Skip to main content
Top
Published in: Brain Structure and Function 1/2023

03-09-2022 | Intense Pulsed Light | Original Article

The connectivity-based parcellation of the angular gyrus: fiber dissection and MR tractography study

Authors: Fatih Yakar, Pınar Çeltikçi, Yücel Doğruel, Emrah Egemen, Abuzer Güngör

Published in: Brain Structure and Function | Issue 1/2023

Login to get access

Abstract

The angular gyrus (AG) wraps the posterior end of the superior temporal sulcus (STS), so it is considered a continuation of the superior temporal gyrus (STG)/ middle temporal gyrus (MTG) and forms the inferior parietal lobule (IPL) with the supramarginal gyrus (SMG). The AG was functionally divided in the literature, but there is no fiber dissection study in this context. This study divided AG into superior (sAG) and inferior (iAG) parts by focusing on STS. Red, blue silicone-injected eight and four non-silicone-injected human cadaveric cerebrums were dissected via the Klingler method focusing on the AG. White matter (WM) tracts identified during dissection were then reconstructed on the Human Connectome Project 1065 individual template for validation. According to this study, superior longitudinal fasciculus (SLF) II and middle longitudinal fasciculus (MdLF) are associated with sAG; the anterior commissure (AC), optic radiation (OR) with iAG; the arcuate fasciculus (AF), inferior frontooccipital fasciculus (IFOF), and tapetum (Tp) with both parts. In cortical parcellation of AG based on STS, sAG and iAG were associated with different fiber tracts. Although it has been shown in previous studies that there are functionally different subunits with AG parcellation, here, for the first time, other functions of the subunits have been revealed with cadaveric dissection and tractography images.
Literature
go back to reference Barbeau EB, Descoteaux M, Petrides M (2020) Dissociating the white matter tracts connecting the temporo-parietal cortical region with frontal cortex using diffusion tractography. Sci Rep 10(1):8186CrossRef Barbeau EB, Descoteaux M, Petrides M (2020) Dissociating the white matter tracts connecting the temporo-parietal cortical region with frontal cortex using diffusion tractography. Sci Rep 10(1):8186CrossRef
go back to reference Biceroglu H, Karadag A (2019) Neuroanatomical aspects of the temporo-parieto-occipital junction and new surgical strategy to preserve the associated tracts in junctional lesion surgery: fiber separation technique. Turk Neurosurg 29(6):864–874 Biceroglu H, Karadag A (2019) Neuroanatomical aspects of the temporo-parieto-occipital junction and new surgical strategy to preserve the associated tracts in junctional lesion surgery: fiber separation technique. Turk Neurosurg 29(6):864–874
go back to reference Binder JR, Desai RH, Graves WW, Conant LL (2009) Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb Cortex 19(12):2767–2796CrossRef Binder JR, Desai RH, Graves WW, Conant LL (2009) Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb Cortex 19(12):2767–2796CrossRef
go back to reference Benjamin CF, Singh JM, Prabhu SP, Warfield SK (2014) Optimization of tractography of the optic radiations. Hum Brain Mapp 35(2):683–697CrossRef Benjamin CF, Singh JM, Prabhu SP, Warfield SK (2014) Optimization of tractography of the optic radiations. Hum Brain Mapp 35(2):683–697CrossRef
