Skip to main content
Top
Published in: Brain Structure and Function 6/2019

Open Access 01-07-2019 | Intense Pulsed Light | Original Article

Connexin-36 distribution and layer-specific topography in the cat retina

Authors: Ildikó Telkes, Péter Kóbor, József Orbán, Tamás Kovács-Öller, Béla Völgyi, Péter Buzás

Published in: Brain Structure and Function | Issue 6/2019

Login to get access

Abstract

Connexin-36 (Cx36) is the major constituent of mammalian retinal gap junctions positioned in key signal pathways. Here, we examined the laminar and large-scale topographical distribution of Cx36 punctate immunolabels in the retina of the cat, a classical model of the mammalian visual system. Calretinin-immunoreactive (CaR-IR) cell populations served to outline the nuclear and plexiform layers and to stain specific neuronal populations. CaR-IR cells included horizontal cells in the outer retina, numerous amacrine cells, and scattered cells in the ganglion cell layer. Cx36-IR plaques were found among horizontal cell dendrites albeit without systematic colocalization of the two labels. Diffuse Cx36 immunoreactivity was found in the cytoplasm of AII amacrine cells, but no colocalization of Cx36 plaques was observed with either the perikarya or the long varicose dendrites of the CaR-IR non-AII amacrine cells. Cx36 puncta were seen throughout the entire inner plexiform layer showing their highest density in the ON sublamina. The densities of AII amacrine cell bodies and Cx36 plaques in the ON sublamina were strongly correlated across a wide range of eccentricities suggesting their anatomical association. However, the high number of plaques per AII cell suggests that a considerable fraction of Cx36 gap junctions in the ON sublamina is formed by other cell types than AII amacrine cells drawing attention to extensive but less studied electrically coupled networks.
Appendix
Available only for authorised users
Footnotes
1
The uniquely detailed reconstruction of a volume of rabbit IPL at the electron microscopic level by Marc et al. (2014) allows a good estimate. This study found 39 AII amacrine cells, 525 homocellular AII–AII gap junctions, and 172 heterocellular AII-cone bipolar cell gap junctions in the analyzed tissue volume. It follows from the data that the average number of homocellular gap junctions per cell is 2 × 525/39 ≈ 27, the average number of heterocellular gap junctions is 172/39 ≈ 4, and thus, 31 gap junctions are formed by one AII amacrine. We do not know, however, to what extent these observations can be applied to various regions of the cat retina.
 
