Skip to main content
Top
Published in: Brain Structure and Function 1/2023

Open Access 13-06-2022 | Intense Pulsed Light | Review

Architecture and connectivity of the human angular gyrus and of its homolog region in the macaque brain

Authors: Meiqi Niu, Nicola Palomero-Gallagher

Published in: Brain Structure and Function | Issue 1/2023

Login to get access

Abstract

The angular gyrus roughly corresponds to Brodmann’s area 39, which is a multimodal association brain region located in the posterior apex of the human inferior parietal lobe, at its interface with the temporal and occipital lobes. It encompasses two cyto- and receptor architectonically distinct areas: caudal PGp and rostral PGa. The macaque brain does not present an angular gyrus in the strict sense, and the establishment of homologies was further hindered by the fact that Brodmann defined a single cytoarchitectonic area covering the entire guenon inferior parietal lobule in the monkey brain, i.e. area 7. Latter architectonic studies revealed the existence of 6 architectonically distinct areas within macaque area 7, further connectivity and functional imaging studies supported the hypothesis that the most posterior of these macaque areas, namely Opt and PG, may constitute the homologs of human areas PGp and PGa, respectively. The present review provides an overview of the cyto-, myelo and receptor architecture of human areas PGp and PGa, as well as of their counterparts in the macaque brain, and summarizes current knowledge on the connectivity of these brain areas. Finally, the present study elaborates on the rationale behind the definition of these homologies and their importance in translational studies.
Literature
go back to reference Andersen RA, Buneo CA (2002) Intentional maps in posterior parietal cortex. Annu Rev Neurosci 25:189–220CrossRef Andersen RA, Buneo CA (2002) Intentional maps in posterior parietal cortex. Annu Rev Neurosci 25:189–220CrossRef
go back to reference Andersen RA, Asanuma C, Essick G, Siegel R (1990) Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule. J Comparat Neurol 296:65–113CrossRef Andersen RA, Asanuma C, Essick G, Siegel R (1990) Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule. J Comparat Neurol 296:65–113CrossRef
go back to reference Barash S, Bracewell RM, Fogassi L, Gnadt JW, Andersen RA (1991) Saccade-related activity in the lateral intraparietal area. I. Temporal properties; comparison with area 7a. J Neurophysiol 66:1095–1108CrossRef Barash S, Bracewell RM, Fogassi L, Gnadt JW, Andersen RA (1991) Saccade-related activity in the lateral intraparietal area. I. Temporal properties; comparison with area 7a. J Neurophysiol 66:1095–1108CrossRef
go back to reference Barrett RL, Dawson M, Dyrby TB, Krug K, Ptito M, D’Arceuil H, Croxson PL, Johnson PJ, Howells H, Forkel SJ (2020) Differences in frontal network anatomy across primate species. J Neurosci 40:2094–2107CrossRef Barrett RL, Dawson M, Dyrby TB, Krug K, Ptito M, D’Arceuil H, Croxson PL, Johnson PJ, Howells H, Forkel SJ (2020) Differences in frontal network anatomy across primate species. J Neurosci 40:2094–2107CrossRef
go back to reference Batsch E-G (1956) Die myeloarchitektonische Untergliederung des Isocortex parietalis beim Menschen. J Hirnforsch 2:225–258 Batsch E-G (1956) Die myeloarchitektonische Untergliederung des Isocortex parietalis beim Menschen. J Hirnforsch 2:225–258
go back to reference Binder J, Fernandino L (2015) Semantic processing. In: Brain mapping: an encyclopedic reference. Elsevier, pp 445–454 Binder J, Fernandino L (2015) Semantic processing. In: Brain mapping: an encyclopedic reference. Elsevier, pp 445–454
go back to reference Binder JR, Desai RH, Graves WW, Conant LL (2009) Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb Cortex 19:2767–2796CrossRef Binder JR, Desai RH, Graves WW, Conant LL (2009) Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb Cortex 19:2767–2796CrossRef
go back to reference Bremmer F, Distler C, Hoffmann K-P (1997) Eye position effects in monkey cortex. II. Pursuit-and fixation-related activity in posterior parietal areas LIP and 7A. J Neurophysiol 77:962–977CrossRef Bremmer F, Distler C, Hoffmann K-P (1997) Eye position effects in monkey cortex. II. Pursuit-and fixation-related activity in posterior parietal areas LIP and 7A. J Neurophysiol 77:962–977CrossRef
go back to reference Brodmann K (1905) Beitrage zur histologischen lokalisation der grosshirnrinde 4, Mitteilung: der riesenpyramidentypus und sein verhalten zu den furchen bei den karnivoren. J Fur Psychologie Und Neurologie 6:108–120 Brodmann K (1905) Beitrage zur histologischen lokalisation der grosshirnrinde 4, Mitteilung: der riesenpyramidentypus und sein verhalten zu den furchen bei den karnivoren. J Fur Psychologie Und Neurologie 6:108–120
go back to reference Brodmann, K. (1909). Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues (Barth). Brodmann, K. (1909). Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues (Barth).
