Skip to main content
Top
Published in: Acta Neuropathologica Communications 1/2024

Open Access 01-12-2024 | Intense Pulsed Light | Research

Early inner plexiform layer thinning and retinal nerve fiber layer thickening in excitotoxic retinal injury using deep learning-assisted optical coherence tomography

Authors: Da Ma, Wenyu Deng, Zain Khera, Thajunnisa A. Sajitha, Xinlei Wang, Gadi Wollstein, Joel S. Schuman, Sieun Lee, Haolun Shi, Myeong Jin Ju, Joanne Matsubara, Mirza Faisal Beg, Marinko Sarunic, Rebecca M. Sappington, Kevin C. Chan

Published in: Acta Neuropathologica Communications | Issue 1/2024

Login to get access

Abstract

Excitotoxicity from the impairment of glutamate uptake constitutes an important mechanism in neurodegenerative diseases such as Alzheimer’s, multiple sclerosis, and Parkinson's disease. Within the eye, excitotoxicity is thought to play a critical role in retinal ganglion cell death in glaucoma, diabetic retinopathy, retinal ischemia, and optic nerve injury, yet how excitotoxic injury impacts different retinal layers is not well understood. Here, we investigated the longitudinal effects of N-methyl-D-aspartate (NMDA)-induced excitotoxic retinal injury in a rat model using deep learning-assisted retinal layer thickness estimation. Before and after unilateral intravitreal NMDA injection in nine adult Long Evans rats, spectral-domain optical coherence tomography (OCT) was used to acquire volumetric retinal images in both eyes over 4 weeks. Ten retinal layers were automatically segmented from the OCT data using our deep learning-based algorithm. Retinal degeneration was evaluated using layer-specific retinal thickness changes at each time point (before, and at 3, 7, and 28 days after NMDA injection). Within the inner retina, our OCT results showed that retinal thinning occurred first in the inner plexiform layer at 3 days after NMDA injection, followed by the inner nuclear layer at 7 days post-injury. In contrast, the retinal nerve fiber layer exhibited an initial thickening 3 days after NMDA injection, followed by normalization and thinning up to 4 weeks post-injury. Our results demonstrated the pathological cascades of NMDA-induced neurotoxicity across different layers of the retina. The early inner plexiform layer thinning suggests early dendritic shrinkage, whereas the initial retinal nerve fiber layer thickening before subsequent normalization and thinning indicates early inflammation before axonal loss and cell death. These findings implicate the inner plexiform layer as an early imaging biomarker of excitotoxic retinal degeneration, whereas caution is warranted when interpreting the ganglion cell complex combining retinal nerve fiber layer, ganglion cell layer, and inner plexiform layer thicknesses in conventional OCT measures. Deep learning-assisted retinal layer segmentation and longitudinal OCT monitoring can help evaluate the different phases of retinal layer damage upon excitotoxicity.
Literature
2.
go back to reference Almasieh M, Wilson AM, Morquette B, CuevaVargas JL, Di Polo A (2012) The molecular basis of retinal ganglion cell death in glaucoma. Pro. Retin Eye Res 31:152–181CrossRef Almasieh M, Wilson AM, Morquette B, CuevaVargas JL, Di Polo A (2012) The molecular basis of retinal ganglion cell death in glaucoma. Pro. Retin Eye Res 31:152–181CrossRef
3.
go back to reference Maekawa S et al (2017) The neuroprotective effect of hesperidin in NMDA-induced retinal injury acts by suppressing oxidative stress and excessive calpain activation. Sci Rep 7:6885PubMedPubMedCentralCrossRef Maekawa S et al (2017) The neuroprotective effect of hesperidin in NMDA-induced retinal injury acts by suppressing oxidative stress and excessive calpain activation. Sci Rep 7:6885PubMedPubMedCentralCrossRef
4.
go back to reference Della Santina L, Ou Y (2017) Who’s lost first? Susceptibility of retinal ganglion cell types in experimental glaucoma. Exp Eye Res 158:43–50PubMedCrossRef Della Santina L, Ou Y (2017) Who’s lost first? Susceptibility of retinal ganglion cell types in experimental glaucoma. Exp Eye Res 158:43–50PubMedCrossRef
5.