Literature
go back to reference Bishop PO, Kozak W, Vakkur GJ (1962) Some quantitative aspects of the cat’s eye: axis and plane of reference, visual field co-ordinates and optics. J Physiol 163:466–502PubMedPubMedCentralCrossRef Bishop PO, Kozak W, Vakkur GJ (1962) Some quantitative aspects of the cat’s eye: axis and plane of reference, visual field co-ordinates and optics. J Physiol 163:466–502PubMedPubMedCentralCrossRef
go back to reference Boycott BB, Peichl L, Wässle H (1978) Morphological types of horizontal cell in the retina of the domestic cat. Proc R Soc Lond B Biol Sci 203(1152):229–245PubMedCrossRef Boycott BB, Peichl L, Wässle H (1978) Morphological types of horizontal cell in the retina of the domestic cat. Proc R Soc Lond B Biol Sci 203(1152):229–245PubMedCrossRef
go back to reference Cleland BG, Levick WR, Wässle H (1975) Physiological identification of a morphological class of cat retinal ganglion cells. J Physiol 248(1):151–171PubMedPubMedCentralCrossRef Cleland BG, Levick WR, Wässle H (1975) Physiological identification of a morphological class of cat retinal ganglion cells. J Physiol 248(1):151–171PubMedPubMedCentralCrossRef
go back to reference Copenhagen DR, Owen WG (1976) Coupling between rod photoreceptors in a vertebrate retina. Nature 260(5546):57–59PubMedCrossRef Copenhagen DR, Owen WG (1976) Coupling between rod photoreceptors in a vertebrate retina. Nature 260(5546):57–59PubMedCrossRef
go back to reference Dacey D, Packer OS, Diller L, Brainard D, Peterson B, Lee B (2000) Center surround receptive field structure of cone bipolar cells in primate retina. Vis Res 40(14):1801–1811PubMedCrossRef Dacey D, Packer OS, Diller L, Brainard D, Peterson B, Lee B (2000) Center surround receptive field structure of cone bipolar cells in primate retina. Vis Res 40(14):1801–1811PubMedCrossRef
go back to reference Deans MR, Völgyi B, Goodenough DA, Bloomfield SA, Paul DL (2002) Connexin36 is essential for transmission of rod-mediated visual signals in the mammalian retina. Neuron 36(4):703–712PubMedPubMedCentralCrossRef Deans MR, Völgyi B, Goodenough DA, Bloomfield SA, Paul DL (2002) Connexin36 is essential for transmission of rod-mediated visual signals in the mammalian retina. Neuron 36(4):703–712PubMedPubMedCentralCrossRef
go back to reference DeVries SH, Qi X, Smith R, Makous W, Sterling P (2002) Electrical coupling between mammalian cones. Curr Biol 12(22):1900–1907PubMedCrossRef DeVries SH, Qi X, Smith R, Makous W, Sterling P (2002) Electrical coupling between mammalian cones. Curr Biol 12(22):1900–1907PubMedCrossRef
go back to reference Feigenspan A, Teubner B, Willecke K, Weiler R (2001) Expression of neuronal connexin36 in AII amacrine cells of the mammalian retina. J Neurosci 21(1):230–239PubMedPubMedCentralCrossRef Feigenspan A, Teubner B, Willecke K, Weiler R (2001) Expression of neuronal connexin36 in AII amacrine cells of the mammalian retina. J Neurosci 21(1):230–239PubMedPubMedCentralCrossRef
go back to reference Goebel DJ, Pourcho RG (1997) Calretinin in the cat retina: colocalizations with other calcium-binding proteins, GABA and glycine. Vis Neurosci 14(2):311–322PubMedCrossRef Goebel DJ, Pourcho RG (1997) Calretinin in the cat retina: colocalizations with other calcium-binding proteins, GABA and glycine. Vis Neurosci 14(2):311–322PubMedCrossRef
go back to reference Goodchild AK, Ghosh KK, Martin PR (1996) Comparison of photoreceptor spatial density and ganglion cell morphology in the retina of human, macaque monkey, cat, and the marmoset Callithrix jacchus. J Comp Neurol 366(1):55–75PubMedCrossRef Goodchild AK, Ghosh KK, Martin PR (1996) Comparison of photoreceptor spatial density and ganglion cell morphology in the retina of human, macaque monkey, cat, and the marmoset Callithrix jacchus. J Comp Neurol 366(1):55–75PubMedCrossRef
go back to reference Güldenagel M, Söhl G, Plum A, Traub O, Teubner B, Weiler R, Willecke K (2000) Expression patterns of connexin genes in mouse retina. J Comp Neurol 425(2):193–201PubMedCrossRef Güldenagel M, Söhl G, Plum A, Traub O, Teubner B, Weiler R, Willecke K (2000) Expression patterns of connexin genes in mouse retina. J Comp Neurol 425(2):193–201PubMedCrossRef