go back to reference Briggs RG, Tanglay O, Dadario NB, Young IM, Fonseka RD, Hormovas J, Dhanaraj V, Lin YH, Kim SJ, Bouvette A, Chakraborty AR, Milligan TM, Abraham CJ, Anderson CD, O’Donoghue DL, Sughrue ME (2021) The unique fiber anatomy of middle temporal gyrus default mode connectivity. Oper Neurosurg (hagerstown) 15 21(1):E8–E14CrossRef Briggs RG, Tanglay O, Dadario NB, Young IM, Fonseka RD, Hormovas J, Dhanaraj V, Lin YH, Kim SJ, Bouvette A, Chakraborty AR, Milligan TM, Abraham CJ, Anderson CD, O’Donoghue DL, Sughrue ME (2021) The unique fiber anatomy of middle temporal gyrus default mode connectivity. Oper Neurosurg (hagerstown) 15 21(1):E8–E14CrossRef
go back to reference Burks JD, Boettcher LB, Conner AK, Glenn CA, Bonney PA, Baker CM, Briggs RG, Pittman NA, O’Donoghue DL, Wu DH, Sughrue ME (2017) White matter connections of the inferior parietal lobule: a study of surgical anatomy. Brain Behav 7(4):e00640CrossRef Burks JD, Boettcher LB, Conner AK, Glenn CA, Bonney PA, Baker CM, Briggs RG, Pittman NA, O’Donoghue DL, Wu DH, Sughrue ME (2017) White matter connections of the inferior parietal lobule: a study of surgical anatomy. Brain Behav 7(4):e00640CrossRef
go back to reference Chan-Seng E, Moritz-Gasser S, Duffau H (2014) Awake mapping for low-grade gliomas involving the left sagittal stratum: anatomofunctional and surgical considerations. J Neurosurg 120(5):1069–1077CrossRef Chan-Seng E, Moritz-Gasser S, Duffau H (2014) Awake mapping for low-grade gliomas involving the left sagittal stratum: anatomofunctional and surgical considerations. J Neurosurg 120(5):1069–1077CrossRef
go back to reference Chechlacz M, Rotshtein P, Hansen PC, Deb S, Riddoch MJ, Humphreys GW (2013) The central role of the temporo-parietal junction and the superior longitudinal fasciculus in supporting multi-item competition: evidence from lesion-symptom mapping of extinction. Cortex 49:487–506CrossRef Chechlacz M, Rotshtein P, Hansen PC, Deb S, Riddoch MJ, Humphreys GW (2013) The central role of the temporo-parietal junction and the superior longitudinal fasciculus in supporting multi-item competition: evidence from lesion-symptom mapping of extinction. Cortex 49:487–506CrossRef
go back to reference Christiaens D, Reisert M, Dhollander T, Sunaert S, Suetens P, Maes F (2015) Global tractography of multishell diffusion-weighted imaging data using a multi-tissue model. Neuroimage 123:89–101CrossRef Christiaens D, Reisert M, Dhollander T, Sunaert S, Suetens P, Maes F (2015) Global tractography of multishell diffusion-weighted imaging data using a multi-tissue model. Neuroimage 123:89–101CrossRef
go back to reference Cikla U, Swanson KI, Tumturk A, Keser N, Uluc K, Cohen-Gadol A, Baskaya MK (2016) Microsurgical resection of tumors of the lateral and third ventricles: operative corridors for difficult-to-reach lesions. J Neurooncol 130(2):331–340CrossRef Cikla U, Swanson KI, Tumturk A, Keser N, Uluc K, Cohen-Gadol A, Baskaya MK (2016) Microsurgical resection of tumors of the lateral and third ventricles: operative corridors for difficult-to-reach lesions. J Neurooncol 130(2):331–340CrossRef
go back to reference Di Carlo DT, Benedetto N, Duffau H, Cagnazzo F, Weiss A, Castagna M, Cosottini M, Perrini P (2019) Microsurgical anatomy of the sagittal stratum. Acta Neurochir (wien) 161(11):2319–2327CrossRef Di Carlo DT, Benedetto N, Duffau H, Cagnazzo F, Weiss A, Castagna M, Cosottini M, Perrini P (2019) Microsurgical anatomy of the sagittal stratum. Acta Neurochir (wien) 161(11):2319–2327CrossRef