6.
go back to reference Gustafson EC et al (2013) Retinal NMDA receptor function and expression are altered in a mouse lacking D-amino acid oxidase. J Neurophysiol 110:2718–2726PubMedPubMedCentralCrossRef Gustafson EC et al (2013) Retinal NMDA receptor function and expression are altered in a mouse lacking D-amino acid oxidase. J Neurophysiol 110:2718–2726PubMedPubMedCentralCrossRef
7.
go back to reference Shen Y, Liu X-L, Yang X (2006) N-methyl-d-aspartate receptors in the retina. Mol Neurobiol 34:163–179PubMedCrossRef Shen Y, Liu X-L, Yang X (2006) N-methyl-d-aspartate receptors in the retina. Mol Neurobiol 34:163–179PubMedCrossRef
8.
go back to reference Ou Y, Jo RE, Ullian EM, Wong ROL, Santina LD (2016) Selective vulnerability of specific retinal ganglion cell types and synapses after transient ocular hypertension. J Neurosci 36:9240–9252PubMedPubMedCentralCrossRef Ou Y, Jo RE, Ullian EM, Wong ROL, Santina LD (2016) Selective vulnerability of specific retinal ganglion cell types and synapses after transient ocular hypertension. J Neurosci 36:9240–9252PubMedPubMedCentralCrossRef
9.
go back to reference Xiao H, Liu X, Lian P, Liao L-L, Zhong Y-M (2020) Different damage patterns of retinal nerve fiber layer and ganglion cell-inner plexiform layer between early glaucoma and non-glaucomatous optic neuropathy. Int J Ophthalmol 13:893–901PubMedPubMedCentralCrossRef Xiao H, Liu X, Lian P, Liao L-L, Zhong Y-M (2020) Different damage patterns of retinal nerve fiber layer and ganglion cell-inner plexiform layer between early glaucoma and non-glaucomatous optic neuropathy. Int J Ophthalmol 13:893–901PubMedPubMedCentralCrossRef
10.
go back to reference Aydın R et al (2021) Early localized alterations of the retinal inner plexiform layer in association with visual field worsening in glaucoma patients. PLoS ONE 16:e0247401PubMedPubMedCentralCrossRef Aydın R et al (2021) Early localized alterations of the retinal inner plexiform layer in association with visual field worsening in glaucoma patients. PLoS ONE 16:e0247401PubMedPubMedCentralCrossRef
11.
go back to reference Hu H et al (2021) Associations of ganglion cell-inner plexiform layer and optic nerve head parameters with visual field sensitivity in advanced glaucoma. Ophthalmic Res 64:310–320PubMedCrossRef Hu H et al (2021) Associations of ganglion cell-inner plexiform layer and optic nerve head parameters with visual field sensitivity in advanced glaucoma. Ophthalmic Res 64:310–320PubMedCrossRef
12.
go back to reference Park H-YL, Kim JH, Park CK (2014) Alterations of the synapse of the inner retinal layers after chronic intraocular pressure elevation in glaucoma animal model. Mol Brain 7:53PubMedPubMedCentralCrossRef Park H-YL, Kim JH, Park CK (2014) Alterations of the synapse of the inner retinal layers after chronic intraocular pressure elevation in glaucoma animal model. Mol Brain 7:53PubMedPubMedCentralCrossRef
13.
go back to reference Lee S et al (2017) Age and glaucoma-related characteristics in retinal nerve fiber layer and choroid: localized morphometrics and visualization using functional shapes registration. Front Neurosci 11:381PubMedPubMedCentralCrossRef Lee S et al (2017) Age and glaucoma-related characteristics in retinal nerve fiber layer and choroid: localized morphometrics and visualization using functional shapes registration. Front Neurosci 11:381PubMedPubMedCentralCrossRef
14.
go back to reference Shin JW, Sung KR, Lee GC, Durbin MK, Cheng D (2017) Ganglion cell-inner plexiform layer change detected by optical coherence tomography indicates progression in advanced glaucoma. Ophthalmology 124:1466–1474PubMedCrossRef Shin JW, Sung KR, Lee GC, Durbin MK, Cheng D (2017) Ganglion cell-inner plexiform layer change detected by optical coherence tomography indicates progression in advanced glaucoma. Ophthalmology 124:1466–1474PubMedCrossRef
15.
go back to reference Mwanza J-C et al (2011) Macular ganglion cell-inner plexiform layer: automated detection and thickness reproducibility with spectral domain-optical coherence tomography in glaucoma. Investig Ophthalmol Vis Sci 52:8323–8329CrossRef Mwanza J-C et al (2011) Macular ganglion cell-inner plexiform layer: automated detection and thickness reproducibility with spectral domain-optical coherence tomography in glaucoma. Investig Ophthalmol Vis Sci 52:8323–8329CrossRef
16.