go back to reference Güldenagel M, Ammermüller J, Feigenspan A, Teubner B, Degen J, Sohl G, Willecke K, Weiler R (2001) Visual transmission deficits in mice with targeted disruption of the gap junction gene connexin36. J Neurosci 21(16):6036–6044PubMedPubMedCentralCrossRef Güldenagel M, Ammermüller J, Feigenspan A, Teubner B, Degen J, Sohl G, Willecke K, Weiler R (2001) Visual transmission deficits in mice with targeted disruption of the gap junction gene connexin36. J Neurosci 21(16):6036–6044PubMedPubMedCentralCrossRef
go back to reference Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol (Lond) 160:106–154CrossRef Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol (Lond) 160:106–154CrossRef
go back to reference Hughes A (1975) A quantitative analysis of the cat retinal ganglion cell topography. J Comp Neurol 163(1):107–128PubMedCrossRef Hughes A (1975) A quantitative analysis of the cat retinal ganglion cell topography. J Comp Neurol 163(1):107–128PubMedCrossRef
go back to reference Isayama T, Berson DM, Pu M (2000) Theta ganglion cell type of cat retina. J Comp Neurol 417(1):32–48PubMedCrossRef Isayama T, Berson DM, Pu M (2000) Theta ganglion cell type of cat retina. J Comp Neurol 417(1):32–48PubMedCrossRef
go back to reference Janssen-Bienhold U, Trumpler J, Hilgen G, Schultz K, Muller LP, Sonntag S, Dedek K, Dirks P, Willecke K, Weiler R (2009) Connexin57 is expressed in dendro-dendritic and axo-axonal gap junctions of mouse horizontal cells and its distribution is modulated by light. J Comp Neurol 513(4):363–374. https://doi.org/10.1002/cne.21965 PubMedCrossRef Janssen-Bienhold U, Trumpler J, Hilgen G, Schultz K, Muller LP, Sonntag S, Dedek K, Dirks P, Willecke K, Weiler R (2009) Connexin57 is expressed in dendro-dendritic and axo-axonal gap junctions of mouse horizontal cells and its distribution is modulated by light. J Comp Neurol 513(4):363–374. https://​doi.​org/​10.​1002/​cne.​21965 PubMedCrossRef
go back to reference Jeon MH, Jeon CJ (1998) Immunocytochemical localization of calretinin containing neurons in retina from rabbit, cat, and dog. Neurosci Res 32(1):75–84PubMedCrossRef Jeon MH, Jeon CJ (1998) Immunocytochemical localization of calretinin containing neurons in retina from rabbit, cat, and dog. Neurosci Res 32(1):75–84PubMedCrossRef
go back to reference Kolb H, Famiglietti EV (1974) Rod and cone pathways in the inner plexiform layer of cat retina. Science 186(4158):47–49PubMedCrossRef Kolb H, Famiglietti EV (1974) Rod and cone pathways in the inner plexiform layer of cat retina. Science 186(4158):47–49PubMedCrossRef
go back to reference Lee EJ, Han JW, Kim HJ, Kim IB, Lee MY, Oh SJ, Chung JW, Chun MH (2003) The immunocytochemical localization of connexin 36 at rod and cone gap junctions in the guinea pig retina. Eur J Neurosci 18(11):2925–2934PubMedCrossRef Lee EJ, Han JW, Kim HJ, Kim IB, Lee MY, Oh SJ, Chung JW, Chun MH (2003) The immunocytochemical localization of connexin 36 at rod and cone gap junctions in the guinea pig retina. Eur J Neurosci 18(11):2925–2934PubMedCrossRef
go back to reference Luo X, Ghosh KK, Martin PR, Grünert U (1999) Analysis of two types of cone bipolar cells in the retina of a New World monkey, the marmoset, Callithrix jacchus. Vis Neurosci 16(4):707–719PubMedCrossRef Luo X, Ghosh KK, Martin PR, Grünert U (1999) Analysis of two types of cone bipolar cells in the retina of a New World monkey, the marmoset, Callithrix jacchus. Vis Neurosci 16(4):707–719PubMedCrossRef
go back to reference Marc RE, Liu WL, Muller JF (1988) Gap junctions in the inner plexiform layer of the goldfish retina. Vis Res 28(1):9–24PubMedCrossRef Marc RE, Liu WL, Muller JF (1988) Gap junctions in the inner plexiform layer of the goldfish retina. Vis Res 28(1):9–24PubMedCrossRef
go back to reference Massey SC, Mills SL (1999) Antibody to calretinin stains AII amacrine cells in the rabbit retina: double-label and confocal analyses. J Comp Neurol 411(1):3–18PubMedCrossRef Massey SC, Mills SL (1999) Antibody to calretinin stains AII amacrine cells in the rabbit retina: double-label and confocal analyses. J Comp Neurol 411(1):3–18PubMedCrossRef