go back to reference Duffau H, Gatignol P, Mandonnet E, Peruzzi P, Tzourio-Mazoyer N, Capelle L (2005) New insights into the anatomo-functional connectivity of the semantic system: a study using cortico-subcortical electrostimulations. Brain 128(4):797–810CrossRef Duffau H, Gatignol P, Mandonnet E, Peruzzi P, Tzourio-Mazoyer N, Capelle L (2005) New insights into the anatomo-functional connectivity of the semantic system: a study using cortico-subcortical electrostimulations. Brain 128(4):797–810CrossRef
go back to reference Dziedzic TA, Balasa A, Jeżewski MP, Michałowski Ł, Marchel A (2021) White matter dissection with the Klingler technique: a literature review. Brain Struct Funct 226(1):13–47CrossRef Dziedzic TA, Balasa A, Jeżewski MP, Michałowski Ł, Marchel A (2021) White matter dissection with the Klingler technique: a literature review. Brain Struct Funct 226(1):13–47CrossRef
go back to reference Egemen E, Celtikci P, Dogruel Y, Yakar F, Sahinoglu D, Farouk M, Adiguzel E, Ugur HC, Coskun E, Güngör A (2021) Microsurgical and tractographic anatomical study of transtemporal-transchoroidal fissure approaches to the ambient cistern. Oper Neurosurg (hagerstown) 20(2):189–197CrossRef Egemen E, Celtikci P, Dogruel Y, Yakar F, Sahinoglu D, Farouk M, Adiguzel E, Ugur HC, Coskun E, Güngör A (2021) Microsurgical and tractographic anatomical study of transtemporal-transchoroidal fissure approaches to the ambient cistern. Oper Neurosurg (hagerstown) 20(2):189–197CrossRef
go back to reference Fernández-Miranda JC, Wang Y, Pathak S, Stefaneau L, Verstynen T, Yeh FC (2015) Asymmetry, connectivity, and segmentation of the arcuate fascicle in the human brain. Brain Struct Funct 220(3):1665–1680CrossRef Fernández-Miranda JC, Wang Y, Pathak S, Stefaneau L, Verstynen T, Yeh FC (2015) Asymmetry, connectivity, and segmentation of the arcuate fascicle in the human brain. Brain Struct Funct 220(3):1665–1680CrossRef
go back to reference Güngör A, Baydin S, Middlebrooks EH, Tanriover N, Isler C, Rhoton AL Jr (2017) The white matter tracts of the cerebrum in ventricular surgery and hydrocephalus. J Neurosurg 126(3):945–971CrossRef Güngör A, Baydin S, Middlebrooks EH, Tanriover N, Isler C, Rhoton AL Jr (2017) The white matter tracts of the cerebrum in ventricular surgery and hydrocephalus. J Neurosurg 126(3):945–971CrossRef
go back to reference Jitsuishi T, Yamaguchi A (2020) Identification of a distinct association fiber tract “IPS-FG” to connect the intraparietal sulcus areas and fusiform gyrus by white matter dissection and tractography. Sci Rep 10(1):15475CrossRef Jitsuishi T, Yamaguchi A (2020) Identification of a distinct association fiber tract “IPS-FG” to connect the intraparietal sulcus areas and fusiform gyrus by white matter dissection and tractography. Sci Rep 10(1):15475CrossRef
go back to reference Kadri PAS, de Oliveira JG, Krayenbühl N, Türe U, de Oliveira EPL, Al-Mefty O, Ribas GC (2017) Surgical approaches to the temporal horn: an anatomic analysis of white matter tract interruption. Oper Neurosurg (hagerstown) 13(2):258–270CrossRef Kadri PAS, de Oliveira JG, Krayenbühl N, Türe U, de Oliveira EPL, Al-Mefty O, Ribas GC (2017) Surgical approaches to the temporal horn: an anatomic analysis of white matter tract interruption. Oper Neurosurg (hagerstown) 13(2):258–270CrossRef