go back to reference Ho LC et al (2015) In vivo evaluation of white matter integrity and anterograde transport in visual system after excitotoxic retinal injury with multimodal MRI and OCT. Invest Ophthalmol Vis Sci 56:3788–3800PubMedPubMedCentralCrossRef Ho LC et al (2015) In vivo evaluation of white matter integrity and anterograde transport in visual system after excitotoxic retinal injury with multimodal MRI and OCT. Invest Ophthalmol Vis Sci 56:3788–3800PubMedPubMedCentralCrossRef
17.
go back to reference Shin JW, Sung KR, Park S-W (2018) Patterns of progressive ganglion cell-inner plexiform layer thinning in glaucoma detected by OCT. Ophthalmology 125:1515–1525PubMedCrossRef Shin JW, Sung KR, Park S-W (2018) Patterns of progressive ganglion cell-inner plexiform layer thinning in glaucoma detected by OCT. Ophthalmology 125:1515–1525PubMedCrossRef
18.
go back to reference Kim EK, Park H-YL, Park CK (2017) Segmented inner plexiform layer thickness as a potential biomarker to evaluate open-angle glaucoma: dendritic degeneration of retinal ganglion cell. PLoS ONE 12:e0182404PubMedPubMedCentralCrossRef Kim EK, Park H-YL, Park CK (2017) Segmented inner plexiform layer thickness as a potential biomarker to evaluate open-angle glaucoma: dendritic degeneration of retinal ganglion cell. PLoS ONE 12:e0182404PubMedPubMedCentralCrossRef
19.
go back to reference Sriram P et al (2012) Transsynaptic retinal degeneration in optic neuropathies: optical coherence tomography study. Investig Ophthalmol Vis Sci 53:1271–1275CrossRef Sriram P et al (2012) Transsynaptic retinal degeneration in optic neuropathies: optical coherence tomography study. Investig Ophthalmol Vis Sci 53:1271–1275CrossRef
20.
go back to reference Chen X et al (2012) 3D Segmentation of fluid-associated abnormalities in retinal OCT: probability constrained graph-search–graph-cut. IEEE Trans Med Imaging 31:1521–1531PubMedPubMedCentralCrossRef Chen X et al (2012) 3D Segmentation of fluid-associated abnormalities in retinal OCT: probability constrained graph-search–graph-cut. IEEE Trans Med Imaging 31:1521–1531PubMedPubMedCentralCrossRef
21.
go back to reference Xu J et al. (2015) Enhancing the visualization of human retina vascular networks by Graphics Processing Unit accelerated speckle variance OCT and graph cut retinal layer segmentation. In: Optical coherence tomography and coherence domain optical methods in biomedicine XIX, vol 9312, pp 78–82 (SPIE, 2015) Xu J et al. (2015) Enhancing the visualization of human retina vascular networks by Graphics Processing Unit accelerated speckle variance OCT and graph cut retinal layer segmentation. In: Optical coherence tomography and coherence domain optical methods in biomedicine XIX, vol 9312, pp 78–82 (SPIE, 2015)
22.
23.
go back to reference Ma D, Chow V, Popuri K, Beg MF (2021) Comprehensive validation of automated whole body skeletal muscle, adipose tissue, and bone segmentation from 3D CT images for body composition analysis: towards extended body composition. arXiv:210600652 Ma D, Chow V, Popuri K, Beg MF (2021) Comprehensive validation of automated whole body skeletal muscle, adipose tissue, and bone segmentation from 3D CT images for body composition analysis: towards extended body composition. arXiv:210600652
24.
go back to reference Yee E et al (2022) 3D hemisphere-based convolutional neural network for whole-brain MRI segmentation. Comput Med Imaging Graph 95:102000PubMedCrossRef Yee E et al (2022) 3D hemisphere-based convolutional neural network for whole-brain MRI segmentation. Comput Med Imaging Graph 95:102000PubMedCrossRef
25.
go back to reference Dabiri S, Ma D, Popuri K, Beg MF (2022) Multi-view parallel vertebra segmentation and identification on computed tomography (CT) images. Inform Med Unlocked 34:101091CrossRef Dabiri S, Ma D, Popuri K, Beg MF (2022) Multi-view parallel vertebra segmentation and identification on computed tomography (CT) images. Inform Med Unlocked 34:101091CrossRef
26.
go back to reference Roy AG et al (2017) ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional network. arXiv:1704.02161 Roy AG et al (2017) ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional network. arXiv:1704.02161
27.
