Opinion: What is the role of protein aggregation in neurodegeneration? Nature Reviews. Molecular Cell Biology, 6, 891–898.CrossRefPubMed
go back to reference Sandal, M., Valle, F., Tessari, I., Mammi, S., Bergantino, E., Musiani, F., et al. (2008). Conformational equilibria in monomeric alpha-synuclein at the single-molecule level. PLoS Biology, 6, e6.CrossRefPubMed Sandal, M., Valle, F., Tessari, I., Mammi, S., Bergantino, E., Musiani, F., et al. (2008). Conformational equilibria in monomeric alpha-synuclein at the single-molecule level. PLoS Biology, 6, e6.CrossRefPubMed
go back to reference Segrest, J. P., Jones, M. K., De Loof, H., Brouillette, C. G., Venkatachalapathi, Y. V., & Anantharamaiah, G. M. (1992). The amphipathic helix in the exchangeable apolipoproteins: A review of secondary structure and function. Journal of Lipid Research, 33, 141–166.PubMed Segrest, J. P., Jones, M. K., De Loof, H., Brouillette, C. G., Venkatachalapathi, Y. V., & Anantharamaiah, G. M. (1992). The amphipathic helix in the exchangeable apolipoproteins: A review of secondary structure and function. Journal of Lipid Research, 33, 141–166.PubMed
go back to reference Serpell, L. C., Berriman, J., Jakes, R., Goedert, M., & Crowther, R. A. (2000). Fiber diffraction of synthetic alpha-synuclein filaments shows amyloid-like cross-beta conformation. Proceedings of the National Academy of Sciences of the United States of America, 97, 4897–4902.CrossRefPubMed Serpell, L. C., Berriman, J., Jakes, R., Goedert, M., & Crowther, R. A. (2000). Fiber diffraction of synthetic alpha-synuclein filaments shows amyloid-like cross-beta conformation. Proceedings of the National Academy of Sciences of the United States of America, 97, 4897–4902.CrossRefPubMed
go back to reference Shults, C. W. (2006). Lewy bodies. Proceedings of the National Academy of Sciences of the United States of America, 103, 1661–1668.CrossRefPubMed Shults, C. W. (2006). Lewy bodies. Proceedings of the National Academy of Sciences of the United States of America, 103, 1661–1668.CrossRefPubMed
go back to reference Singleton, A. B., Farrer, M., Johnson, J., Singleton, A., Hague, S., Kachergus, J., et al. (2003). Alpha-synuclein locus triplication causes Parkinson’s disease. Science, 302, 841.CrossRefPubMed Singleton, A. B., Farrer, M., Johnson, J., Singleton, A., Hague, S., Kachergus, J., et al. (2003). Alpha-synuclein locus triplication causes Parkinson’s disease. Science, 302, 841.CrossRefPubMed
go back to reference Souza, J. M., Giasson, B. I., Chen, Q., Lee, V. M., & Ischiropoulos, H. (2000). Dityrosine cross-linking promotes formation of stable alpha-synuclein polymers. Implication of nitrative and oxidative stress in the pathogenesis of neurodegenerative synucleinopathies. Journal of Biological Chemistry, 275, 18344–18349.CrossRefPubMed Souza, J. M., Giasson, B. I., Chen, Q., Lee, V. M., & Ischiropoulos, H. (2000). Dityrosine cross-linking promotes formation of stable alpha-synuclein polymers. Implication of nitrative and oxidative stress in the pathogenesis of neurodegenerative synucleinopathies. Journal of Biological Chemistry, 275, 18344–18349.CrossRefPubMed
go back to reference Spillantini, M. G., Schmidt, M. L., Lee, V. M., Trojanowski, J. Q., Jakes, R., & Goedert, M. (1997). Alpha-synuclein in Lewy bodies. Nature, 388, 839–840.CrossRefPubMed Spillantini, M. G., Schmidt, M. L., Lee, V. M., Trojanowski, J. Q., Jakes, R., & Goedert, M. (1997). Alpha-synuclein in Lewy bodies. Nature, 388, 839–840.CrossRefPubMed
go back to reference Stokes, A. H., Hastings, T. G., & Vrana, K. E. (1999). Cytotoxic and genotoxic potential of dopamine. Journal of Neuroscience Research, 55, 659–665.CrossRefPubMed Stokes, A. H., Hastings, T. G., & Vrana, K. E. (1999). Cytotoxic and genotoxic potential of dopamine. Journal of Neuroscience Research, 55, 659–665.CrossRefPubMed
go back to reference Sung, Y. H., Rospigliosi, C., & Eliezer, D. (2006). NMR mapping of copper binding sites in alpha-synuclein. Biochimica et Biophysica Acta, 1764, 5–12.PubMed Sung, Y. H., Rospigliosi, C., & Eliezer, D. (2006). NMR mapping of copper binding sites in alpha-synuclein. Biochimica et Biophysica Acta, 1764, 5–12.PubMed