go back to reference Kalyvas A, Koutsarnakis C, Komaitis S, Karavasilis E, Christidi F, Skandalakis GP, Liouta E, Papakonstantinou O, Kelekis N, Duffau H, Stranjalis G (2020) Mapping the human middle longitudinal fasciculus through a focused anatomo-imaging study: shifting the paradigm of its segmentation and connectivity pattern. Brain Struct Funct 225:85–119CrossRef Kalyvas A, Koutsarnakis C, Komaitis S, Karavasilis E, Christidi F, Skandalakis GP, Liouta E, Papakonstantinou O, Kelekis N, Duffau H, Stranjalis G (2020) Mapping the human middle longitudinal fasciculus through a focused anatomo-imaging study: shifting the paradigm of its segmentation and connectivity pattern. Brain Struct Funct 225:85–119CrossRef
go back to reference Kier EL, Staib LH, Davis LM, Bronen RA (2004) MR imaging of the temporal stem: anatomic dissection tractography of the uncinate fasciculus, inferior occipitofrontal fasciculus, and Meyer’s loop of the optic radiation. Am J Neuroradiol 25(5):677–691 Kier EL, Staib LH, Davis LM, Bronen RA (2004) MR imaging of the temporal stem: anatomic dissection tractography of the uncinate fasciculus, inferior occipitofrontal fasciculus, and Meyer’s loop of the optic radiation. Am J Neuroradiol 25(5):677–691
go back to reference Kiriyama I, Miki H, Kikuchi K, Ohue S, Matsuda S, Mochizuki T (2009) Topographic analysis of the inferior parietal lobule in high-resolution 3D MR imaging. AJNR Am J Neuroradiol 30(3):520–524CrossRef Kiriyama I, Miki H, Kikuchi K, Ohue S, Matsuda S, Mochizuki T (2009) Topographic analysis of the inferior parietal lobule in high-resolution 3D MR imaging. AJNR Am J Neuroradiol 30(3):520–524CrossRef
go back to reference Komaitis S, Skandalakis GP, Kalyvas AV, Drosos E, Lani E, Emelifeonwu J, Liakos F, Piagkou M, Kalamatianos T, Stranjalis G, Koutsarnakis C (2019) Dorsal component of the superior longitudinal fasciculus revisited: novel insights from a focused fiber dissection study. J Neurosurg 132(4):1265–1278CrossRef Komaitis S, Skandalakis GP, Kalyvas AV, Drosos E, Lani E, Emelifeonwu J, Liakos F, Piagkou M, Kalamatianos T, Stranjalis G, Koutsarnakis C (2019) Dorsal component of the superior longitudinal fasciculus revisited: novel insights from a focused fiber dissection study. J Neurosurg 132(4):1265–1278CrossRef
go back to reference Latini F, Trevisi G, Fahlström M, Jemstedt M, AlberiusMunkhammar Å, Zetterling M, Hesselager G, Ryttlefors M (2021) New insights into the anatomy, connectivity and clinical implications of the middle longitudinal fasciculus. Front Neuroanat 14:610324CrossRef Latini F, Trevisi G, Fahlström M, Jemstedt M, AlberiusMunkhammar Å, Zetterling M, Hesselager G, Ryttlefors M (2021) New insights into the anatomy, connectivity and clinical implications of the middle longitudinal fasciculus. Front Neuroanat 14:610324CrossRef
go back to reference Lerma-Usabiaga G, Mukherjee P, Ren Z, Perry ML, Wandell BA (2019) Replication and generalization in applied neuroimaging. Neuroimage 202:116048CrossRef Lerma-Usabiaga G, Mukherjee P, Ren Z, Perry ML, Wandell BA (2019) Replication and generalization in applied neuroimaging. Neuroimage 202:116048CrossRef
go back to reference Makris N, Zhu A, Papadimitriou GM, Mouradian P, Ng I, Scaccianoce E, Baselli G, Baglio F, Shenton ME, Rathi Y, Dickerson B, Yeterian E, Kubicki M (2017) Mapping temporo-parietal and temporo-occipital cortico-cortical connections of the human middle longitudinal fascicle in subject-specific, probabilistic, and stereotaxic talairach spaces. Brain Imaging Behav 11(5):1258–1277CrossRef Makris N, Zhu A, Papadimitriou GM, Mouradian P, Ng I, Scaccianoce E, Baselli G, Baglio F, Shenton ME, Rathi Y, Dickerson B, Yeterian E, Kubicki M (2017) Mapping temporo-parietal and temporo-occipital cortico-cortical connections of the human middle longitudinal fascicle in subject-specific, probabilistic, and stereotaxic talairach spaces. Brain Imaging Behav 11(5):1258–1277CrossRef