go back to reference Ma D et al (2021) LF-UNet: a novel anatomical-aware dual-branch cascaded deep neural network for segmentation of retinal layers and fluid from optical coherence tomography images. Comput Med Imaging Graph 94:101988PubMedCrossRef Ma D et al (2021) LF-UNet: a novel anatomical-aware dual-branch cascaded deep neural network for segmentation of retinal layers and fluid from optical coherence tomography images. Comput Med Imaging Graph 94:101988PubMedCrossRef
28.
go back to reference Ma D et al (2020) Cascade dual-branch deep neural networks for retinal layer and fluid segmentation of optical coherence tomography incorporating relative positional map. Proc Mach Learn Res 1:10 Ma D et al (2020) Cascade dual-branch deep neural networks for retinal layer and fluid segmentation of optical coherence tomography incorporating relative positional map. Proc Mach Learn Res 1:10
30.
go back to reference Ma D et al (2023) Reverse translation of artificial intelligence in glaucoma: Connecting basic science with clinical applications. Front Ophthalmol 2:789CrossRef Ma D et al (2023) Reverse translation of artificial intelligence in glaucoma: Connecting basic science with clinical applications. Front Ophthalmol 2:789CrossRef
32.
go back to reference Zhu J et al (2021) Oral scutellarin treatment ameliorates retinal thinning and visual deficits in experimental glaucoma. Front Med 8:475CrossRef Zhu J et al (2021) Oral scutellarin treatment ameliorates retinal thinning and visual deficits in experimental glaucoma. Front Med 8:475CrossRef
34.
go back to reference Casas E, Kunisch K, Pola C (1999) Regularization by functions of bounded variation and applications to image enhancement. Appl Math Optim 40:229–257CrossRef Casas E, Kunisch K, Pola C (1999) Regularization by functions of bounded variation and applications to image enhancement. Appl Math Optim 40:229–257CrossRef
35.
go back to reference Chen R et al (2021) Domain adaptation via CycleGAN for retina segmentation in optical coherence tomography. arXiv:210702345 Chen R et al (2021) Domain adaptation via CycleGAN for retina segmentation in optical coherence tomography. arXiv:210702345
37.
go back to reference Leung CK et al (2011) Long-term in vivo imaging and measurement of dendritic shrinkage of retinal ganglion cells. Investig Ophthalmol Vis Sci 52:1539–1547CrossRef Leung CK et al (2011) Long-term in vivo imaging and measurement of dendritic shrinkage of retinal ganglion cells. Investig Ophthalmol Vis Sci 52:1539–1547CrossRef
39.
go back to reference Fry LE et al (2018) The coma in glaucoma: retinal ganglion cell dysfunction and recovery. Prog Retin Eye Res 65:77–92PubMedCrossRef Fry LE et al (2018) The coma in glaucoma: retinal ganglion cell dysfunction and recovery. Prog Retin Eye Res 65:77–92PubMedCrossRef
40.
go back to reference Henderson DCM et al (2021) Longitudinal in vivo changes in retinal ganglion cell dendritic morphology after acute and chronic optic nerve injury. Investig Ophthalmol Vis Sci 62:5CrossRef Henderson DCM et al (2021) Longitudinal in vivo changes in retinal ganglion cell dendritic morphology after acute and chronic optic nerve injury. Investig Ophthalmol Vis Sci 62:5CrossRef
41.
go back to reference Morgan JE, Tribble J, Fergusson J, White N, Erchova I (2017) The optical detection of retinal ganglion cell damage. Eye Lond Engl 31:199–205 Morgan JE, Tribble J, Fergusson J, White N, Erchova I (2017) The optical detection of retinal ganglion cell damage. Eye Lond Engl 31:199–205
42.
go back to reference Ghassabi Z et al (2022) In vivo sublayer analysis of human retinal inner plexiform layer obtained by visible-light optical coherence tomography. Investig Ophthalmol Vis Sci 63:18CrossRef Ghassabi Z et al (2022) In vivo sublayer analysis of human retinal inner plexiform layer obtained by visible-light optical coherence tomography. Investig Ophthalmol Vis Sci 63:18CrossRef
43.
go back to reference Gabriele ML et al (2011) Optic nerve crush mice followed longitudinally with spectral domain optical coherence tomography. Investig Ophthalmol Vis Sci 52:2250–2254CrossRef Gabriele ML et al (2011) Optic nerve crush mice followed longitudinally with spectral domain optical coherence tomography. Investig Ophthalmol Vis Sci 52:2250–2254CrossRef
46.
