Skip to main content
Top
Published in: BMC Endocrine Disorders 1/2021

Open Access 01-12-2021 | Disorders of Intellectual Development | Case report

A novel variant in the PDE4D gene is the cause of Acrodysostosis type 2 in a Lithuanian patient: a case report

Authors: Gunda Petraitytė, Kamilė Šiaurytė, Violeta Mikštienė, Loreta Cimbalistienė, Dovilė Kriaučiūnienė, Aušra Matulevičienė, Algirdas Utkus, Eglė Preikšaitienė

Published in: BMC Endocrine Disorders | Issue 1/2021

Login to get access

Abstract

Background

Acrodysostosis is a rare hereditary disorder described as a primary bone dysplasia with or without hormonal resistance. Pathogenic variants in the PRKAR1A and PDE4D genes are known genetic causes of this condition. The latter gene variants are more frequently identified in patients with midfacial and nasal hypoplasia and neurological involvement. The aim of our study was to analyse and confirm a genetic cause of acrodysostosis in a male patient.

Case presentation

We report on a 29-year-old Lithuanian man diagnosed with acrodysostosis type 2. The characteristic phenotype includes specific skeletal abnormalities, facial dysostosis, mild intellectual disability and metabolic syndrome. Using patient’s DNA extracted from peripheral blood sample, the novel, likely pathogenic, heterozygous de novo variant NM_001104631.2:c.581G > C was identified in the gene PDE4D via Sanger sequencing. This variant causes amino acid change (NP_001098101.1:p.(Arg194Pro)) in the functionally relevant upstream conserved region 1 domain of PDE4D.

