Skip to main content
Top
Published in: Neurological Sciences 4/2022

01-04-2022 | Disorders of Intellectual Development | Brief Communication

Identification of a novel de novo mutation in the CTNNB1 gene in an Iranian patient with intellectual disability

Authors: Sepide Dashti, Shadab Salehpour, Mohammad-Reza Ghasemi, Hossein Sadeghi, Masoumeh Rostami, Farzad Hashemi-Gorji, Reza Mirfakhraie, Vahid Reza Yassaee, Mohammad Miryounesi

Published in: Neurological Sciences | Issue 4/2022

Login to get access

Abstract

CTNNB1 encodes for the β-catenin protein, a component of the cadherin adhesion complex, which regulates cell–cell adhesion and gene expression in the canonical Wnt signaling pathway. Mutations in CTNNB1 have been reported to be associated with cancer and mental disorders. Recently, loss-of-function mutations in CTNNB1 have been observed in patients with intellectual disability and some other clinical manifestations including motor and language delays, microcephaly, and mild visual defects. We report an 8-year-old Iranian girl with intellectual disability, hypotonia, impaired vision such as vitreomacular adhesion, motor delay, and speech delay. A novel, de novo nonsense mutation (c.1014G > A; p.Trp338Ter) in exon 7 of the CTNNB1 (NM_001904) gene was detected and confirmed by whole-exome sequencing and Sanger sequencing, respectively. This study helps to expand the growing list of loss-of-function mutations known in the CTNNB1 gene.
Literature
1.
go back to reference Kuechler A, Willemsen MH, Albrecht B, Bacino CA, Bartholomew DW, van Bokhoven H et al (2015) De novo mutations in beta-catenin (CTNNB1) appear to be a frequent cause of intellectual disability: expanding the mutational and clinical spectrum. Hum Genet 134(1):97–109CrossRef Kuechler A, Willemsen MH, Albrecht B, Bacino CA, Bartholomew DW, van Bokhoven H et al (2015) De novo mutations in beta-catenin (CTNNB1) appear to be a frequent cause of intellectual disability: expanding the mutational and clinical spectrum. Hum Genet 134(1):97–109CrossRef
2.
go back to reference Kharbanda M, Pilz DT, Tomkins S, Chandler K, Saggar A, Fryer A et al (2017) Clinical features associated with CTNNB1 de novo loss of function mutations in ten individuals. Eur J Med Genet 60(2):130–135CrossRef Kharbanda M, Pilz DT, Tomkins S, Chandler K, Saggar A, Fryer A et al (2017) Clinical features associated with CTNNB1 de novo loss of function mutations in ten individuals. Eur J Med Genet 60(2):130–135CrossRef
3.
go back to reference Scimone C, Donato L, Marino S, Alafaci C, D’Angelo R, Sidoti A (2019) Vis-à-vis: a focus on genetic features of cerebral cavernous malformations and brain arteriovenous malformations pathogenesis. Neurol Sci 40(2):243–251CrossRef Scimone C, Donato L, Marino S, Alafaci C, D’Angelo R, Sidoti A (2019) Vis-à-vis: a focus on genetic features of cerebral cavernous malformations and brain arteriovenous malformations pathogenesis. Neurol Sci 40(2):243–251CrossRef
4.
go back to reference Thomas KR, Capecchi MR (1990) Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature 346(6287):847–850CrossRef Thomas KR, Capecchi MR (1990) Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature 346(6287):847–850CrossRef
5.
go back to reference Brault V, Moore R, Kutsch S, Ishibashi M, Rowitch DH, McMahon AP et al (2001) Inactivation of the (β)-catenin gene by Wnt1-Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development. Development 128(8):1253–1264CrossRef Brault V, Moore R, Kutsch S, Ishibashi M, Rowitch DH, McMahon AP et al (2001) Inactivation of the (β)-catenin gene by Wnt1-Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development. Development 128(8):1253–1264CrossRef
6.
go back to reference Miller S, Dykes D, Polesky H (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16(3):1215CrossRef Miller S, Dykes D, Polesky H (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16(3):1215CrossRef
7.