go back to reference Bruce CJ, Goldberg ME, Bushnell MC, Stanton GB (1985) Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. J Neurophysiol 54:714–734CrossRef Bruce CJ, Goldberg ME, Bushnell MC, Stanton GB (1985) Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. J Neurophysiol 54:714–734CrossRef
go back to reference Buckner RL, Krienen FM (2013) The evolution of distributed association networks in the human brain. Trends Cogn Sci 17:648–665CrossRef Buckner RL, Krienen FM (2013) The evolution of distributed association networks in the human brain. Trends Cogn Sci 17:648–665CrossRef
go back to reference Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38CrossRef Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38CrossRef
go back to reference Calabrese E, Badea A, Coe CL, Lubach GR, Shi Y, Styner MA, Johnson GA (2015) A diffusion tensor MRI atlas of the postmortem rhesus macaque brain. Neuroimage 117:408–416CrossRef Calabrese E, Badea A, Coe CL, Lubach GR, Shi Y, Styner MA, Johnson GA (2015) A diffusion tensor MRI atlas of the postmortem rhesus macaque brain. Neuroimage 117:408–416CrossRef
go back to reference Campbell AW (1905) Further histological studies on the localisation of cerebral function.—The brains of felis, canis, and sus compared with that of homo. Proc R Soc Lond 74:390–392CrossRef Campbell AW (1905) Further histological studies on the localisation of cerebral function.—The brains of felis, canis, and sus compared with that of homo. Proc R Soc Lond 74:390–392CrossRef
go back to reference Caspers S, Geyer S, Schleicher A, Mohlberg H, Amunts K, Zilles K (2006) The human inferior parietal cortex: cytoarchitectonic parcellation and interindividual variability. Neuroimage 33:430–448CrossRef Caspers S, Geyer S, Schleicher A, Mohlberg H, Amunts K, Zilles K (2006) The human inferior parietal cortex: cytoarchitectonic parcellation and interindividual variability. Neuroimage 33:430–448CrossRef
go back to reference Caspers S, Eickhoff SB, Geyer S, Scheperjans F, Mohlberg H, Zilles K, Amunts K (2008) The human inferior parietal lobule in stereotaxic space. Brain Struct Funct 212:481–495CrossRef Caspers S, Eickhoff SB, Geyer S, Scheperjans F, Mohlberg H, Zilles K, Amunts K (2008) The human inferior parietal lobule in stereotaxic space. Brain Struct Funct 212:481–495CrossRef
go back to reference Caspers S, Eickhoff SB, Rick T, von Kapri A, Kuhlen T, Huang R, Shah NJ, Zilles K (2011) Probabilistic fibre tract analysis of cytoarchitectonically defined human inferior parietal lobule areas reveals similarities to macaques. Neuroimage 58:362–380CrossRef Caspers S, Eickhoff SB, Rick T, von Kapri A, Kuhlen T, Huang R, Shah NJ, Zilles K (2011) Probabilistic fibre tract analysis of cytoarchitectonically defined human inferior parietal lobule areas reveals similarities to macaques. Neuroimage 58:362–380CrossRef
go back to reference Caspers S, Schleicher A, Bacha-Trams M, Palomero-Gallagher N, Amunts K, Zilles K (2012) Organization of the human inferior parietal lobule based on receptor architectonics. Cereb Cortex 23:615–628CrossRef Caspers S, Schleicher A, Bacha-Trams M, Palomero-Gallagher N, Amunts K, Zilles K (2012) Organization of the human inferior parietal lobule based on receptor architectonics. Cereb Cortex 23:615–628CrossRef
go back to reference Catani M, De Schotten MT (2008) A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex 44:1105–1132CrossRef Catani M, De Schotten MT (2008) A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex 44:1105–1132CrossRef
go back to reference Catani M, Jones DK, Ffytche DH (2005) Perisylvian language networks of the human brain. Annal Neurol 57:8–16CrossRef Catani M, Jones DK, Ffytche DH (2005) Perisylvian language networks of the human brain. Annal Neurol 57:8–16CrossRef
go back to reference Catani M, Robertsson N, Beyh A, Huynh V, de Santiago Requejo F, Howells H, Barrett RL, Aiello M, Cavaliere C, Dyrby TB (2017) Short parietal lobe connections of the human and monkey brain. Cortex 97:339–357CrossRef Catani M, Robertsson N, Beyh A, Huynh V, de Santiago Requejo F, Howells H, Barrett RL, Aiello M, Cavaliere C, Dyrby TB (2017) Short parietal lobe connections of the human and monkey brain. Cortex 97:339–357CrossRef
go back to reference Cavada C, Goldman-Rakic PS (1989a) Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections. J Comparat Neurol 287:393–421CrossRef Cavada C, Goldman-Rakic PS (1989a) Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections. J Comparat Neurol 287:393–421CrossRef
go back to reference Cavada C, Goldman-Rakic PS (1989b) Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. J Comparat Neurol 287:422–445CrossRef Cavada C, Goldman-Rakic PS (1989b) Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. J Comparat Neurol 287:422–445CrossRef
go back to reference Croxson PL, Forkel SJ, Cerliani L, Thiebaut de Schotten M (2018) Structural variability across the primate brain: a cross-species comparison. Cereb Cortex 28:3829–3841CrossRef Croxson PL, Forkel SJ, Cerliani L, Thiebaut de Schotten M (2018) Structural variability across the primate brain: a cross-species comparison. Cereb Cortex 28:3829–3841CrossRef
go back to reference Dronkers NF, Wilkins DP, Van Valin Jr RD, Redfern BB, Jaeger JJ (2004) Lesion analysis of the brain areas involved in language comprehension. Cognition 92:145–177CrossRef Dronkers NF, Wilkins DP, Van Valin Jr RD, Redfern BB, Jaeger JJ (2004) Lesion analysis of the brain areas involved in language comprehension. Cognition 92:145–177CrossRef
go back to reference Eichert N, Verhagen L, Folloni D, Jbabdi S, Khrapitchev AA, Sibson NR, Mantini D, Sallet J, Mars RB (2019) What is special about the human arcuate fasciculus? Lateralization, projections, and expansion. Cortex 118:107–115CrossRef Eichert N, Verhagen L, Folloni D, Jbabdi S, Khrapitchev AA, Sibson NR, Mantini D, Sallet J, Mars RB (2019) What is special about the human arcuate fasciculus? Lateralization, projections, and expansion. Cortex 118:107–115CrossRef
go back to reference Eidelberg D, Galaburda AM (1984) Inferior parietal lobule: divergent architectonic asymmetries in the human brain. Arch Neurol 41:843–852CrossRef Eidelberg D, Galaburda AM (1984) Inferior parietal lobule: divergent architectonic asymmetries in the human brain. Arch Neurol 41:843–852CrossRef
go back to reference Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47CrossRef Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47CrossRef
