Skip to main content
Top
Published in: Orphanet Journal of Rare Diseases 1/2024

Open Access 01-12-2024 | Disorders of Intellectual Development | Research

The spectrum of neurological presentation in individuals affected by TBL1XR1 gene defects

Authors: Amanda Nagy, Francine Molay, Sarah Hargadon, Claudia Brito Pires, Natalie Grant, Lizbeth De La Rosa Abreu, Jin Yun Chen, Precilla D’Souza, Ellen Macnamara, Cynthia Tifft, Catherine Becker, Claudio Melo De Gusmao, Vikram Khurana, Ann M. Neumeyer, Florian S. Eichler

Published in: Orphanet Journal of Rare Diseases | Issue 1/2024

Login to get access

Abstract

Background

TBL1XR1 encodes a F-box-like/WD40 repeat-containing protein that plays a role in transcription mediated by nuclear receptors and is a known genetic cause of neurodevelopmental disease of childhood (OMIM# 608628). Yet the developmental trajectory and progression of neurologic symptoms over time remains poorly understood.

Methods

We developed and distributed a survey to two closed Facebook groups devoted to families of patients with TBL1XR1-related disorder. The survey consisted of 14 subsections focused upon the developmental trajectories of cognitive, behavioral, motor, and other neurological abnormalities. Data were collected and managed using REDCap electronic data capture tools.

Results

Caregivers of 41 patients with a TBL1XR1-related disorder completed the cross-sectional survey. All reported variants affecting a single amino acid, including missense mutations and in-frame deletions, were found in the WD40 repeat regions of Tbl1xr1. These are domains considered important for protein–protein interactions that may plausibly underlie disease pathology. The majority of patients were diagnosed with a neurologic condition before they received their genetic diagnosis. Language appeared most significantly affected with only a minority of the cohort achieving more advanced milestones in this domain.