go back to reference Zimmermann M, Deininger N, Willikens S, Haack TB, Grundmann-Hauser K, Streubel B et al (2020) Tetraparesis and sensorimotor axonal polyneuropathy due to co-occurrence of Pompe disease and hereditary ATTR amyloidosis. Neurol Sci 42(4):1523–1525 Zimmermann M, Deininger N, Willikens S, Haack TB, Grundmann-Hauser K, Streubel B et al (2020) Tetraparesis and sensorimotor axonal polyneuropathy due to co-occurrence of Pompe disease and hereditary ATTR amyloidosis. Neurol Sci 42(4):1523–1525
8.
go back to reference McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A et al (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9):1297–1303CrossRef McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A et al (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9):1297–1303CrossRef
9.
go back to reference Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38(16):e164-eCrossRef Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38(16):e164-eCrossRef
10.
go back to reference Schwarz JM, Cooper DN, Schuelke M, Seelow D (2014) MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods 11(4):361–362CrossRef Schwarz JM, Cooper DN, Schuelke M, Seelow D (2014) MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods 11(4):361–362CrossRef
11.
go back to reference Shihab HA, Gough J, Cooper DN, Stenson PD, Barker GL, Edwards KJ et al (2013) Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Hum Mutat 34(1):57–65CrossRef Shihab HA, Gough J, Cooper DN, Stenson PD, Barker GL, Edwards KJ et al (2013) Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Hum Mutat 34(1):57–65CrossRef
12.
go back to reference Quang D, Chen Y, Xie X (2015) DANN: a deep learning approach for annotating the pathogenicity of genetic variants. Bioinformatics 31(5):761–763CrossRef Quang D, Chen Y, Xie X (2015) DANN: a deep learning approach for annotating the pathogenicity of genetic variants. Bioinformatics 31(5):761–763CrossRef
13.
go back to reference Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC et al (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612CrossRef Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC et al (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612CrossRef
14.
go back to reference Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17(5):405–423CrossRef Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17(5):405–423CrossRef
15.
go back to reference Keller R, Basta R, Salerno L, Elia M (2017) Autism, epilepsy, and synaptopathies: a not rare association. Neurol Sci 38(8):1353–1361CrossRef Keller R, Basta R, Salerno L, Elia M (2017) Autism, epilepsy, and synaptopathies: a not rare association. Neurol Sci 38(8):1353–1361CrossRef
16.
go back to reference De Ligt J, Willemsen MH, Van Bon BW, Kleefstra T, Yntema HG, Kroes T et al (2012) Diagnostic exome sequencing in persons with severe intellectual disability. N Engl J Med 367(20):1921–1929CrossRef De Ligt J, Willemsen MH, Van Bon BW, Kleefstra T, Yntema HG, Kroes T et al (2012) Diagnostic exome sequencing in persons with severe intellectual disability. N Engl J Med 367(20):1921–1929CrossRef
17.
go back to reference Dubruc E, Putoux A, Labalme A, Rougeot C, Sanlaville D, Edery P (2014) A new intellectual disability syndrome caused by CTNNB1 haploinsufficiency. Am J Med Genet A 164(6):1571–1575CrossRef Dubruc E, Putoux A, Labalme A, Rougeot C, Sanlaville D, Edery P (2014) A new intellectual disability syndrome caused by CTNNB1 haploinsufficiency. Am J Med Genet A 164(6):1571–1575CrossRef
18.
go back to reference Tucci V, Kleefstra T, Hardy A, Heise I, Maggi S, Willemsen MH et al (2014) Dominant β-catenin mutations cause intellectual disability with recognizable syndromic features. J Clin Investig 124(4):1468–1482CrossRef Tucci V, Kleefstra T, Hardy A, Heise I, Maggi S, Willemsen MH et al (2014) Dominant β-catenin mutations cause intellectual disability with recognizable syndromic features. J Clin Investig 124(4):1468–1482CrossRef
19.
go back to reference Winczewska-Wiktor A, Badura-Stronka M, Monies-Nowicka A, Nowicki MM, Steinborn B, Latos-Bieleńska A et al (2016) A de novo CTNNB1 nonsense mutation associated with syndromic atypical hyperekplexia, microcephaly and intellectual disability: a case report. BMC Neurol 16(1):1–6CrossRef Winczewska-Wiktor A, Badura-Stronka M, Monies-Nowicka A, Nowicki MM, Steinborn B, Latos-Bieleńska A et al (2016) A de novo CTNNB1 nonsense mutation associated with syndromic atypical hyperekplexia, microcephaly and intellectual disability: a case report. BMC Neurol 16(1):1–6CrossRef