go back to reference Feng L, Jeon T, Yu Q, Ouyang M, Peng Q, Mishra V, Pletikos M, Sestan N, Miller MI, Mori S (2017) Population-averaged macaque brain atlas with high-resolution ex vivo DTI integrated into in vivo space. Brain Struct Funct 222:4131–4147CrossRef Feng L, Jeon T, Yu Q, Ouyang M, Peng Q, Mishra V, Pletikos M, Sestan N, Miller MI, Mori S (2017) Population-averaged macaque brain atlas with high-resolution ex vivo DTI integrated into in vivo space. Brain Struct Funct 222:4131–4147CrossRef
go back to reference Flechsig, P.E. (1920). Anatomie des menschlichen Gehirns und Rückenmarks auf myelogenetischer Grundlage. v. 1, Vol 1 (G. Thieme) Flechsig, P.E. (1920). Anatomie des menschlichen Gehirns und Rückenmarks auf myelogenetischer Grundlage. v. 1, Vol 1 (G. Thieme)
go back to reference Frey S, Campbell JS, Pike GB, Petrides M (2008) Dissociating the human language pathways with high angular resolution diffusion fiber tractography. J Neurosci 28:11435–11444CrossRef Frey S, Campbell JS, Pike GB, Petrides M (2008) Dissociating the human language pathways with high angular resolution diffusion fiber tractography. J Neurosci 28:11435–11444CrossRef
go back to reference Gerhardt E (1940) Die Cytoarchitektonik des Isocortex parietalis beim Menschen. J Psychol Neurol 49:367–419 Gerhardt E (1940) Die Cytoarchitektonik des Isocortex parietalis beim Menschen. J Psychol Neurol 49:367–419
go back to reference Geyer S, Luppino G, Ekamp H, Zilles K (2005) The macaque inferior parietal lobule: cytoarchitecture and distribution pattern of serotonin 5-HT 1A binding sites. Anat Embryol 210:353–362CrossRef Geyer S, Luppino G, Ekamp H, Zilles K (2005) The macaque inferior parietal lobule: cytoarchitecture and distribution pattern of serotonin 5-HT 1A binding sites. Anat Embryol 210:353–362CrossRef
go back to reference Göbel S, Walsh V, Rushworth MF (2001) The mental number line and the human angular gyrus. Neuroimage 14:1278–1289CrossRef Göbel S, Walsh V, Rushworth MF (2001) The mental number line and the human angular gyrus. Neuroimage 14:1278–1289CrossRef
go back to reference Gregoriou GG, Borra E, Matelli M, Luppino G (2006) Architectonic organization of the inferior parietal convexity of the macaque monkey. J Comparat Neurol 496:422–451CrossRef Gregoriou GG, Borra E, Matelli M, Luppino G (2006) Architectonic organization of the inferior parietal convexity of the macaque monkey. J Comparat Neurol 496:422–451CrossRef
go back to reference Hartwigsen G, Golombek T, Obleser J (2015) Repetitive transcranial magnetic stimulation over left angular gyrus modulates the predictability gain in degraded speech comprehension. Cortex 68:100–110CrossRef Hartwigsen G, Golombek T, Obleser J (2015) Repetitive transcranial magnetic stimulation over left angular gyrus modulates the predictability gain in degraded speech comprehension. Cortex 68:100–110CrossRef
go back to reference Hill J, Inder T, Neil J, Dierker D, Harwell J, Van Essen D (2010) Similar patterns of cortical expansion during human development and evolution. Proc Natl Acad Sci 107:13135–13140CrossRef Hill J, Inder T, Neil J, Dierker D, Harwell J, Van Essen D (2010) Similar patterns of cortical expansion during human development and evolution. Proc Natl Acad Sci 107:13135–13140CrossRef
go back to reference Hofer S, Frahm J (2008) In vivo mapping of fiber pathways in the Rhesus monkey brain. Open Med Imaging J 2:32–41CrossRef Hofer S, Frahm J (2008) In vivo mapping of fiber pathways in the Rhesus monkey brain. Open Med Imaging J 2:32–41CrossRef
go back to reference Hopf A (1969) Photometric studies on the myeloarchitecture of the human parietal lobe. I. Parietal Region. J Fur Hirnforschung 11:253–265 Hopf A (1969) Photometric studies on the myeloarchitecture of the human parietal lobe. I. Parietal Region. J Fur Hirnforschung 11:253–265
go back to reference Hopf A, Vitzthum HG (1957) Über die Verteilung myeloarchitektonischer Merkmale in der Scheitellappenrinde beim Menschen. J Hirnforsch 3:83–104 Hopf A, Vitzthum HG (1957) Über die Verteilung myeloarchitektonischer Merkmale in der Scheitellappenrinde beim Menschen. J Hirnforsch 3:83–104
go back to reference Humphreys GF, Ralph MAL, Simons JS (2021) A unifying account of angular gyrus contributions to episodic and semantic cognition. Trends Neurosci 44:452–463CrossRef Humphreys GF, Ralph MAL, Simons JS (2021) A unifying account of angular gyrus contributions to episodic and semantic cognition. Trends Neurosci 44:452–463CrossRef
go back to reference Hutchinson JB, Uncapher MR, Wagner AD (2009) Posterior parietal cortex and episodic retrieval: convergent and divergent effects of attention and memory. Learning Memory 16:343–356CrossRef Hutchinson JB, Uncapher MR, Wagner AD (2009) Posterior parietal cortex and episodic retrieval: convergent and divergent effects of attention and memory. Learning Memory 16:343–356CrossRef
go back to reference Hyvärinen J (1981) Regional distribution of functions in parietal association area 7 of the monkey. Brain Res 206:287–303CrossRef Hyvärinen J (1981) Regional distribution of functions in parietal association area 7 of the monkey. Brain Res 206:287–303CrossRef
go back to reference Hyvärinen J (1982) Posterior parietal lobe of the primate brain. Physiol Rev 62:1060–1129CrossRef Hyvärinen J (1982) Posterior parietal lobe of the primate brain. Physiol Rev 62:1060–1129CrossRef
go back to reference Ilg UJ, Schumann S (2007) Primate area MST-l is involved in the generation of goal-directed eye and hand movements. J Neurophysiol 97:761–771CrossRef Ilg UJ, Schumann S (2007) Primate area MST-l is involved in the generation of goal-directed eye and hand movements. J Neurophysiol 97:761–771CrossRef
go back to reference Jockwitz C, Caspers S, Lux S, Jütten K, Schleicher A, Eickhoff SB, Amunts K, Zilles K (2017) Age-and function-related regional changes in cortical folding of the default mode network in older adults. Brain Struct Funct 222:83–99CrossRef Jockwitz C, Caspers S, Lux S, Jütten K, Schleicher A, Eickhoff SB, Amunts K, Zilles K (2017) Age-and function-related regional changes in cortical folding of the default mode network in older adults. Brain Struct Funct 222:83–99CrossRef
go back to reference Katsuyama N, Yamashita A, Sawada K, Naganuma T, Sakata H, Taira M (2010) Functional and histological properties of caudal intraparietal area of macaque monkey. Neuroscience 167:1–10CrossRef Katsuyama N, Yamashita A, Sawada K, Naganuma T, Sakata H, Taira M (2010) Functional and histological properties of caudal intraparietal area of macaque monkey. Neuroscience 167:1–10CrossRef