47.
go back to reference Sato K et al (2021) CHOP deletion and anti-neuroinflammation treatment with hesperidin synergistically attenuate NMDA retinal injury in mice. Exp Eye Res 213:108826PubMedCrossRef Sato K et al (2021) CHOP deletion and anti-neuroinflammation treatment with hesperidin synergistically attenuate NMDA retinal injury in mice. Exp Eye Res 213:108826PubMedCrossRef
49.
go back to reference Ohno Y et al (2013) Thickness mapping of the inner retina by spectral-domain optical coherence tomography in an N-methyl-D-aspartate-induced retinal damage model. Exp Eye Res 113:19–25PubMedCrossRef Ohno Y et al (2013) Thickness mapping of the inner retina by spectral-domain optical coherence tomography in an N-methyl-D-aspartate-induced retinal damage model. Exp Eye Res 113:19–25PubMedCrossRef
50.
go back to reference Zee Q et al (2023) Longitudinal in vivo evaluation of retinal ganglion cell complex layer and dendrites in mice with experimental autoimmune encephalomyelitis. Exp Eye Res 237:4125 Zee Q et al (2023) Longitudinal in vivo evaluation of retinal ganglion cell complex layer and dendrites in mice with experimental autoimmune encephalomyelitis. Exp Eye Res 237:4125
51.
go back to reference Vyklicky V et al (2014) Structure, function, and pharmacology of NMDA receptor channels. Physiol Res 63:784 Vyklicky V et al (2014) Structure, function, and pharmacology of NMDA receptor channels. Physiol Res 63:784
53.
go back to reference Boccuni I, Fairless R (2022) Retinal glutamate neurotransmission: from physiology to pathophysiological mechanisms of retinal ganglion cell degeneration. Life 12:638PubMedPubMedCentralCrossRef Boccuni I, Fairless R (2022) Retinal glutamate neurotransmission: from physiology to pathophysiological mechanisms of retinal ganglion cell degeneration. Life 12:638PubMedPubMedCentralCrossRef
54.
go back to reference Vorwerk CK, Gorla MS, Dreyer EB (1999) An experimental basis for implicating excitotoxicity in glaucomatous optic neuropathy. Surv Ophthalmol 43(Suppl 1):S142-150PubMedCrossRef Vorwerk CK, Gorla MS, Dreyer EB (1999) An experimental basis for implicating excitotoxicity in glaucomatous optic neuropathy. Surv Ophthalmol 43(Suppl 1):S142-150PubMedCrossRef
55.
go back to reference Dreyer EB, Zurakowski D, Schumer RA, Podos SM, Lipton SA (1996) Elevated glutamate levels in the vitreous body of humans and monkeys with glaucoma. Arch Ophthalmol Chic Ill 1960(114):299–305CrossRef Dreyer EB, Zurakowski D, Schumer RA, Podos SM, Lipton SA (1996) Elevated glutamate levels in the vitreous body of humans and monkeys with glaucoma. Arch Ophthalmol Chic Ill 1960(114):299–305CrossRef
56.
go back to reference Aihara M, Chen Y-N, Uchida S, Nakayama M, Araie M (2014) Hyperbaric pressure and increased susceptibility to glutamate toxicity in retinal ganglion cells in vitro. Mol Vis 20:606–615PubMedPubMedCentral Aihara M, Chen Y-N, Uchida S, Nakayama M, Araie M (2014) Hyperbaric pressure and increased susceptibility to glutamate toxicity in retinal ganglion cells in vitro. Mol Vis 20:606–615PubMedPubMedCentral
57.
go back to reference Cirafici P et al (2021) Point-wise correlations between 10–2 Humphrey visual field and OCT data in open angle glaucoma. Eye Lond Engl 35:868–876 Cirafici P et al (2021) Point-wise correlations between 10–2 Humphrey visual field and OCT data in open angle glaucoma. Eye Lond Engl 35:868–876
58.
go back to reference Pazos M et al (2021) SD-OCT peripapillary nerve fibre layer and ganglion cell complex parameters in glaucoma: principal component analysis. Br J Ophthalmol 105:496–501PubMedCrossRef Pazos M et al (2021) SD-OCT peripapillary nerve fibre layer and ganglion cell complex parameters in glaucoma: principal component analysis. Br J Ophthalmol 105:496–501PubMedCrossRef
59.