Conclusion

TBL1XR1-related disorder encompasses a spectrum of clinical presentations, marked by early developmental delay ranging in severity, with a subset of patients experiencing developmental regression in later childhood.
Appendix
Available only for authorised users
Literature
2.
go back to reference Hoytema van Konijnenburg EMM, Wortmann SB, Koelewijn MJ, Tseng LA, Houben R, Stöckler-Ipsiroglu S, et al. Treatable inherited metabolic disorders causing intellectual disability: 2021 review and digital app. Orphanet J Rare Dis. 2021;16:170.CrossRefPubMedPubMedCentral Hoytema van Konijnenburg EMM, Wortmann SB, Koelewijn MJ, Tseng LA, Houben R, Stöckler-Ipsiroglu S, et al. Treatable inherited metabolic disorders causing intellectual disability: 2021 review and digital app. Orphanet J Rare Dis. 2021;16:170.CrossRefPubMedPubMedCentral
3.
go back to reference EuroEPINOMICS RES Consortium, Heyne HO, Singh T, Stamberger H, AbouJamra R, Caglayan H, et al. De novo variants in neurodevelopmental disorders with epilepsy. Nat Genet. 2018;50(7):1048–53.CrossRef EuroEPINOMICS RES Consortium, Heyne HO, Singh T, Stamberger H, AbouJamra R, Caglayan H, et al. De novo variants in neurodevelopmental disorders with epilepsy. Nat Genet. 2018;50(7):1048–53.CrossRef
4.
go back to reference Ellis K, Moss J, Stefanidou C, Oliver C, Apperly I. The development of early social cognitive skills in neurogenetic syndromes associated with autism: Cornelia de Lange, fragile X and Rubinstein–Taybi syndromes. Orphanet J Rare Dis. 2021;16:488.CrossRefPubMedPubMedCentral Ellis K, Moss J, Stefanidou C, Oliver C, Apperly I. The development of early social cognitive skills in neurogenetic syndromes associated with autism: Cornelia de Lange, fragile X and Rubinstein–Taybi syndromes. Orphanet J Rare Dis. 2021;16:488.CrossRefPubMedPubMedCentral
5.
go back to reference Riggs ER, Bingaman TI, Barry CA, Behlmann A, Bluske K, Bostwick B, et al. Clinical validity assessment of genes frequently tested on intellectual disability/autism sequencing panels. Genet Med. 2022;S1098360022007560. Riggs ER, Bingaman TI, Barry CA, Behlmann A, Bluske K, Bostwick B, et al. Clinical validity assessment of genes frequently tested on intellectual disability/autism sequencing panels. Genet Med. 2022;S1098360022007560.
6.
go back to reference Li JY, Daniels G, Wang J, Zhang X. TBL1XR1 in physiological and pathological states. Am J Clin Exp Urol. 2015;3(1):13–23.PubMedPubMedCentral Li JY, Daniels G, Wang J, Zhang X. TBL1XR1 in physiological and pathological states. Am J Clin Exp Urol. 2015;3(1):13–23.PubMedPubMedCentral
7.
go back to reference Venturutti L, Teater M, Zhai A, Chadburn A, Babiker L, Kim D, et al. TBL1XR1 mutations drive extranodal lymphoma by inducing a pro-tumorigenic memory fate. Cell. 2020;182(2):297-316.e27.CrossRefPubMedPubMedCentral Venturutti L, Teater M, Zhai A, Chadburn A, Babiker L, Kim D, et al. TBL1XR1 mutations drive extranodal lymphoma by inducing a pro-tumorigenic memory fate. Cell. 2020;182(2):297-316.e27.CrossRefPubMedPubMedCentral
8.
go back to reference Quan Y, Zhang Q, Chen M, Wu H, Ou J, Shen Y, et al. Genotype and phenotype correlations for TBL1XR1 in neurodevelopmental disorders. J Mol Neurosci. 2020;70(12):2085–92.CrossRefPubMed Quan Y, Zhang Q, Chen M, Wu H, Ou J, Shen Y, et al. Genotype and phenotype correlations for TBL1XR1 in neurodevelopmental disorders. J Mol Neurosci. 2020;70(12):2085–92.CrossRefPubMed
9.
10.
go back to reference Heinen CA, Jongejan A, Watson PJ, Redeker B, Boelen A, Boudzovitch-Surovtseva O, et al. A specific mutation in TBL1XR1 causes Pierpont syndrome. J Med Genet. 2016;53(5):330–7.CrossRefPubMed Heinen CA, Jongejan A, Watson PJ, Redeker B, Boelen A, Boudzovitch-Surovtseva O, et al. A specific mutation in TBL1XR1 causes Pierpont syndrome. J Med Genet. 2016;53(5):330–7.CrossRefPubMed
11.
go back to reference Pierpont MEM, Stewart FJ, Gorlin RJ. Plantar lipomatosis, unusual facial phenotype and developmental delay: a new MCA/MR syndrome. Am J Med Genet. 1998;75(1):18–21.CrossRefPubMed Pierpont MEM, Stewart FJ, Gorlin RJ. Plantar lipomatosis, unusual facial phenotype and developmental delay: a new MCA/MR syndrome. Am J Med Genet. 1998;75(1):18–21.CrossRefPubMed