go back to reference Kelly C, Uddin LQ, Shehzad Z, Margulies DS, Castellanos FX, Milham MP, Petrides M (2010) Broca’s region: linking human brain functional connectivity data and non-human primate tracing anatomy studies. Eur J Neurosci 32:383–398CrossRef Kelly C, Uddin LQ, Shehzad Z, Margulies DS, Castellanos FX, Milham MP, Petrides M (2010) Broca’s region: linking human brain functional connectivity data and non-human primate tracing anatomy studies. Eur J Neurosci 32:383–398CrossRef
go back to reference Lewis JW, Van Essen DC (2000) Mapping of architectonic subdivisions in the macaque monkey, with emphasis on parieto-occipital cortex. J Comparative Neurol 428:79–111CrossRef Lewis JW, Van Essen DC (2000) Mapping of architectonic subdivisions in the macaque monkey, with emphasis on parieto-occipital cortex. J Comparative Neurol 428:79–111CrossRef
go back to reference Lim C, Mufson EJ, Kordower JH, Blume HW, Madsen JR, Saper CB (1997) Connections of the hippocampal formation in humans: II. The endfolial fiber pathway. J Comparat Neurol 385:352–371CrossRef Lim C, Mufson EJ, Kordower JH, Blume HW, Madsen JR, Saper CB (1997) Connections of the hippocampal formation in humans: II. The endfolial fiber pathway. J Comparat Neurol 385:352–371CrossRef
go back to reference Luppino G, Calzavara R, Rozzi S, Matelli M (2001) Projections from the superior temporal sulcus to the agranular frontal cortex in the macaque. Eur J Neurosci 14:1035–1040CrossRef Luppino G, Calzavara R, Rozzi S, Matelli M (2001) Projections from the superior temporal sulcus to the agranular frontal cortex in the macaque. Eur J Neurosci 14:1035–1040CrossRef
go back to reference Makris N, Kennedy DN, McInerney S, Sorensen AG, Wang R, Caviness VS Jr, Pandya DN (2005) Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. Cereb Cortex 15:854–869CrossRef Makris N, Kennedy DN, McInerney S, Sorensen AG, Wang R, Caviness VS Jr, Pandya DN (2005) Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. Cereb Cortex 15:854–869CrossRef
go back to reference Margulies DS, Ghosh SS, Goulas A, Falkiewicz M, Huntenburg JM, Langs G, Bezgin G, Eickhoff SB, Castellanos FX, Petrides M (2016) Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc Natl Acad Sci 113:12574–12579CrossRef Margulies DS, Ghosh SS, Goulas A, Falkiewicz M, Huntenburg JM, Langs G, Bezgin G, Eickhoff SB, Castellanos FX, Petrides M (2016) Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc Natl Acad Sci 113:12574–12579CrossRef
go back to reference Mars RB, Jbabdi S, Sallet J, O’Reilly JX, Croxson PL, Olivier E, Noonan MP, Bergmann C, Mitchell AS, Baxter MG (2011) Diffusion-weighted imaging tractography-based parcellation of the human parietal cortex and comparison with human and macaque resting-state functional connectivity. J Neurosci 31:4087–4100CrossRef Mars RB, Jbabdi S, Sallet J, O’Reilly JX, Croxson PL, Olivier E, Noonan MP, Bergmann C, Mitchell AS, Baxter MG (2011) Diffusion-weighted imaging tractography-based parcellation of the human parietal cortex and comparison with human and macaque resting-state functional connectivity. J Neurosci 31:4087–4100CrossRef
go back to reference Mars RB, Sallet J, Neubert F-X, Rushworth MF (2013) Connectivity profiles reveal the relationship between brain areas for social cognition in human and monkey temporoparietal cortex. Proc Natl Acad Sci 110:10806–10811CrossRef Mars RB, Sallet J, Neubert F-X, Rushworth MF (2013) Connectivity profiles reveal the relationship between brain areas for social cognition in human and monkey temporoparietal cortex. Proc Natl Acad Sci 110:10806–10811CrossRef
go back to reference Menjot de Champfleur N, Maldonado IL, Moritz-Gasser S, Machi P, Le Bars E, Bonafé A, Duffau H (2013) Middle longitudinal fasciculus delineation within language pathways: a diffusion tensor imaging study in human. Eur J Radiol 82:151–157CrossRef Menjot de Champfleur N, Maldonado IL, Moritz-Gasser S, Machi P, Le Bars E, Bonafé A, Duffau H (2013) Middle longitudinal fasciculus delineation within language pathways: a diffusion tensor imaging study in human. Eur J Radiol 82:151–157CrossRef
go back to reference Mesulam M-M (1999) Spatial attention and neglect: parietal, frontal and cingulate contributions to the mental representation and attentional targeting of salient extrapersonal events. Philos Trans R Soc Lond B Biol Sci 354:1325–1346CrossRef Mesulam M-M (1999) Spatial attention and neglect: parietal, frontal and cingulate contributions to the mental representation and attentional targeting of salient extrapersonal events. Philos Trans R Soc Lond B Biol Sci 354:1325–1346CrossRef
go back to reference Mesulam M-M, Van Hoesen GW, Pandya DN, Geschwind N (1977) Limbic and sensory connections of the inferior parietal lobule (area PG) in the rhesus monkey: a study with a new method for horseradish peroxidase histochemistry. Brain Res 136:393–414CrossRef Mesulam M-M, Van Hoesen GW, Pandya DN, Geschwind N (1977) Limbic and sensory connections of the inferior parietal lobule (area PG) in the rhesus monkey: a study with a new method for horseradish peroxidase histochemistry. Brain Res 136:393–414CrossRef
go back to reference Morel A, Garraghty P, Kaas J (1993) Tonotopic organization, architectonic fields, and connections of auditory cortex in macaque monkeys. J Comparat Neurol 335:437–459CrossRef Morel A, Garraghty P, Kaas J (1993) Tonotopic organization, architectonic fields, and connections of auditory cortex in macaque monkeys. J Comparat Neurol 335:437–459CrossRef
go back to reference Mountcastle VB, Lynch J, Georgopoulos A, Sakata H, Acuna C (1975) Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. J Neurophysiol 38:871–908CrossRef Mountcastle VB, Lynch J, Georgopoulos A, Sakata H, Acuna C (1975) Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. J Neurophysiol 38:871–908CrossRef
go back to reference Mueller S, Wang D, Fox MD, Yeo BT, Sepulcre J, Sabuncu MR, Shafee R, Lu J, Liu H (2013) Individual variability in functional connectivity architecture of the human brain. Neuron 77:586–595CrossRef Mueller S, Wang D, Fox MD, Yeo BT, Sepulcre J, Sabuncu MR, Shafee R, Lu J, Liu H (2013) Individual variability in functional connectivity architecture of the human brain. Neuron 77:586–595CrossRef
go back to reference Murray, E.A., and Coulter, J.D. (1981). Supplementary sensory area. In Cortical sensory organization (Springer), pp. 167–195. Murray, E.A., and Coulter, J.D. (1981). Supplementary sensory area. In Cortical sensory organization (Springer), pp. 167–195.