60.
go back to reference van der Merwe Y et al (2021) Citicoline modulates glaucomatous neurodegeneration through intraocular pressure-independent control. Neurotherapeutics 18:1339–1359PubMedPubMedCentralCrossRef van der Merwe Y et al (2021) Citicoline modulates glaucomatous neurodegeneration through intraocular pressure-independent control. Neurotherapeutics 18:1339–1359PubMedPubMedCentralCrossRef
61.
go back to reference Lambuk L et al (2019) Dose-dependent effects of NMDA on retinal and optic nerve morphology in rats. Int J Ophthalmol 12:746–753PubMedPubMedCentral Lambuk L et al (2019) Dose-dependent effects of NMDA on retinal and optic nerve morphology in rats. Int J Ophthalmol 12:746–753PubMedPubMedCentral
62.
go back to reference Kuehn S et al (2017) Concentration-dependent inner retina layer damage and optic nerve degeneration in a NMDA model. J Mol Neurosci MN 63:283–299PubMedCrossRef Kuehn S et al (2017) Concentration-dependent inner retina layer damage and optic nerve degeneration in a NMDA model. J Mol Neurosci MN 63:283–299PubMedCrossRef
63.
go back to reference Lam TT, Abler AS, Kwong JM, Tso MO (1999) N-methyl-d-aspartate (NMDA)–induced apoptosis in rat retina. Investig Ophthalmol Vis Sci 40:2391–2397 Lam TT, Abler AS, Kwong JM, Tso MO (1999) N-methyl-d-aspartate (NMDA)–induced apoptosis in rat retina. Investig Ophthalmol Vis Sci 40:2391–2397
65.
go back to reference Tsoka P, Kataoka K, Miller JW, Vavvas DG (2016) NMDA-induced retinal excitotoxicity triggers inflammation and inflammasome activation in mice. Investig Ophthalmol Vis Sci 57:2248 Tsoka P, Kataoka K, Miller JW, Vavvas DG (2016) NMDA-induced retinal excitotoxicity triggers inflammation and inflammasome activation in mice. Investig Ophthalmol Vis Sci 57:2248
66.
go back to reference Ma D et al (2022) Clinical explainable differential diagnosis of polypoidal choroidal vasculopathy and age-related macular degeneration using deep learning. Comput Biol Med 143:105319PubMedCrossRef Ma D et al (2022) Clinical explainable differential diagnosis of polypoidal choroidal vasculopathy and age-related macular degeneration using deep learning. Comput Biol Med 143:105319PubMedCrossRef
67.
go back to reference Yu TT et al (2021) Effect of optical coherence tomography and angiography sampling rate towards diabetic retinopathy severity classification. Biomed Opt Express 12:6660–6673PubMedPubMedCentralCrossRef Yu TT et al (2021) Effect of optical coherence tomography and angiography sampling rate towards diabetic retinopathy severity classification. Biomed Opt Express 12:6660–6673PubMedPubMedCentralCrossRef
68.
go back to reference Lu D et al (2019) Cascaded deep neural networks for retinal layer segmentation of optical coherence tomography with fluid presence, pp 1–8 (2019) Lu D et al (2019) Cascaded deep neural networks for retinal layer segmentation of optical coherence tomography with fluid presence, pp 1–8 (2019)
70.
go back to reference Hombrebueno JR, Luo C, Guo L, Chen M, Xu H (2014) Intravitreal injection of normal saline induces retinal degeneration in the C57BL/6J mouse. Transl Vis Sci Technol 3:3PubMedPubMedCentralCrossRef Hombrebueno JR, Luo C, Guo L, Chen M, Xu H (2014) Intravitreal injection of normal saline induces retinal degeneration in the C57BL/6J mouse. Transl Vis Sci Technol 3:3PubMedPubMedCentralCrossRef
Metadata
Title
Early inner plexiform layer thinning and retinal nerve fiber layer thickening in excitotoxic retinal injury using deep learning-assisted optical coherence tomography
Authors
Da Ma
Wenyu Deng
Zain Khera
Thajunnisa A. Sajitha
Xinlei Wang
Gadi Wollstein
Joel S. Schuman
Sieun Lee
Haolun Shi
Myeong Jin Ju
Joanne Matsubara
Mirza Faisal Beg
Marinko Sarunic
Rebecca M. Sappington
Kevin C. Chan
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Acta Neuropathologica Communications / Issue 1/2024
Electronic ISSN: 2051-5960
DOI
https://doi.org/10.1186/s40478-024-01732-z

Other articles of this Issue 1/2024

Acta Neuropathologica Communications 1/2024 Go to the issue