13.
go back to reference Kahlert AK, Weidensee S, Mackenroth L, Porrmann J, Rump A, Di Donato N, et al. Pierpont syndrome: report of a new patient. Clin Dysmorphol. 2017;26(4):205–8.CrossRefPubMed Kahlert AK, Weidensee S, Mackenroth L, Porrmann J, Rump A, Di Donato N, et al. Pierpont syndrome: report of a new patient. Clin Dysmorphol. 2017;26(4):205–8.CrossRefPubMed
14.
go back to reference Oudesluijs GG, Hordijk R, Boon M, Sijens PE, Hennekam RCM. Plantar lipomatosis, unusual facies, and developmental delay: confirmation of Pierpont syndrome. Am J Med Genet A. 2005;137A(1):77–80.CrossRef Oudesluijs GG, Hordijk R, Boon M, Sijens PE, Hennekam RCM. Plantar lipomatosis, unusual facies, and developmental delay: confirmation of Pierpont syndrome. Am J Med Genet A. 2005;137A(1):77–80.CrossRef
15.
go back to reference Lemattre C, Thevenon J, Duffourd Y, Nambot S, Haquet E, Vuadelle B, et al. TBL1XR1 mutations in Pierpont syndrome are not restricted to the recurrent p.Tyr446Cys mutation. Am J Med Genet A. 2018;176(12):2813–8.CrossRefPubMed Lemattre C, Thevenon J, Duffourd Y, Nambot S, Haquet E, Vuadelle B, et al. TBL1XR1 mutations in Pierpont syndrome are not restricted to the recurrent p.Tyr446Cys mutation. Am J Med Genet A. 2018;176(12):2813–8.CrossRefPubMed
16.
go back to reference Bajaj S, Gadgil P, Seenappa V, Setty PN, Joshi V, Shah S. Novel de novo TBL1XR1 variant causing PIERPONT syndrome in an Indian child: a case report and genotype–phenotype review of reported patients. J Pediatr Neurol. 2022;s-0042-1745808. Bajaj S, Gadgil P, Seenappa V, Setty PN, Joshi V, Shah S. Novel de novo TBL1XR1 variant causing PIERPONT syndrome in an Indian child: a case report and genotype–phenotype review of reported patients. J Pediatr Neurol. 2022;s-0042-1745808.
17.
go back to reference Saitsu H, Tohyama J, Walsh T, Kato M, Kobayashi Y, Lee M, et al. A girl with West syndrome and autistic features harboring a de novo TBL1XR1 mutation. J Hum Genet. 2014;59(10):581–3.CrossRefPubMed Saitsu H, Tohyama J, Walsh T, Kato M, Kobayashi Y, Lee M, et al. A girl with West syndrome and autistic features harboring a de novo TBL1XR1 mutation. J Hum Genet. 2014;59(10):581–3.CrossRefPubMed
18.
go back to reference Carrera IA, Fernández-Burriel M, Lapunzina P, Tenorio JA, Navas VDG, Isidro EM. TBL1XR1 associated intellectual disability, a new missense variant with dysmorphic features plus autism: expanding the phenotypic spectrum. Clin Genet. 2021;99(6):812–7.CrossRef Carrera IA, Fernández-Burriel M, Lapunzina P, Tenorio JA, Navas VDG, Isidro EM. TBL1XR1 associated intellectual disability, a new missense variant with dysmorphic features plus autism: expanding the phenotypic spectrum. Clin Genet. 2021;99(6):812–7.CrossRef
19.
go back to reference Kweon K, Shin ES, Park KJ, Lee JK, Joo Y, Kim HW. Genome-wide analysis reveals four novel loci for attention-deficit hyperactivity disorder in Korean youths. J Korean Acad Child Adolesc Psychiatry. 2018;29(2):62–72.CrossRef Kweon K, Shin ES, Park KJ, Lee JK, Joo Y, Kim HW. Genome-wide analysis reveals four novel loci for attention-deficit hyperactivity disorder in Korean youths. J Korean Acad Child Adolesc Psychiatry. 2018;29(2):62–72.CrossRef
20.
21.
go back to reference O’Roak BJ, Vives L, Fu W, Egertson JD, Stanaway IB, Phelps IG, et al. Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science. 2012;338(6114):1619–22.ADSCrossRefPubMedPubMedCentral O’Roak BJ, Vives L, Fu W, Egertson JD, Stanaway IB, Phelps IG, et al. Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science. 2012;338(6114):1619–22.ADSCrossRefPubMedPubMedCentral
22.
go back to reference Pons L, Cordier MP, Labalme A, Till M, Louvrier C, Schluth-Bolard C, et al. A new syndrome of intellectual disability with dysmorphism due to TBL1XR1 deletion. Am J Med Genet A. 2015;167(1):164–8.CrossRef Pons L, Cordier MP, Labalme A, Till M, Louvrier C, Schluth-Bolard C, et al. A new syndrome of intellectual disability with dysmorphism due to TBL1XR1 deletion. Am J Med Genet A. 2015;167(1):164–8.CrossRef
23.