go back to reference Neal J, Pearson R, Powell T (1990) The connections of area PG, 7a, with cortex in the parietal, occipital and temporal lobes of the monkey. Brain Res 532:249–264CrossRef Neal J, Pearson R, Powell T (1990) The connections of area PG, 7a, with cortex in the parietal, occipital and temporal lobes of the monkey. Brain Res 532:249–264CrossRef
go back to reference Nelson SM, Cohen AL, Power JD, Wig GS, Miezin FM, Wheeler ME, Velanova K, Donaldson DI, Phillips JS, Schlaggar BL (2010) A parcellation scheme for human left lateral parietal cortex. Neuron 67:156–170CrossRef Nelson SM, Cohen AL, Power JD, Wig GS, Miezin FM, Wheeler ME, Velanova K, Donaldson DI, Phillips JS, Schlaggar BL (2010) A parcellation scheme for human left lateral parietal cortex. Neuron 67:156–170CrossRef
go back to reference Nieuwenhuys R, Broere CA, Cerliani L (2015) A new myeloarchitectonic map of the human neocortex based on data from the Vogt-Vogt school. Brain Struct Funct 220:2551–2573CrossRef Nieuwenhuys R, Broere CA, Cerliani L (2015) A new myeloarchitectonic map of the human neocortex based on data from the Vogt-Vogt school. Brain Struct Funct 220:2551–2573CrossRef
go back to reference Niu M, Rapan L, Funck T, Froudist-Walsh S, Zhao L, Zilles K, Palomero-Gallagher N (2021) Organization of the macaque monkey inferior parietal lobule based on multimodal receptor architectonics. Neuroimage 231:117843CrossRef Niu M, Rapan L, Funck T, Froudist-Walsh S, Zhao L, Zilles K, Palomero-Gallagher N (2021) Organization of the macaque monkey inferior parietal lobule based on multimodal receptor architectonics. Neuroimage 231:117843CrossRef
go back to reference Obleser J, Kotz SA (2010) Expectancy constraints in degraded speech modulate the language comprehension network. Cereb Cortex 20:633–640CrossRef Obleser J, Kotz SA (2010) Expectancy constraints in degraded speech modulate the language comprehension network. Cereb Cortex 20:633–640CrossRef
go back to reference Ono, M., Kubik, S., and Abernathey, C.D. (1990). Atlas of the cerebral sulci (Thieme Medical Publishers). Ono, M., Kubik, S., and Abernathey, C.D. (1990). Atlas of the cerebral sulci (Thieme Medical Publishers).
go back to reference Orban GA (2016) Functional definitions of parietal areas in human and non-human primates. Proc R Soc B 283:20160118CrossRef Orban GA (2016) Functional definitions of parietal areas in human and non-human primates. Proc R Soc B 283:20160118CrossRef
go back to reference Pandya DN, Seltzer B (1982) Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey. J Comparat Neurol 204:196–210CrossRef Pandya DN, Seltzer B (1982) Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey. J Comparat Neurol 204:196–210CrossRef
go back to reference Patel GH, Sestieri C, Corbetta M (2019) The evolution of the temporoparietal junction and posterior superior temporal sulcus. Cortex 118:38–50CrossRef Patel GH, Sestieri C, Corbetta M (2019) The evolution of the temporoparietal junction and posterior superior temporal sulcus. Cortex 118:38–50CrossRef
go back to reference Petrides M, Pandya DN (1984) Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J Comparat Neurol 228:105–116CrossRef Petrides M, Pandya DN (1984) Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J Comparat Neurol 228:105–116CrossRef
go back to reference Petrides M, Pandya DN (2006) Efferent association pathways originating in the caudal prefrontal cortex in the macaque monkey. J Comparat Neurol 498:227–251CrossRef Petrides M, Pandya DN (2006) Efferent association pathways originating in the caudal prefrontal cortex in the macaque monkey. J Comparat Neurol 498:227–251CrossRef
go back to reference Petrides M, Pandya DN (2009) Distinct parietal and temporal pathways to the homologues of Broca’s area in the monkey. PLoS Biol 7:e1000170CrossRef Petrides M, Pandya DN (2009) Distinct parietal and temporal pathways to the homologues of Broca’s area in the monkey. PLoS Biol 7:e1000170CrossRef
go back to reference Preuss TM, Goldman-Rakic PS (1991) Myelo-and cytoarchitecture of the granular frontal cortex and surrounding regions in the strepsirhine primate Galago and the anthropoid primate Macaca. J Comparat Neurol 310:429–474CrossRef Preuss TM, Goldman-Rakic PS (1991) Myelo-and cytoarchitecture of the granular frontal cortex and surrounding regions in the strepsirhine primate Galago and the anthropoid primate Macaca. J Comparat Neurol 310:429–474CrossRef
go back to reference Pyke A, Betts S, Fincham JM, Anderson JR (2015) Visuospatial referents facilitate the learning and transfer of mathematical operations: extending the role of the angular gyrus. Cognit Affect Behav Neurosci 15:229–250CrossRef Pyke A, Betts S, Fincham JM, Anderson JR (2015) Visuospatial referents facilitate the learning and transfer of mathematical operations: extending the role of the angular gyrus. Cognit Affect Behav Neurosci 15:229–250CrossRef