go back to reference Mills SL (1999) Unusual coupling patterns of a cone bipolar cell in the rabbit retina. Vis Neurosci 16(6):1029–1035PubMedCrossRef Mills SL (1999) Unusual coupling patterns of a cone bipolar cell in the rabbit retina. Vis Neurosci 16(6):1029–1035PubMedCrossRef
go back to reference Mills SL, Massey SC (1999) AII amacrine cells limit scotopic acuity in central macaque retina: a confocal analysis of calretinin labeling. J Comp Neurol 411(1):19–34PubMedCrossRef Mills SL, Massey SC (1999) AII amacrine cells limit scotopic acuity in central macaque retina: a confocal analysis of calretinin labeling. J Comp Neurol 411(1):19–34PubMedCrossRef
go back to reference Nelson R (1977) Cat cones have rod input: a comparison of the response properties of cones and horizontal cell bodies in the retina of the cat. J Comp Neurol 172(1):109–135PubMedCrossRef Nelson R (1977) Cat cones have rod input: a comparison of the response properties of cones and horizontal cell bodies in the retina of the cat. J Comp Neurol 172(1):109–135PubMedCrossRef
go back to reference Pasteels B, Rogers J, Blachier F, Pochet R (1990) Calbindin and calretinin localization in retina from different species. Vis Neurosci 5(1):1–16PubMedCrossRef Pasteels B, Rogers J, Blachier F, Pochet R (1990) Calbindin and calretinin localization in retina from different species. Vis Neurosci 5(1):1–16PubMedCrossRef
go back to reference Pereda A, O’Brien J, Nagy JI, Bukauskas F, Davidson KG, Kamasawa N, Yasumura T, Rash JE (2003) Connexin35 mediates electrical transmission at mixed synapses on Mauthner cells. J Neurosci 23(20):7489–7503PubMedPubMedCentralCrossRef Pereda A, O’Brien J, Nagy JI, Bukauskas F, Davidson KG, Kamasawa N, Yasumura T, Rash JE (2003) Connexin35 mediates electrical transmission at mixed synapses on Mauthner cells. J Neurosci 23(20):7489–7503PubMedPubMedCentralCrossRef
go back to reference Pizarro-Delgado J, Fasciani I, Temperan A, Romero M, Gonzalez-Nieto D, Alonso-Magdalena P, Nualart-Marti A, Estil’les E, Paul DL, Martin-del-Rio R, Montanya E, Solsona C, Nadal A, Barrio LC, Tamarit-Rodriguez J (2014) Inhibition of connexin 36 hemichannels by glucose contributes to the stimulation of insulin secretion. Am J Physiol Endocrinol Metab 306(12):E1354–1366. https://doi.org/10.1152/ajpendo.00358.2013 PubMedCrossRef Pizarro-Delgado J, Fasciani I, Temperan A, Romero M, Gonzalez-Nieto D, Alonso-Magdalena P, Nualart-Marti A, Estil’les E, Paul DL, Martin-del-Rio R, Montanya E, Solsona C, Nadal A, Barrio LC, Tamarit-Rodriguez J (2014) Inhibition of connexin 36 hemichannels by glucose contributes to the stimulation of insulin secretion. Am J Physiol Endocrinol Metab 306(12):E1354–1366. https://​doi.​org/​10.​1152/​ajpendo.​00358.​2013 PubMedCrossRef
go back to reference Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. https://doi.org/10.1038/nmeth.2019 CrossRefPubMed Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. https://​doi.​org/​10.​1038/​nmeth.​2019 CrossRefPubMed
go back to reference Schneeweis DM, Schnapf JL (1995) Photovoltage of rods and cones in the macaque retina. Science 268(5213):1053–1056PubMedCrossRef Schneeweis DM, Schnapf JL (1995) Photovoltage of rods and cones in the macaque retina. Science 268(5213):1053–1056PubMedCrossRef
go back to reference Scholes JH (1975) Colour receptors, and their synaptic connexions, in the retina of a cyprinid fish. Philos Trans R Soc Lond B Biol Sci 270(902):61–118PubMedCrossRef Scholes JH (1975) Colour receptors, and their synaptic connexions, in the retina of a cyprinid fish. Philos Trans R Soc Lond B Biol Sci 270(902):61–118PubMedCrossRef
go back to reference Smith RG, Freed MA, Sterling P (1986) Microcircuitry of the dark-adapted cat retina: functional architecture of the rod-cone network. J Neurosci 6(12):3505–3517PubMedPubMedCentralCrossRef Smith RG, Freed MA, Sterling P (1986) Microcircuitry of the dark-adapted cat retina: functional architecture of the rod-cone network. J Neurosci 6(12):3505–3517PubMedPubMedCentralCrossRef