20.
go back to reference Wang H, Zhao Y, Yang L, Han S, Qi M (2019) Identification of a novel splice mutation in CTNNB1 gene in a Chinese family with both severe intellectual disability and serious visual defects. Neurol Sci 40(8):1701–1704CrossRef Wang H, Zhao Y, Yang L, Han S, Qi M (2019) Identification of a novel splice mutation in CTNNB1 gene in a Chinese family with both severe intellectual disability and serious visual defects. Neurol Sci 40(8):1701–1704CrossRef
21.
go back to reference Valenta T, Hausmann G, Basler K (2012) The many faces and functions of β-catenin. EMBO J 31(12):2714–2736CrossRef Valenta T, Hausmann G, Basler K (2012) The many faces and functions of β-catenin. EMBO J 31(12):2714–2736CrossRef
22.
go back to reference Clevers H, Nusse R (2012) Wnt/β-catenin signaling and disease. Cell 149(6):1192–1205CrossRef Clevers H, Nusse R (2012) Wnt/β-catenin signaling and disease. Cell 149(6):1192–1205CrossRef
23.
go back to reference Kobayashi M, Honma T, Matsuda Y, Suzuki Y, Narisawa R, Ajioka Y et al (2000) Nuclear translocation of beta-catenin in colorectal cancer. Br J Cancer 82(10):1689–1693CrossRef Kobayashi M, Honma T, Matsuda Y, Suzuki Y, Narisawa R, Ajioka Y et al (2000) Nuclear translocation of beta-catenin in colorectal cancer. Br J Cancer 82(10):1689–1693CrossRef
24.
go back to reference Simcha I, Shtutman M, Salomon D, Zhurinsky J, Sadot E, Geiger B et al (1998) Differential nuclear translocation and transactivation potential of β-catenin and plakoglobin. J Cell Biol 141(6):1433–1448CrossRef Simcha I, Shtutman M, Salomon D, Zhurinsky J, Sadot E, Geiger B et al (1998) Differential nuclear translocation and transactivation potential of β-catenin and plakoglobin. J Cell Biol 141(6):1433–1448CrossRef
25.
go back to reference Brigidi GS, Bamji SX (2011) Cadherin-catenin adhesion complexes at the synapse. Curr Opin Neurobiol 21(2):208–214CrossRef Brigidi GS, Bamji SX (2011) Cadherin-catenin adhesion complexes at the synapse. Curr Opin Neurobiol 21(2):208–214CrossRef
26.
go back to reference Zhang Z, Xin D, Wang P, Zhou L, Hu L, Kong X et al (2009) Noisy splicing, more than expression regulation, explains why some exons are subject to nonsense-mediated mRNA decay. BMC Biol 7(1):1–13CrossRef Zhang Z, Xin D, Wang P, Zhou L, Hu L, Kong X et al (2009) Noisy splicing, more than expression regulation, explains why some exons are subject to nonsense-mediated mRNA decay. BMC Biol 7(1):1–13CrossRef
27.
go back to reference Uchida N, Honjo Y, Johnson KR, Wheelock MJ, Takeichi M (1996) The catenin/cadherin adhesion system is localized in synaptic junctions bordering transmitter release zones. J Cell Biol 135(3):767–779CrossRef Uchida N, Honjo Y, Johnson KR, Wheelock MJ, Takeichi M (1996) The catenin/cadherin adhesion system is localized in synaptic junctions bordering transmitter release zones. J Cell Biol 135(3):767–779CrossRef
28.
go back to reference Park M, Shen K (2012) WNTs in synapse formation and neuronal circuitry. EMBO J 31(12):2697–2704CrossRef Park M, Shen K (2012) WNTs in synapse formation and neuronal circuitry. EMBO J 31(12):2697–2704CrossRef
29.
go back to reference Salinas PC (2012) Wnt signaling in the vertebrate central nervous system: from axon guidance to synaptic function. Cold Spring Harbor Perspect Biol 4(2):a008003CrossRef Salinas PC (2012) Wnt signaling in the vertebrate central nervous system: from axon guidance to synaptic function. Cold Spring Harbor Perspect Biol 4(2):a008003CrossRef
30.
go back to reference Salinas PC, Zou Y (2008) Wnt signaling in neural circuit assembly. Annu Rev Neurosci 31:339–358CrossRef Salinas PC, Zou Y (2008) Wnt signaling in neural circuit assembly. Annu Rev Neurosci 31:339–358CrossRef
31.