go back to reference Rademacher J, Galaburda A, Kennedy D, Filipek P, Caviness V (1992) Human cerebral cortex: localization, parcellation, and morphometry with magnetic resonance imaging. J Cogn Neurosci 4:352–374CrossRef Rademacher J, Galaburda A, Kennedy D, Filipek P, Caviness V (1992) Human cerebral cortex: localization, parcellation, and morphometry with magnetic resonance imaging. J Cogn Neurosci 4:352–374CrossRef
go back to reference Raine A, Yang Y (2006) Neural foundations to moral reasoning and antisocial behavior. Soc Cognit Affect Neurosci 1:203–213CrossRef Raine A, Yang Y (2006) Neural foundations to moral reasoning and antisocial behavior. Soc Cognit Affect Neurosci 1:203–213CrossRef
go back to reference Rilling JK, Glasser MF, Preuss TM, Ma X, Zhao T, Hu X, Behrens TE (2008) The evolution of the arcuate fasciculus revealed with comparative DTI. Nat Neurosci 11:426–428CrossRef Rilling JK, Glasser MF, Preuss TM, Ma X, Zhao T, Hu X, Behrens TE (2008) The evolution of the arcuate fasciculus revealed with comparative DTI. Nat Neurosci 11:426–428CrossRef
go back to reference Robinson C, Burton H (1980) Somatotopographic organization in the second somatosensory area of M. fascicularis. J Comparat Neurol 192:43–67CrossRef Robinson C, Burton H (1980) Somatotopographic organization in the second somatosensory area of M. fascicularis. J Comparat Neurol 192:43–67CrossRef
go back to reference Rozzi S, Calzavara R, Belmalih A, Borra E, Gregoriou GG, Matelli M, Luppino G (2006) Cortical connections of the inferior parietal cortical convexity of the macaque monkey. Cereb Cortex 16:1389–1417CrossRef Rozzi S, Calzavara R, Belmalih A, Borra E, Gregoriou GG, Matelli M, Luppino G (2006) Cortical connections of the inferior parietal cortical convexity of the macaque monkey. Cereb Cortex 16:1389–1417CrossRef
go back to reference Rozzi S, Ferrari PF, Bonini L, Rizzolatti G, Fogassi L (2008) Functional organization of inferior parietal lobule convexity in the macaque monkey: electrophysiological characterization of motor, sensory and mirror responses and their correlation with cytoarchitectonic areas. Eur J Neurosci 28:1569–1588CrossRef Rozzi S, Ferrari PF, Bonini L, Rizzolatti G, Fogassi L (2008) Functional organization of inferior parietal lobule convexity in the macaque monkey: electrophysiological characterization of motor, sensory and mirror responses and their correlation with cytoarchitectonic areas. Eur J Neurosci 28:1569–1588CrossRef
go back to reference Ruschel M, Knösche TR, Friederici AD, Turner R, Geyer S, Anwander A (2014) Connectivity architecture and subdivision of the human inferior parietal cortex revealed by diffusion MRI. Cereb Cortex 24:2436–2448CrossRef Ruschel M, Knösche TR, Friederici AD, Turner R, Geyer S, Anwander A (2014) Connectivity architecture and subdivision of the human inferior parietal cortex revealed by diffusion MRI. Cereb Cortex 24:2436–2448CrossRef
go back to reference Rushworth M, Behrens T, Johansen-Berg H (2006) Connection patterns distinguish 3 regions of human parietal cortex. Cereb Cortex 16:1418–1430CrossRef Rushworth M, Behrens T, Johansen-Berg H (2006) Connection patterns distinguish 3 regions of human parietal cortex. Cereb Cortex 16:1418–1430CrossRef
go back to reference Sarkisov S, Filimonoff I, Preobrashenskaya N (1949) Cytoarchitecture of the human cortex cerebri. Medgiz, Moscow Sarkisov S, Filimonoff I, Preobrashenskaya N (1949) Cytoarchitecture of the human cortex cerebri. Medgiz, Moscow
go back to reference Schmahmann J, Pandya D (2006) Fiber pathways of the brain. Oxford University PressCrossRef Schmahmann J, Pandya D (2006) Fiber pathways of the brain. Oxford University PressCrossRef
go back to reference Schmahmann JD, Pandya DN (2007) The complex history of the fronto-occipital fasciculus. J Hist Neurosci 16:362–377CrossRef Schmahmann JD, Pandya DN (2007) The complex history of the fronto-occipital fasciculus. J Hist Neurosci 16:362–377CrossRef
go back to reference Schmahmann JD, Pandya DN, Wang R, Dai G, D’Arceuil HE, de Crespigny AJ, Wedeen V (2007) Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain 130:630–653CrossRef Schmahmann JD, Pandya DN, Wang R, Dai G, D’Arceuil HE, de Crespigny AJ, Wedeen V (2007) Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain 130:630–653CrossRef
go back to reference Schulze HA, der Areale O, der Strukturcharakteristika A (1960) Zur individuellen cytoarchitektonischen Gestaltung der linken und rechten Hemisphäre im Bereiche des Lobulus parietalis inferior. J Hirnforsch 4:486–534 Schulze HA, der Areale O, der Strukturcharakteristika A (1960) Zur individuellen cytoarchitektonischen Gestaltung der linken und rechten Hemisphäre im Bereiche des Lobulus parietalis inferior. J Hirnforsch 4:486–534
go back to reference Seghier ML (2013) The angular gyrus: multiple functions and multiple subdivisions. Neuroscientist 19:43–61CrossRef Seghier ML (2013) The angular gyrus: multiple functions and multiple subdivisions. Neuroscientist 19:43–61CrossRef
go back to reference Sharp DJ, Awad M, Warren JE, Wise RJ, Vigliocco G, Scott SK (2010) The neural response to changing semantic and perceptual complexity during language processing. Hum Brain Mapp 31:365–377 Sharp DJ, Awad M, Warren JE, Wise RJ, Vigliocco G, Scott SK (2010) The neural response to changing semantic and perceptual complexity during language processing. Hum Brain Mapp 31:365–377