go back to reference Maldonado IL, de Champfleur NM, Velut S, Destrieux C, Zemmoura I, Duffau H (2013) Evidence of a middle longitudinal fasciculus in the human brain from fiber dissection. J Anat 223(1):38–45CrossRef Maldonado IL, de Champfleur NM, Velut S, Destrieux C, Zemmoura I, Duffau H (2013) Evidence of a middle longitudinal fasciculus in the human brain from fiber dissection. J Anat 223(1):38–45CrossRef
go back to reference Mars RB, Jbabdi S, Sallet J, O’Reilly JX, Croxson PL, Olivier E, Noonan MP, Bergmann C, Mitchell AS, Baxter MG, Behrens TE, Johansen-Berg H, Tomassini V, Miller KL, Rushworth MF (2011) Diffusion-weighted imaging tractography-based parcellation of the human parietal cortex and comparison with human and macaque resting-state functional connectivity. J Neurosci 16 31(11):4087–4100CrossRef Mars RB, Jbabdi S, Sallet J, O’Reilly JX, Croxson PL, Olivier E, Noonan MP, Bergmann C, Mitchell AS, Baxter MG, Behrens TE, Johansen-Berg H, Tomassini V, Miller KL, Rushworth MF (2011) Diffusion-weighted imaging tractography-based parcellation of the human parietal cortex and comparison with human and macaque resting-state functional connectivity. J Neurosci 16 31(11):4087–4100CrossRef
go back to reference Martino J, Brogna C, Robles SG, Vergani F, Duffau H (2010) Anatomic dissection of the inferior fronto-occipital fasciculus revisited in the lights of brain stimulation data. Cortex 46(5):691–699CrossRef Martino J, Brogna C, Robles SG, Vergani F, Duffau H (2010) Anatomic dissection of the inferior fronto-occipital fasciculus revisited in the lights of brain stimulation data. Cortex 46(5):691–699CrossRef
go back to reference Martino J, da Silva-Freitas R, Caballero H, Marco de Lucas E, García-Porrero JA, Vázquez-Barquero A (2013) Fiber dissection and diffusion tensor imaging tractography study of the temporoparietal fiber intersection area. Neurosurgery 72(1):87–97 Martino J, da Silva-Freitas R, Caballero H, Marco de Lucas E, García-Porrero JA, Vázquez-Barquero A (2013) Fiber dissection and diffusion tensor imaging tractography study of the temporoparietal fiber intersection area. Neurosurgery 72(1):87–97
go back to reference Motomura K, Fujii M, Maesawa S, Kuramitsu S, Natsume A, Wakabayashi T (2014) Association of dorsal inferior frontooccipital fasciculus fibers in the deep parietal lobe with both reading and writing processes: a brain mapping study. J Neurosurg 121(1):142–148CrossRef Motomura K, Fujii M, Maesawa S, Kuramitsu S, Natsume A, Wakabayashi T (2014) Association of dorsal inferior frontooccipital fasciculus fibers in the deep parietal lobe with both reading and writing processes: a brain mapping study. J Neurosurg 121(1):142–148CrossRef
go back to reference Naidich TP, Valavanis AG, Kubik S (1995) Anatomic relationships along the low-middle convexity: part I-normal specimens and magnetic resonance imaging. Neurosurgery 36(3):517–532 Naidich TP, Valavanis AG, Kubik S (1995) Anatomic relationships along the low-middle convexity: part I-normal specimens and magnetic resonance imaging. Neurosurgery 36(3):517–532