go back to reference Tehranian, R., Montoya, S. E., Van Laar, A. D., Hastings, T. G., & Perez, R. G. (2006). Alpha-synuclein inhibits aromatic amino acid decarboxylase activity in dopaminergic cells. Journal of Neurochemistry, 99, 1188–1196.CrossRefPubMed Tehranian, R., Montoya, S. E., Van Laar, A. D., Hastings, T. G., & Perez, R. G. (2006). Alpha-synuclein inhibits aromatic amino acid decarboxylase activity in dopaminergic cells. Journal of Neurochemistry, 99, 1188–1196.CrossRefPubMed
go back to reference Ulmer, T. S., Bax, A., Cole, N. B., & Nussbaum, R. L. (2005). Structure and dynamics of micelle-bound human alpha-synuclein. Journal of Biological Chemistry, 280, 9595–9603.CrossRefPubMed Ulmer, T. S., Bax, A., Cole, N. B., & Nussbaum, R. L. (2005). Structure and dynamics of micelle-bound human alpha-synuclein. Journal of Biological Chemistry, 280, 9595–9603.CrossRefPubMed
go back to reference Uversky, V. N. (2003). A protein-chameleon: Conformational plasticity of alpha-synuclein, a disordered protein involved in neurodegenerative disorders. Journal of Biomolecular Structure and Dynamics, 21, 211–234.PubMed Uversky, V. N. (2003). A protein-chameleon: Conformational plasticity of alpha-synuclein, a disordered protein involved in neurodegenerative disorders. Journal of Biomolecular Structure and Dynamics, 21, 211–234.PubMed
go back to reference Uversky, V. N., Li, J., & Fink, A. L. (2001a). Evidence for a partially folded intermediate in alpha-synuclein fibril formation. Journal of Biological Chemistry, 276, 10737–10744.CrossRefPubMed Uversky, V. N., Li, J., & Fink, A. L. (2001a). Evidence for a partially folded intermediate in alpha-synuclein fibril formation. Journal of Biological Chemistry, 276, 10737–10744.CrossRefPubMed
go back to reference Uversky, V. N., Li, J., & Fink, A. L. (2001b). Metal-triggered structural transformations, aggregation, and fibrillation of human alpha-synuclein. A possible molecular NK between Parkinson’s disease and heavy metal exposure. Journal of Biological Chemistry, 276, 44284–44296.CrossRefPubMed Uversky, V. N., Li, J., & Fink, A. L. (2001b). Metal-triggered structural transformations, aggregation, and fibrillation of human alpha-synuclein. A possible molecular NK between Parkinson’s disease and heavy metal exposure. Journal of Biological Chemistry, 276, 44284–44296.CrossRefPubMed
go back to reference Uversky, V. N., Yamin, G., Munishkina, L. A., Karymov, M. A., Millett, I. S., Doniach, S., et al. (2005). Effects of nitration on the structure and aggregation of alpha-synuclein. Brain Research. Molecular Brain Research, 134, 84–102.CrossRefPubMed Uversky, V. N., Yamin, G., Munishkina, L. A., Karymov, M. A., Millett, I. S., Doniach, S., et al. (2005). Effects of nitration on the structure and aggregation of alpha-synuclein. Brain Research. Molecular Brain Research, 134, 84–102.CrossRefPubMed
go back to reference Uversky, V. N., Yamin, G., Souillac, P. O., Goers, J., Glaser, C. B., & Fink, A. L. (2002). Methionine oxidation inhibits fibrillation of human alpha-synuclein in vitro. FEBS Letters, 517, 239–244.CrossRefPubMed Uversky, V. N., Yamin, G., Souillac, P. O., Goers, J., Glaser, C. B., & Fink, A. L. (2002). Methionine oxidation inhibits fibrillation of human alpha-synuclein in vitro. FEBS Letters, 517, 239–244.CrossRefPubMed
go back to reference Vilar, M., Chou, H. T., Luhrs, T., Maji, S. K., Riek-Loher, D., Verel, R., et al. (2008). The fold of alpha-synuclein fibrils. Proceedings of the National Academy of Sciences of the United States of America, 105, 8637–8642.CrossRefPubMed Vilar, M., Chou, H. T., Luhrs, T., Maji, S. K., Riek-Loher, D., Verel, R., et al. (2008). The fold of alpha-synuclein fibrils. Proceedings of the National Academy of Sciences of the United States of America, 105, 8637–8642.CrossRefPubMed
go back to reference Volles, M. J., & Lansbury, P. T., Jr. (2002). Vesicle permeabilization by protofibrillar alpha-synuclein is sensitive to Parkinson’s disease-linked mutations and occurs by a pore-like mechanism. Biochemistry, 41, 4595–4602.CrossRefPubMed Volles, M. J., & Lansbury, P. T., Jr. (2002). Vesicle permeabilization by protofibrillar alpha-synuclein is sensitive to Parkinson’s disease-linked mutations and occurs by a pore-like mechanism. Biochemistry, 41, 4595–4602.CrossRefPubMed