go back to reference Rosso SB, Inestrosa NC (2013) WNT signaling in neuronal maturation and synaptogenesis. Front Cell Neurosci 7:103CrossRef Rosso SB, Inestrosa NC (2013) WNT signaling in neuronal maturation and synaptogenesis. Front Cell Neurosci 7:103CrossRef
32.
go back to reference Molenaar M, van de Wetering M, Oosterwegel M, Peterson-Maduro J, Godsave S, Korinek V et al (1996) XTcf-3 transcription factor mediates β-catenin-induced axis formation in Xenopus embryos. Cell 86(3):391–399CrossRef Molenaar M, van de Wetering M, Oosterwegel M, Peterson-Maduro J, Godsave S, Korinek V et al (1996) XTcf-3 transcription factor mediates β-catenin-induced axis formation in Xenopus embryos. Cell 86(3):391–399CrossRef
33.
go back to reference Huelsken J, Vogel R, Brinkmann V, Erdmann B, Birchmeier C, Birchmeier W (2000) Requirement for β-catenin in anterior-posterior axis formation in mice. J Cell Biol 148(3):567–578CrossRef Huelsken J, Vogel R, Brinkmann V, Erdmann B, Birchmeier C, Birchmeier W (2000) Requirement for β-catenin in anterior-posterior axis formation in mice. J Cell Biol 148(3):567–578CrossRef
34.
go back to reference Lickert H, Kutsch S, Kanzler Bt, Tamai Y, Taketo MM, Kemler R (2002) Formation of multiple hearts in mice following deletion of β-catenin in the embryonic endoderm. Dev Cell. 3(2):171–81CrossRef Lickert H, Kutsch S, Kanzler Bt, Tamai Y, Taketo MM, Kemler R (2002) Formation of multiple hearts in mice following deletion of β-catenin in the embryonic endoderm. Dev Cell. 3(2):171–81CrossRef
35.
go back to reference McMahon AP, Bradley A (1990) The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell 62(6):1073–1085CrossRef McMahon AP, Bradley A (1990) The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell 62(6):1073–1085CrossRef
36.
go back to reference Galceran J, Miyashita-Lin EM, Devaney E, Rubenstein J, Grosschedl R (2000) Hippocampus development and generation of dentate gyrus granule cells is regulated by LEF1. Development 127(3):469–482CrossRef Galceran J, Miyashita-Lin EM, Devaney E, Rubenstein J, Grosschedl R (2000) Hippocampus development and generation of dentate gyrus granule cells is regulated by LEF1. Development 127(3):469–482CrossRef
37.
go back to reference Lee S, Tole S, Grove E, McMahon AP (2000) A local Wnt-3a signal is required for development of the mammalian hippocampus. Development 127(3):457–467CrossRef Lee S, Tole S, Grove E, McMahon AP (2000) A local Wnt-3a signal is required for development of the mammalian hippocampus. Development 127(3):457–467CrossRef
38.
go back to reference Chenn A, Walsh CA (2002) Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297(5580):365–369CrossRef Chenn A, Walsh CA (2002) Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297(5580):365–369CrossRef
39.
go back to reference Wickham RJ, Alexander JM, Eden LW, Valencia-Yang M, Llamas J, Aubrey JR et al (2019) Learning impairments and molecular changes in the brain caused by β-catenin loss. Hum Mol Genet 28(17):2965–2975CrossRef Wickham RJ, Alexander JM, Eden LW, Valencia-Yang M, Llamas J, Aubrey JR et al (2019) Learning impairments and molecular changes in the brain caused by β-catenin loss. Hum Mol Genet 28(17):2965–2975CrossRef
40.
go back to reference Gao X, Arlotta P, Macklis JD, Chen J (2007) Conditional knock-out of β-catenin in postnatal-born dentate gyrus granule neurons results in dendritic malformation. J Neurosci 27(52):14317–14325CrossRef Gao X, Arlotta P, Macklis JD, Chen J (2007) Conditional knock-out of β-catenin in postnatal-born dentate gyrus granule neurons results in dendritic malformation. J Neurosci 27(52):14317–14325CrossRef
Metadata
Title
Identification of a novel de novo mutation in the CTNNB1 gene in an Iranian patient with intellectual disability
Authors
Sepide Dashti
Shadab Salehpour
Mohammad-Reza Ghasemi
Hossein Sadeghi
Masoumeh Rostami
Farzad Hashemi-Gorji
Reza Mirfakhraie
Vahid Reza Yassaee
Mohammad Miryounesi
Publication date
01-04-2022
Publisher
Springer International Publishing
Published in
Neurological Sciences / Issue 4/2022
Print ISSN: 1590-1874
Electronic ISSN: 1590-3478
DOI
https://doi.org/10.1007/s10072-022-05904-4

Other articles of this Issue 4/2022

Neurological Sciences 4/2022 Go to the issue