go back to reference Nakajima R, Kinoshita M, Shinohara H, Nakada M (2020) The superior longitudinal fascicle: reconsidering the fronto-parietal neural network based on anatomy and function. Brain Imaging Behav 14(6):2817–2830CrossRef Nakajima R, Kinoshita M, Shinohara H, Nakada M (2020) The superior longitudinal fascicle: reconsidering the fronto-parietal neural network based on anatomy and function. Brain Imaging Behav 14(6):2817–2830CrossRef
go back to reference Pastor-Escartín F, García-Catalán G, Holanda VM, Muftah Lahirish IA, Quintero RB, Neto MR, Quilis-Quesada V, Ibaoc KB, González Darder JM, de Oliveira E (2019) Microsurgical anatomy of the insular region and operculoinsular association fibers and its neurosurgical application. World Neurosurg 129:407–420CrossRef Pastor-Escartín F, García-Catalán G, Holanda VM, Muftah Lahirish IA, Quintero RB, Neto MR, Quilis-Quesada V, Ibaoc KB, González Darder JM, de Oliveira E (2019) Microsurgical anatomy of the insular region and operculoinsular association fibers and its neurosurgical application. World Neurosurg 129:407–420CrossRef
go back to reference Petrides M, Pandya DN (1984) Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J Comp Neurol 228(1):105–116CrossRef Petrides M, Pandya DN (1984) Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J Comp Neurol 228(1):105–116CrossRef
go back to reference Price AR, Bonner MF, Peelle JE, Grossman M (2015) Converging evidence for the neuroanatomic basis of combinatorial semantics in the angular gyrus. J Neurosci 35(7):3276–3284CrossRef Price AR, Bonner MF, Peelle JE, Grossman M (2015) Converging evidence for the neuroanatomic basis of combinatorial semantics in the angular gyrus. J Neurosci 35(7):3276–3284CrossRef
go back to reference Pustina D, Doucet G, Skidmore C, Sperling M, Tracy J (2014) Contralateral interictal spikes are related to tapetum damage in left temporal lobe epilepsy. Epilepsia 55(9):1406–1414CrossRef Pustina D, Doucet G, Skidmore C, Sperling M, Tracy J (2014) Contralateral interictal spikes are related to tapetum damage in left temporal lobe epilepsy. Epilepsia 55(9):1406–1414CrossRef
go back to reference Rademacher J, Galaburda AM, Kennedy DN, Filipek PA, Caviness VS Jr (1992) Human cerebral cortex: localization, parcellation, and morphometry with magnetic resonance imaging. J Cogn Neurosci 4(4):352–374CrossRef Rademacher J, Galaburda AM, Kennedy DN, Filipek PA, Caviness VS Jr (1992) Human cerebral cortex: localization, parcellation, and morphometry with magnetic resonance imaging. J Cogn Neurosci 4(4):352–374CrossRef
go back to reference Ramanan S, Piguet O, Irish M (2018) Rethinking the role of the angular gyrus in remembering the past and imagining the future: the contextual integration model. Neuroscientist 24(4):342–352CrossRef Ramanan S, Piguet O, Irish M (2018) Rethinking the role of the angular gyrus in remembering the past and imagining the future: the contextual integration model. Neuroscientist 24(4):342–352CrossRef
go back to reference Rhoton AL Jr (2007) The cerebrum. Anatomy. Neurosurgery 61(1):37–118 (discussion 118–119)CrossRef Rhoton AL Jr (2007) The cerebrum. Anatomy. Neurosurgery 61(1):37–118 (discussion 118–119)CrossRef
go back to reference Ribas EC, Yagmurlu K, de Oliveira E, Ribas GC, Rhoton A (2018) Microsurgical anatomy of the central core of the brain. J Neurosurg 129(3):752–769CrossRef Ribas EC, Yagmurlu K, de Oliveira E, Ribas GC, Rhoton A (2018) Microsurgical anatomy of the central core of the brain. J Neurosurg 129(3):752–769CrossRef