go back to reference Steinberg RH, Reid M, Lacy PL (1973) The distribution of rods and cones in the retina of the cat (Felis domesticus). J Comp Neurol 148(2):229–248PubMedCrossRef Steinberg RH, Reid M, Lacy PL (1973) The distribution of rods and cones in the retina of the cat (Felis domesticus). J Comp Neurol 148(2):229–248PubMedCrossRef
go back to reference Tsukamoto Y, Smith RG, Sterling P (1990) “Collective coding” of correlated cone signals in the retinal ganglion cell. Proc Natl Acad Sci USA 87(5):1860–1864PubMedCrossRef Tsukamoto Y, Smith RG, Sterling P (1990) “Collective coding” of correlated cone signals in the retinal ganglion cell. Proc Natl Acad Sci USA 87(5):1860–1864PubMedCrossRef
go back to reference Vaney DI (1985) The morphology and topographic distribution of AII amacrine cells in the cat retina. Proc R Soc Lond B Biol Sci 224(1237):475–488PubMedCrossRef Vaney DI (1985) The morphology and topographic distribution of AII amacrine cells in the cat retina. Proc R Soc Lond B Biol Sci 224(1237):475–488PubMedCrossRef
go back to reference Vardi N, Smith RG (1996) The AII amacrine network: coupling can increase correlated activity. Vis Res 36(23):3743–3757PubMedCrossRef Vardi N, Smith RG (1996) The AII amacrine network: coupling can increase correlated activity. Vis Res 36(23):3743–3757PubMedCrossRef
go back to reference Vardi N, Masarachia PJ, Sterling P (1989) Structure of the starburst amacrine network in the cat retina and its association with alpha ganglion cells. J Comp Neurol 288(4):601–611PubMedCrossRef Vardi N, Masarachia PJ, Sterling P (1989) Structure of the starburst amacrine network in the cat retina and its association with alpha ganglion cells. J Comp Neurol 288(4):601–611PubMedCrossRef
go back to reference Völgyi B, Pollák E, Buzás P, Gábriel R (1997) Calretinin in neurochemically well-defined cell populations of rabbit retina. Brain Res 763(1):79–86PubMedCrossRef Völgyi B, Pollák E, Buzás P, Gábriel R (1997) Calretinin in neurochemically well-defined cell populations of rabbit retina. Brain Res 763(1):79–86PubMedCrossRef
go back to reference Wässle H, Boycott BB, Illing RB (1981a) Morphology and mosaic of on- and off-beta cells in the cat retina and some functional considerations. Proc R Soc Lond B Biol Sci 212(1187):177–195PubMedCrossRef Wässle H, Boycott BB, Illing RB (1981a) Morphology and mosaic of on- and off-beta cells in the cat retina and some functional considerations. Proc R Soc Lond B Biol Sci 212(1187):177–195PubMedCrossRef
go back to reference Wässle H, Peichl L, Boycott BB (1981b) Morphology and topography of on- and off-alpha cells in the cat retina. Proc R Soc Lond B Biol Sci 212(1187):157–175PubMedCrossRef Wässle H, Peichl L, Boycott BB (1981b) Morphology and topography of on- and off-alpha cells in the cat retina. Proc R Soc Lond B Biol Sci 212(1187):157–175PubMedCrossRef
go back to reference Wässle H, Grünert U, Chun M-H, Boycott BB (1995) The rod pathway of the macaque monkey retina: identification of AII-amacrine cells with antibodies against calretinin. J Comp Neurol 361:537–551PubMedCrossRef Wässle H, Grünert U, Chun M-H, Boycott BB (1995) The rod pathway of the macaque monkey retina: identification of AII-amacrine cells with antibodies against calretinin. J Comp Neurol 361:537–551PubMedCrossRef
go back to reference Xin D, Bloomfield SA (1997) Tracer coupling pattern of amacrine and ganglion cells in the rabbit retina. J Comp Neurol 383(4):512–528PubMedCrossRef Xin D, Bloomfield SA (1997) Tracer coupling pattern of amacrine and ganglion cells in the rabbit retina. J Comp Neurol 383(4):512–528PubMedCrossRef
Metadata
Title
Connexin-36 distribution and layer-specific topography in the cat retina
Authors
Ildikó Telkes
Péter Kóbor
József Orbán
Tamás Kovács-Öller
Béla Völgyi
Péter Buzás
Publication date
01-07-2019
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 6/2019
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-019-01876-y

Other articles of this Issue 6/2019

Brain Structure and Function 6/2019 Go to the issue