go back to reference Weinreb, P. H., Zhen, W., Poon, A. W., Conway, K. A., & Lansbury, P. T., Jr. (1996). NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry, 35, 13709–13715.CrossRefPubMed Weinreb, P. H., Zhen, W., Poon, A. W., Conway, K. A., & Lansbury, P. T., Jr. (1996). NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry, 35, 13709–13715.CrossRefPubMed
go back to reference Wersinger, C., Prou, D., Vernier, P., & Sidhu, A. (2003). Modulation of dopamine transporter function by alpha-synuclein is altered by impairment of cell adhesion and by induction of oxidative stress. FASEB Journal, 17, 2151–2153.PubMed Wersinger, C., Prou, D., Vernier, P., & Sidhu, A. (2003). Modulation of dopamine transporter function by alpha-synuclein is altered by impairment of cell adhesion and by induction of oxidative stress. FASEB Journal, 17, 2151–2153.PubMed
go back to reference Wright, J. A., Wang, X., & Brown, D. R. (2009). Unique copper-induced oligomers mediate alpha-synuclein toxicity. FASEB Journal, 23, 4069–4076.CrossRef Wright, J. A., Wang, X., & Brown, D. R. (2009). Unique copper-induced oligomers mediate alpha-synuclein toxicity. FASEB Journal, 23, 4069–4076.CrossRef
go back to reference Yamin, G., Glaser, C. B., Uversky, V. N., & Fink, A. L. (2003). Certain metals trigger fibrillation of methionine-oxidized alpha-synuclein. Journal of Biological Chemistry, 278, 27630–27635.CrossRefPubMed Yamin, G., Glaser, C. B., Uversky, V. N., & Fink, A. L. (2003). Certain metals trigger fibrillation of methionine-oxidized alpha-synuclein. Journal of Biological Chemistry, 278, 27630–27635.CrossRefPubMed
go back to reference Yavich, L., Tanila, H., Vepsalainen, S., & Jakala, P. (2004). Role of alpha-synuclein in presynaptic dopamine recruitment. Journal of Neuroscience, 24, 11165–11170.CrossRefPubMed Yavich, L., Tanila, H., Vepsalainen, S., & Jakala, P. (2004). Role of alpha-synuclein in presynaptic dopamine recruitment. Journal of Neuroscience, 24, 11165–11170.CrossRefPubMed
go back to reference Youdim, M. B., Ben-Shachar, D., & Riederer, P. (1991). Iron in brain function and dysfunction with emphasis on Parkinson’s disease. European Neurology, 31(Suppl 1), 34–40.CrossRefPubMed Youdim, M. B., Ben-Shachar, D., & Riederer, P. (1991). Iron in brain function and dysfunction with emphasis on Parkinson’s disease. European Neurology, 31(Suppl 1), 34–40.CrossRefPubMed
go back to reference Yu, W. R., Jiang, H., Wang, J., & Xie, J. X. (2008). Copper (Cu2+) induces degeneration of dopaminergic neurons in the nigrostriatal system of rats. Neuroscience Bulletin, 24, 73–78.CrossRefPubMed Yu, W. R., Jiang, H., Wang, J., & Xie, J. X. (2008). Copper (Cu2+) induces degeneration of dopaminergic neurons in the nigrostriatal system of rats. Neuroscience Bulletin, 24, 73–78.CrossRefPubMed
go back to reference Zarranz, J. J., Alegre, J., Gomez-Esteban, J. C., Lezcano, E., Ros, R., Ampuero, I., et al. (2004). The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Annals of Neurology, 55, 164–173.CrossRefPubMed Zarranz, J. J., Alegre, J., Gomez-Esteban, J. C., Lezcano, E., Ros, R., Ampuero, I., et al. (2004). The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Annals of Neurology, 55, 164–173.CrossRefPubMed
go back to reference Zecca, L., Stroppolo, A., Gatti, A., Tampellini, D., Toscani, M., Gallorini, M., et al. (2004). The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging. Proceedings of the National Academy of Sciences of the United States of America, 101, 9843–9848.CrossRefPubMed Zecca, L., Stroppolo, A., Gatti, A., Tampellini, D., Toscani, M., Gallorini, M., et al. (2004). The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging. Proceedings of the National Academy of Sciences of the United States of America, 101, 9843–9848.CrossRefPubMed
Metadata
Title
Interaction Between α-Synuclein and Metal Ions, Still Looking for a Role in the Pathogenesis of Parkinson’s Disease
Authors
Marco Bisaglia
Isabella Tessari
Stefano Mammi
Luigi Bubacco
Publication date
01-12-2009
Publisher
Humana Press Inc
Published in
NeuroMolecular Medicine / Issue 4/2009
Print ISSN: 1535-1084
Electronic ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-009-8082-1

Other articles of this Issue 4/2009

NeuroMolecular Medicine 4/2009 Go to the issue