go back to reference Ripollés P, Biel D, Peñaloza C, Kaufmann J, Marco-Pallarés J, Noesselt T, Rodríguez-Fornells A (2017) Strength of temporal white matter pathways predicts semantic learning. J Neurosci 37(46):11101–11113CrossRef Ripollés P, Biel D, Peñaloza C, Kaufmann J, Marco-Pallarés J, Noesselt T, Rodríguez-Fornells A (2017) Strength of temporal white matter pathways predicts semantic learning. J Neurosci 37(46):11101–11113CrossRef
go back to reference Rollans C, Cheema K, Georgiou GK, Cummine J (2017) Pathways of the inferior frontal occipital fasciculus in overt speech and reading. Neuroscience 364:93–106CrossRef Rollans C, Cheema K, Georgiou GK, Cummine J (2017) Pathways of the inferior frontal occipital fasciculus in overt speech and reading. Neuroscience 364:93–106CrossRef
go back to reference Saalasti S, Alho J, Bar M, Glerean E, Honkela T, Kauppila M, Sams M, Jääskeläinen IP (2019) Inferior parietal lobule and early visual areas support elicitation of individualized meanings during narrative listening. Brain Behav 9(5):e01288CrossRef Saalasti S, Alho J, Bar M, Glerean E, Honkela T, Kauppila M, Sams M, Jääskeläinen IP (2019) Inferior parietal lobule and early visual areas support elicitation of individualized meanings during narrative listening. Brain Behav 9(5):e01288CrossRef
go back to reference Sarubbo S, De Benedictis A, Merler S, Mandonnet E, Barbareschi M, Dallabona M, Chioffi F, Duffau H (2016) Structural and functional integration between dorsal and ventral language streams as revealed by blunt dissection and direct electrical stimulation. Hum Brain Mapp 37(11):3858–3872CrossRef Sarubbo S, De Benedictis A, Merler S, Mandonnet E, Barbareschi M, Dallabona M, Chioffi F, Duffau H (2016) Structural and functional integration between dorsal and ventral language streams as revealed by blunt dissection and direct electrical stimulation. Hum Brain Mapp 37(11):3858–3872CrossRef
go back to reference Sarubbo S, Tate M, De Benedictis A, Merler S, Moritz-Gasser S, Herbet G, Duffau H (2020) Mapping critical cortical hubs and white matter pathways by direct electrical stimulation: an original functional atlas of the human brain. Neuroimage 205:116237CrossRef Sarubbo S, Tate M, De Benedictis A, Merler S, Moritz-Gasser S, Herbet G, Duffau H (2020) Mapping critical cortical hubs and white matter pathways by direct electrical stimulation: an original functional atlas of the human brain. Neuroimage 205:116237CrossRef
go back to reference Schurr R, Zelman A, Mezer AA (2020) Subdividing the superior longitudinal fasciculus using local quantitative MRI. Neuroimage 208:116439CrossRef Schurr R, Zelman A, Mezer AA (2020) Subdividing the superior longitudinal fasciculus using local quantitative MRI. Neuroimage 208:116439CrossRef
go back to reference Seghier ML (2013) The angular gyrus: multiple functions and multiple subdivisions. Neuroscientist 19(1):43–61CrossRef Seghier ML (2013) The angular gyrus: multiple functions and multiple subdivisions. Neuroscientist 19(1):43–61CrossRef
go back to reference Seghier ML, Fagan E, Price CJ (2010) Functional subdivisions in the left angular gyrus where the semantic system meets and diverges from the default network. J Neurosci 30(50):16809–16817CrossRef Seghier ML, Fagan E, Price CJ (2010) Functional subdivisions in the left angular gyrus where the semantic system meets and diverges from the default network. J Neurosci 30(50):16809–16817CrossRef