go back to reference Simon O, Mangin J-F, Cohen L, Le Bihan D, Dehaene S (2002) Topographical layout of hand, eye, calculation, and language-related areas in the human parietal lobe. Neuron 33:475–487CrossRef Simon O, Mangin J-F, Cohen L, Le Bihan D, Dehaene S (2002) Topographical layout of hand, eye, calculation, and language-related areas in the human parietal lobe. Neuron 33:475–487CrossRef
go back to reference Smith GE (1907) A new topographical survey of the human cerebral cortex, being an account of the distribution of the anatomically distinct cortical areas and their relationship to the cerebral sulci. J Anat Physiol 41:237 Smith GE (1907) A new topographical survey of the human cerebral cortex, being an account of the distribution of the anatomically distinct cortical areas and their relationship to the cerebral sulci. J Anat Physiol 41:237
go back to reference Sotiras A, Toledo JB, Gur RE, Gur RC, Satterthwaite TD, Davatzikos C (2017) Patterns of coordinated cortical remodeling during adolescence and their associations with functional specialization and evolutionary expansion. Proc Natl Acad Sci 114:3527–3532CrossRef Sotiras A, Toledo JB, Gur RE, Gur RC, Satterthwaite TD, Davatzikos C (2017) Patterns of coordinated cortical remodeling during adolescence and their associations with functional specialization and evolutionary expansion. Proc Natl Acad Sci 114:3527–3532CrossRef
go back to reference Spreng RN, Mar RA, Kim AS (2009) The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: a quantitative meta-analysis. J Cogn Neurosci 21:489–510CrossRef Spreng RN, Mar RA, Kim AS (2009) The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: a quantitative meta-analysis. J Cogn Neurosci 21:489–510CrossRef
go back to reference Thiebaut de Schotten M, Dell’Acqua F, Valabregue R, Catani M (2012) Monkey to human comparative anatomy of the frontal lobe association tracts. Cortex 48:82–96CrossRef Thiebaut de Schotten M, Dell’Acqua F, Valabregue R, Catani M (2012) Monkey to human comparative anatomy of the frontal lobe association tracts. Cortex 48:82–96CrossRef
go back to reference Tusa RJ, Ungerleider LG (1985) The inferior longitudinal fasciculus: a reexamination in humans and monkeys. Ann Neurol 18:583–591CrossRef Tusa RJ, Ungerleider LG (1985) The inferior longitudinal fasciculus: a reexamination in humans and monkeys. Ann Neurol 18:583–591CrossRef
go back to reference Uddin LQ, Supekar K, Amin H, Rykhlevskaia E, Nguyen DA, Greicius MD, Menon V (2010) Dissociable connectivity within human angular gyrus and intraparietal sulcus: evidence from functional and structural connectivity. Cereb Cortex 20:2636–2646CrossRef Uddin LQ, Supekar K, Amin H, Rykhlevskaia E, Nguyen DA, Greicius MD, Menon V (2010) Dissociable connectivity within human angular gyrus and intraparietal sulcus: evidence from functional and structural connectivity. Cereb Cortex 20:2636–2646CrossRef
go back to reference Van Dam WO, Decker SL, Durbin JS, Vendemia JM, Desai RH (2015) Resting state signatures of domain and demand-specific working memory performance. Neuroimage 118:174–182CrossRef Van Dam WO, Decker SL, Durbin JS, Vendemia JM, Desai RH (2015) Resting state signatures of domain and demand-specific working memory performance. Neuroimage 118:174–182CrossRef
go back to reference Van Essen DC, Smith J, Glasser MF, Elam J, Donahue CJ, Dierker DL, Reid EK, Coalson T, Harwell J (2017) The brain analysis library of spatial maps and atlases (BALSA) database. Neuroimage 144:270–274CrossRef Van Essen DC, Smith J, Glasser MF, Elam J, Donahue CJ, Dierker DL, Reid EK, Coalson T, Harwell J (2017) The brain analysis library of spatial maps and atlases (BALSA) database. Neuroimage 144:270–274CrossRef
go back to reference Vijayakumar S, Sallet J, Verhagen L, Folloni D, Medendorp WP, Mars RB (2019) Mapping multiple principles of parietal–frontal cortical organization using functional connectivity. Brain Struct Funct 224:681–697CrossRef Vijayakumar S, Sallet J, Verhagen L, Folloni D, Medendorp WP, Mars RB (2019) Mapping multiple principles of parietal–frontal cortical organization using functional connectivity. Brain Struct Funct 224:681–697CrossRef
go back to reference Vogt C, Vogt O (1919) Allgemeinere ergebnisse unserer hirnforschung. J Neurol Psychol 25:279–461 Vogt C, Vogt O (1919) Allgemeinere ergebnisse unserer hirnforschung. J Neurol Psychol 25:279–461
go back to reference Von Bonin G, Bailey P (1947) The neocortex of Macaca mulatta. University of Illinois Press, Urbana Von Bonin G, Bailey P (1947) The neocortex of Macaca mulatta. University of Illinois Press, Urbana
go back to reference von Economo, C.F., and Koskinas, G.N. (1925). Die cytoarchitektonik der hirnrinde des erwachsenen menschen (J. Springer). von Economo, C.F., and Koskinas, G.N. (1925). Die cytoarchitektonik der hirnrinde des erwachsenen menschen (J. Springer).