go back to reference Riehmer V, Erger F, Herkenrath P, Seland S, Jackels M, Wiater A, et al. A heritable microduplication encompassing TBL1XR1 causes a genomic sister-disorder for the 3q26.32 microdeletion syndrome. Am J Med Genet A. 2017;173(8):2132–8.CrossRefPubMed Riehmer V, Erger F, Herkenrath P, Seland S, Jackels M, Wiater A, et al. A heritable microduplication encompassing TBL1XR1 causes a genomic sister-disorder for the 3q26.32 microdeletion syndrome. Am J Med Genet A. 2017;173(8):2132–8.CrossRefPubMed
24.
go back to reference Stessman HAF, Xiong B, Coe BP, Wang T, Hoekzema K, Fenckova M, et al. Targeted sequencing identifies 91 neurodevelopmental disorder risk genes with autism and developmental disability biases. Nat Genet. 2017;49(4):515–26.CrossRefPubMedPubMedCentral Stessman HAF, Xiong B, Coe BP, Wang T, Hoekzema K, Fenckova M, et al. Targeted sequencing identifies 91 neurodevelopmental disorder risk genes with autism and developmental disability biases. Nat Genet. 2017;49(4):515–26.CrossRefPubMedPubMedCentral
25.
go back to reference Tabet AC, Leroy C, Dupont C, Serrano E, Hernandez K, Gallard J, et al. De novo deletion of TBL1XR1 in a child with non-specific developmental delay supports its implication in intellectual disability. Am J Med Genet A. 2014;164(9):2335–7.CrossRef Tabet AC, Leroy C, Dupont C, Serrano E, Hernandez K, Gallard J, et al. De novo deletion of TBL1XR1 in a child with non-specific developmental delay supports its implication in intellectual disability. Am J Med Genet A. 2014;164(9):2335–7.CrossRef
26.
go back to reference Vaqueiro AC, de Oliveira CP, Cordoba MS, Versiani BR, de Carvalho CX, Alves Rodrigues PG, et al. Expanding the spectrum of TBL1XR1 deletion: report of a patient with brain and cardiac malformations. Eur J Med Genet. 2018;61(1):29–33.CrossRefPubMed Vaqueiro AC, de Oliveira CP, Cordoba MS, Versiani BR, de Carvalho CX, Alves Rodrigues PG, et al. Expanding the spectrum of TBL1XR1 deletion: report of a patient with brain and cardiac malformations. Eur J Med Genet. 2018;61(1):29–33.CrossRefPubMed
27.
go back to reference Yamamoto T, Imaizumi T, Yamamoto-Shimojima K, Lu Y, Yanagishita T, Shimada S, et al. Genomic backgrounds of Japanese patients with undiagnosed neurodevelopmental disorders. Brain Dev. 2019;41(9):776–82.CrossRefPubMed Yamamoto T, Imaizumi T, Yamamoto-Shimojima K, Lu Y, Yanagishita T, Shimada S, et al. Genomic backgrounds of Japanese patients with undiagnosed neurodevelopmental disorders. Brain Dev. 2019;41(9):776–82.CrossRefPubMed
28.
go back to reference Shen Y, Yuan M, Luo H, Yang Z, Liang M, Gan J. Rare variant of TBL1XR1 in West syndrome: a case report. Mol Genet Genom Med. n/a(n/a):e1991. Shen Y, Yuan M, Luo H, Yang Z, Liang M, Gan J. Rare variant of TBL1XR1 in West syndrome: a case report. Mol Genet Genom Med. n/a(n/a):e1991.
29.
go back to reference Kruusvee V, Lyst MJ, Taylor C, Tarnauskaitė Ž, Bird AP, Cook AG. Structure of the MeCP2–TBLR1 complex reveals a molecular basis for Rett syndrome and related disorders. Proc Natl Acad Sci USA. 2017;114(16):E3243–50.ADSCrossRefPubMedPubMedCentral Kruusvee V, Lyst MJ, Taylor C, Tarnauskaitė Ž, Bird AP, Cook AG. Structure of the MeCP2–TBLR1 complex reveals a molecular basis for Rett syndrome and related disorders. Proc Natl Acad Sci USA. 2017;114(16):E3243–50.ADSCrossRefPubMedPubMedCentral
30.
go back to reference Zaghlula M, Glaze DG, Enns GM, Potocki L, Schwabe AL, Suter B. Current clinical evidence does not support a link between TBL1XR1 and Rett syndrome: Description of one patient with Rett features and a novel mutation in TBL1XR1, and a review of TBL1XR1 phenotypes. Am J Med Genet A. 2018;176(7):1683–7.CrossRefPubMed Zaghlula M, Glaze DG, Enns GM, Potocki L, Schwabe AL, Suter B. Current clinical evidence does not support a link between TBL1XR1 and Rett syndrome: Description of one patient with Rett features and a novel mutation in TBL1XR1, and a review of TBL1XR1 phenotypes. Am J Med Genet A. 2018;176(7):1683–7.CrossRefPubMed
31.
go back to reference Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377–81.CrossRefPubMed Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377–81.CrossRefPubMed
32.