go back to reference Vassal F, Schneider F, Sontheimer A, Lemaire JJ, Nuti C (2013) Intraoperative visualisation of language fascicles by diffusion tensor imaging-based tractography in glioma surgery. Acta Neurochir 155(3):437–448CrossRef Vassal F, Schneider F, Sontheimer A, Lemaire JJ, Nuti C (2013) Intraoperative visualisation of language fascicles by diffusion tensor imaging-based tractography in glioma surgery. Acta Neurochir 155(3):437–448CrossRef
go back to reference Wang J, Fan L, Zhang Y, Liu Y, Jiang D, Zhang Y, Yu C, Jiang T (2012) Tractography-based parcellation of the human left inferior parietal lobule. Neuroimage 63(2):641–652CrossRef Wang J, Fan L, Zhang Y, Liu Y, Jiang D, Zhang Y, Yu C, Jiang T (2012) Tractography-based parcellation of the human left inferior parietal lobule. Neuroimage 63(2):641–652CrossRef
go back to reference Wang Y, Fernández-Miranda JC, Verstynen T, Pathak S, Schneider W, Yeh FC (2013) Rethinking the role of the middle longitudinal fascicle in language and auditory pathways. Cereb Cortex 23(10):2347–2356CrossRef Wang Y, Fernández-Miranda JC, Verstynen T, Pathak S, Schneider W, Yeh FC (2013) Rethinking the role of the middle longitudinal fascicle in language and auditory pathways. Cereb Cortex 23(10):2347–2356CrossRef
go back to reference Wang J, Xie S, Guo X, Becker B, Fox PT, Eickhoff SB, Jiang T (2017) Correspondent functional topography of the human left inferior parietal lobule at rest and under task revealed using resting-state FMRI and coactivation based parcellation. Hum Brain Mapp 38(3):1659–1675CrossRef Wang J, Xie S, Guo X, Becker B, Fox PT, Eickhoff SB, Jiang T (2017) Correspondent functional topography of the human left inferior parietal lobule at rest and under task revealed using resting-state FMRI and coactivation based parcellation. Hum Brain Mapp 38(3):1659–1675CrossRef
go back to reference Yagmurlu K, Vlasak AL, Rhoton AL Jr (2015) Three-dimensional topographic fiber tract anatomy of the cerebrum. Neurosurgery 11(Suppl 2):274–305 (discussion 305) Yagmurlu K, Vlasak AL, Rhoton AL Jr (2015) Three-dimensional topographic fiber tract anatomy of the cerebrum. Neurosurgery 11(Suppl 2):274–305 (discussion 305)
go back to reference Yagmurlu K, Middlebrooks EH, Tanriover N, Rhoton AL Jr (2016) Fiber tracts of the dorsal language stream in the human brain. J Neurosurg 124(5):1396–1405CrossRef Yagmurlu K, Middlebrooks EH, Tanriover N, Rhoton AL Jr (2016) Fiber tracts of the dorsal language stream in the human brain. J Neurosurg 124(5):1396–1405CrossRef
go back to reference Yakar F, Eroglu U, Peker E, Armagan E, Comert A, Ugur HC (2018) Structure of corona radiata and tapetum fibers in ventricular surgery. J Clin Neurosci 57:143–148CrossRef Yakar F, Eroglu U, Peker E, Armagan E, Comert A, Ugur HC (2018) Structure of corona radiata and tapetum fibers in ventricular surgery. J Clin Neurosci 57:143–148CrossRef
go back to reference Yeh FC, Tseng WY (2011) NTU-90: a high angular resolution brain atlas constructed by q-space diffeomorphic reconstruction. Neuroimage 58(1):91–99CrossRef Yeh FC, Tseng WY (2011) NTU-90: a high angular resolution brain atlas constructed by q-space diffeomorphic reconstruction. Neuroimage 58(1):91–99CrossRef
Metadata
Title
The connectivity-based parcellation of the angular gyrus: fiber dissection and MR tractography study
Authors
Fatih Yakar
Pınar Çeltikçi
Yücel Doğruel
Emrah Egemen
Abuzer Güngör
Publication date
03-09-2022
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 1/2023
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-022-02555-1

Other articles of this Issue 1/2023

Brain Structure and Function 1/2023 Go to the issue