go back to reference Wang J, Xie S, Guo X, Becker B, Fox PT, Eickhoff SB, Jiang T (2017) Correspondent functional topography of the human left inferior parietal lobule at rest and under task revealed using resting-state f MRI and coactivation based parcellation. Hum Brain Mapp 38:1659–1675CrossRef Wang J, Xie S, Guo X, Becker B, Fox PT, Eickhoff SB, Jiang T (2017) Correspondent functional topography of the human left inferior parietal lobule at rest and under task revealed using resting-state f MRI and coactivation based parcellation. Hum Brain Mapp 38:1659–1675CrossRef
go back to reference Wang J, Zhang J, Rong M, Wei X, Zheng D, Fox PT, Eickhoff SB, Jiang T (2016) Functional topography of the right inferior parietal lobule structured by anatomical connectivity profiles. Hum Brain Mapp 37:4316–4332CrossRef Wang J, Zhang J, Rong M, Wei X, Zheng D, Fox PT, Eickhoff SB, Jiang T (2016) Functional topography of the right inferior parietal lobule structured by anatomical connectivity profiles. Hum Brain Mapp 37:4316–4332CrossRef
go back to reference Xu T, Nenning K-H, Schwartz E, Hong S-J, Vogelstein JT, Goulas A, Fair DA, Schroeder CE, Margulies DS, Smallwood J (2020) Cross-species functional alignment reveals evolutionary hierarchy within the connectome. Neuroimage 223:117346CrossRef Xu T, Nenning K-H, Schwartz E, Hong S-J, Vogelstein JT, Goulas A, Fair DA, Schroeder CE, Margulies DS, Smallwood J (2020) Cross-species functional alignment reveals evolutionary hierarchy within the connectome. Neuroimage 223:117346CrossRef
go back to reference Yeterian EH, Pandya DN, Tomaiuolo F, Petrides M (2012) The cortical connectivity of the prefrontal cortex in the monkey brain. Cortex 48:58–81CrossRef Yeterian EH, Pandya DN, Tomaiuolo F, Petrides M (2012) The cortical connectivity of the prefrontal cortex in the monkey brain. Cortex 48:58–81CrossRef
go back to reference Yokoyama C, Autio JA, Ikeda T, Sallet J, Mars RB, Van Essen DC, Glasser MF, Sadato N, Hayashi T (2021) Comparative connectomics of the primate social brain. Neuroimage 245:118693CrossRef Yokoyama C, Autio JA, Ikeda T, Sallet J, Mars RB, Van Essen DC, Glasser MF, Sadato N, Hayashi T (2021) Comparative connectomics of the primate social brain. Neuroimage 245:118693CrossRef
go back to reference Zakszewski E, Adluru N, Tromp DP, Kalin N, Alexander AL (2014) A diffusion-tensor-based white matter atlas for rhesus macaques. PLoS One 9:e107398CrossRef Zakszewski E, Adluru N, Tromp DP, Kalin N, Alexander AL (2014) A diffusion-tensor-based white matter atlas for rhesus macaques. PLoS One 9:e107398CrossRef
go back to reference Zilles K, Palomero-Gallagher N (2001) Cyto-, myelo-, and receptor architectonics of the human parietal cortex. Neuroimage 14:S8–S20CrossRef Zilles K, Palomero-Gallagher N (2001) Cyto-, myelo-, and receptor architectonics of the human parietal cortex. Neuroimage 14:S8–S20CrossRef
go back to reference Zilles K, Palomero-Gallagher N, Amunts K (2013) Development of cortical folding during evolution and ontogeny. Trends Neurosci 36:275–284CrossRef Zilles K, Palomero-Gallagher N, Amunts K (2013) Development of cortical folding during evolution and ontogeny. Trends Neurosci 36:275–284CrossRef
go back to reference Zilles K, Palomero-Gallagher N, Amunts K (2015) Myeloarchitecture and maps of the cerebral cortex. In: T. AW (eds) Brain mapping: an encyclopedic reference. Elsevier Academic Press, San Diego, pp. 137–156 Zilles K, Palomero-Gallagher N, Amunts K (2015) Myeloarchitecture and maps of the cerebral cortex. In: T. AW (eds) Brain mapping: an encyclopedic reference. Elsevier Academic Press, San Diego, pp. 137–156
go back to reference Bellana B, Mansour R, Ladyka-Wojcik N, Grady CL, Moscovitch M (2022) Recollection and prior knowledge recruit the left angular gyrus during recognition Bellana B, Mansour R, Ladyka-Wojcik N, Grady CL, Moscovitch M (2022) Recollection and prior knowledge recruit the left angular gyrus during recognition
go back to reference Bush A, Bonnici HM (2022) The integrative nature of angular gyrus function in episodic memory recollection; merging theories into an integrative account Bush A, Bonnici HM (2022) The integrative nature of angular gyrus function in episodic memory recollection; merging theories into an integrative account
go back to reference Desai RH, Tadimeti U, Riccardi N (2022) People, places, and words in the semantic system Desai RH, Tadimeti U, Riccardi N (2022) People, places, and words in the semantic system
go back to reference Graves W, Purcell J, Rothlein D, Staples R, Bolger D, Rosenberg-Lee M (2022) Correspondence between cognitive and neural representations for phonology, orthography, and semantics in supramarginal compared to angular gyrus Graves W, Purcell J, Rothlein D, Staples R, Bolger D, Rosenberg-Lee M (2022) Correspondence between cognitive and neural representations for phonology, orthography, and semantics in supramarginal compared to angular gyrus
go back to reference Kuhnke P, Chapman CA, Turker S, Cheung VKM, Graessner A, Martin S, Rysop AU, Williams KA, Hartwigsen G (2022) The role of the angular gyrus in semantic cognition—a synthesis of 7 functional neuroimaging studies Kuhnke P, Chapman CA, Turker S, Cheung VKM, Graessner A, Martin S, Rysop AU, Williams KA, Hartwigsen G (2022) The role of the angular gyrus in semantic cognition—a synthesis of 7 functional neuroimaging studies
go back to reference Pinheiro-Chagas P, Parvizi J (2022) Reassessing the involvement of human angular gyrus in arithmetic processing with intracranial EEG recordings Pinheiro-Chagas P, Parvizi J (2022) Reassessing the involvement of human angular gyrus in arithmetic processing with intracranial EEG recordings
go back to reference Rusconi EM (2022) Gerstmann’s tetrad untied in children Rusconi EM (2022) Gerstmann’s tetrad untied in children
go back to reference Sokolowski MH, Ansari D (2022) The role of the angular gyrus in numerical and mathematical processing Sokolowski MH, Ansari D (2022) The role of the angular gyrus in numerical and mathematical processing
go back to reference Vijayakumar S, Freches GB, Sallet J, Klein-Flugge M, Jensen D, Medendorp WP, Mars RB (2022) Connectional topographies in human and macaque inferior parietal lobe. Vijayakumar S, Freches GB, Sallet J, Klein-Flugge M, Jensen D, Medendorp WP, Mars RB (2022) Connectional topographies in human and macaque inferior parietal lobe.
go back to reference Zhang G, Hung J, Lin N (2022) The coexistence of the social semantic effect, difficulty-induced deactivation effect, and task-induced deactivation effect in the default mode network. Zhang G, Hung J, Lin N (2022) The coexistence of the social semantic effect, difficulty-induced deactivation effect, and task-induced deactivation effect in the default mode network.
Metadata
Title
Architecture and connectivity of the human angular gyrus and of its homolog region in the macaque brain
Authors
Meiqi Niu
Nicola Palomero-Gallagher
Publication date
13-06-2022
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 1/2023
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-022-02509-7

Other articles of this Issue 1/2023

Brain Structure and Function 1/2023 Go to the issue