go back to reference Harris PA, Taylor R, Minor BL, Elliott V, Fernandez M, O’Neal L, et al. The REDCap consortium: building an international community of software platform partners. J Biomed Inform. 2019;95:103208.CrossRefPubMedPubMedCentral Harris PA, Taylor R, Minor BL, Elliott V, Fernandez M, O’Neal L, et al. The REDCap consortium: building an international community of software platform partners. J Biomed Inform. 2019;95:103208.CrossRefPubMedPubMedCentral
33.
34.
go back to reference Nagy A, Molay F, Eichler F. eP196: phenotypic and genotypic heterogeneity related to gene defects in TBL1XR1. Genet Med. 2022;24(S3):S121–2.CrossRef Nagy A, Molay F, Eichler F. eP196: phenotypic and genotypic heterogeneity related to gene defects in TBL1XR1. Genet Med. 2022;24(S3):S121–2.CrossRef
35.
go back to reference Nagy A, Molay F, Brito Pires C, Grant N, Becker C, Neumeyer A, et al. 104. Phenotypic and genotypic heterogeneity related to gene defects in TBL1XR1. Ann Neurol. 2022;92(S28):S114. Nagy A, Molay F, Brito Pires C, Grant N, Becker C, Neumeyer A, et al. 104. Phenotypic and genotypic heterogeneity related to gene defects in TBL1XR1. Ann Neurol. 2022;92(S28):S114.
36.
go back to reference Slavotinek A, Pua H, Hodoglugil U, Abadie J, Shieh J, Van Ziffle J, et al. Pierpont syndrome associated with the p.Tyr446Cys missense mutation in TBL1XR1. Eur J Med Genet. 2017;60(10):504–8.CrossRefPubMed Slavotinek A, Pua H, Hodoglugil U, Abadie J, Shieh J, Van Ziffle J, et al. Pierpont syndrome associated with the p.Tyr446Cys missense mutation in TBL1XR1. Eur J Med Genet. 2017;60(10):504–8.CrossRefPubMed
37.
go back to reference Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581(7809):434–43.ADSCrossRefPubMedPubMedCentral Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581(7809):434–43.ADSCrossRefPubMedPubMedCentral
38.
go back to reference Sahni N, Yi S, Taipale M, Fuxman Bass JI, Coulombe-Huntington J, Yang F, et al. Widespread macromolecular interaction perturbations in human genetic disorders. Cell. 2015;161(3):647–60.CrossRefPubMedPubMedCentral Sahni N, Yi S, Taipale M, Fuxman Bass JI, Coulombe-Huntington J, Yang F, et al. Widespread macromolecular interaction perturbations in human genetic disorders. Cell. 2015;161(3):647–60.CrossRefPubMedPubMedCentral
39.
go back to reference Williams CA, Beaudet AL, Clayton-Smith J, Knoll JH, Kyllerman M, Laan LA, et al. Angelman syndrome 2005: updated consensus for diagnostic criteria. Am J Med Genet A. 2006;140A(5):413–8.CrossRef Williams CA, Beaudet AL, Clayton-Smith J, Knoll JH, Kyllerman M, Laan LA, et al. Angelman syndrome 2005: updated consensus for diagnostic criteria. Am J Med Genet A. 2006;140A(5):413–8.CrossRef
40.
go back to reference Gold WA, Krishnarajy R, Ellaway C, Christodoulou J. Rett syndrome: a genetic update and clinical review focusing on comorbidities. ACS Chem Neurosci. 2018;9(2):167–76.CrossRefPubMed Gold WA, Krishnarajy R, Ellaway C, Christodoulou J. Rett syndrome: a genetic update and clinical review focusing on comorbidities. ACS Chem Neurosci. 2018;9(2):167–76.CrossRefPubMed
41.
go back to reference Einspieler C, Marschik PB. Regression in Rett syndrome: developmental pathways to its onset. Neurosci Biobehav Rev. 2019;98:320–32.CrossRefPubMed Einspieler C, Marschik PB. Regression in Rett syndrome: developmental pathways to its onset. Neurosci Biobehav Rev. 2019;98:320–32.CrossRefPubMed
42.
go back to reference Frank Y. The neurological manifestations of Phelan-McDermid syndrome. Pediatr Neurol. 2021;122:59–64.CrossRefPubMed Frank Y. The neurological manifestations of Phelan-McDermid syndrome. Pediatr Neurol. 2021;122:59–64.CrossRefPubMed
Metadata
Title
The spectrum of neurological presentation in individuals affected by TBL1XR1 gene defects
Authors
Amanda Nagy
Francine Molay
Sarah Hargadon
Claudia Brito Pires
Natalie Grant
Lizbeth De La Rosa Abreu
Jin Yun Chen
Precilla D’Souza
Ellen Macnamara
Cynthia Tifft
Catherine Becker
Claudio Melo De Gusmao
Vikram Khurana
Ann M. Neumeyer
Florian S. Eichler
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Orphanet Journal of Rare Diseases / Issue 1/2024
Electronic ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-024-03083-3

Other articles of this Issue 1/2024

Orphanet Journal of Rare Diseases 1/2024 Go to the issue