Conclusions

This report further expands the knowledge of the consequences of missense variants in PDE4D that affect the upstream conserved region 1 regulatory domain and indicates that pathogenic variants of the gene PDE4D play an important role in the pathogenesis mechanism of acrodysostosis type 2 without significant hormonal resistance.
Literature
1.
go back to reference Thiele S, Mantovani G, Barlier A, Boldrin V, Bordogna P, Sanctis L, et al. From pseudohypoparathyroidism to inactivating PTH/PTHrP signalling disorder (iPPSD), a novel classification proposed by the EuroPHP network. Eur J Endocrinol. 2016;175:P1–P17.CrossRef Thiele S, Mantovani G, Barlier A, Boldrin V, Bordogna P, Sanctis L, et al. From pseudohypoparathyroidism to inactivating PTH/PTHrP signalling disorder (iPPSD), a novel classification proposed by the EuroPHP network. Eur J Endocrinol. 2016;175:P1–P17.CrossRef
2.
go back to reference Michot C, Le Goff C, Goldenberg A, Abhyankar A, Klein C, Kinning E, et al. Exome sequencing identifies PDE4D mutations as another cause of acrodysostosis. Am J Hum Genet. 2012;90:740–5.CrossRef Michot C, Le Goff C, Goldenberg A, Abhyankar A, Klein C, Kinning E, et al. Exome sequencing identifies PDE4D mutations as another cause of acrodysostosis. Am J Hum Genet. 2012;90:740–5.CrossRef
3.
go back to reference Lee H, Graham JM, Rimoin DL, Lachman RS, Krejci P, Tompson SW, et al. Exome sequencing identifies PDE4D mutations in acrodysostosis. Am J Hum Genet. 2012;90:746–51.CrossRef Lee H, Graham JM, Rimoin DL, Lachman RS, Krejci P, Tompson SW, et al. Exome sequencing identifies PDE4D mutations in acrodysostosis. Am J Hum Genet. 2012;90:746–51.CrossRef
4.
go back to reference Michot C, Le Goff C, Blair E, Blanchet P, Capri Y, Gilbert-Dussardier B, et al. Expanding the phenotypic spectrum of variants in PDE4D/PRKAR1A: from acrodysostosis to acroscyphodysplasia. Eur J Hum Genet. 2018;26:1611–22.CrossRef Michot C, Le Goff C, Blair E, Blanchet P, Capri Y, Gilbert-Dussardier B, et al. Expanding the phenotypic spectrum of variants in PDE4D/PRKAR1A: from acrodysostosis to acroscyphodysplasia. Eur J Hum Genet. 2018;26:1611–22.CrossRef
5.
go back to reference Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24.CrossRef Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24.CrossRef
6.
go back to reference Lindstrand A, Grigelioniene G, Nilsson D, Pettersson M, Hofmeister W, Anderlid B-M, et al. Different mutations in PDE4D associated with developmental disorders with mirror phenotypes. J Med Genet. 2014;51:45–54.CrossRef Lindstrand A, Grigelioniene G, Nilsson D, Pettersson M, Hofmeister W, Anderlid B-M, et al. Different mutations in PDE4D associated with developmental disorders with mirror phenotypes. J Med Genet. 2014;51:45–54.CrossRef
7.
go back to reference Hoppmann J, Gesing J, Silve C, Leroy C, Bertsche A, Wolfgang Hirsch F, et al. Phenotypic variability in a family with Acrodysostosis type 2 caused by a novel PDE4D mutation affecting the serine target of protein kinase-a phosphorylation. J Clin Res Pediatr Endocrinol. 2017;14:360–5.CrossRef Hoppmann J, Gesing J, Silve C, Leroy C, Bertsche A, Wolfgang Hirsch F, et al. Phenotypic variability in a family with Acrodysostosis type 2 caused by a novel PDE4D mutation affecting the serine target of protein kinase-a phosphorylation. J Clin Res Pediatr Endocrinol. 2017;14:360–5.CrossRef
8.
go back to reference Conti M, Richter W, Mehats C, Livera G, Park J-Y, Jin C. Cyclic AMP-specific PDE4 phosphodiesterases as critical components of cyclic AMP signaling. J Biol Chem. 2003;278:5493–6.CrossRef Conti M, Richter W, Mehats C, Livera G, Park J-Y, Jin C. Cyclic AMP-specific PDE4 phosphodiesterases as critical components of cyclic AMP signaling. J Biol Chem. 2003;278:5493–6.CrossRef
9.
go back to reference Houslay MD. PDE4 cAMP-specific phosphodiesterases. Prog Nucleic Acid Res Mol Biol. 2001;69:249–315.CrossRef Houslay MD. PDE4 cAMP-specific phosphodiesterases. Prog Nucleic Acid Res Mol Biol. 2001;69:249–315.CrossRef
10.
go back to reference Beard MB, Olsen AE, Jones RE, Erdogan S, Houslay MD, Bolger GB. UCR1 and UCR2 domains unique to the cAMP-specific phosphodiesterase family form a discrete module via electrostatic interactions. J Biol Chem. 2000;275:10349–58.CrossRef Beard MB, Olsen AE, Jones RE, Erdogan S, Houslay MD, Bolger GB. UCR1 and UCR2 domains unique to the cAMP-specific phosphodiesterase family form a discrete module via electrostatic interactions. J Biol Chem. 2000;275:10349–58.CrossRef
11.
go back to reference Mika D, Conti M. PDE4D phosphorylation: a coincidence detector integrating multiple signaling pathways. Cell Signal. 2016;28:719–24.CrossRef Mika D, Conti M. PDE4D phosphorylation: a coincidence detector integrating multiple signaling pathways. Cell Signal. 2016;28:719–24.CrossRef
12.
go back to reference Houslay MD, Adams DR. PDE4 cAMP phosphodiesterases: modular enzymes that orchestrate signalling cross-talk, desensitization and compartmentalization. Biochem J. 2003;15:3701–18. Houslay MD, Adams DR. PDE4 cAMP phosphodiesterases: modular enzymes that orchestrate signalling cross-talk, desensitization and compartmentalization. Biochem J. 2003;15:3701–18.
13.
go back to reference Kaname T, Ki C-S, Niikawa N, Baillie GS, Day JP, Yamamura K-I, et al. Heterozygous mutations in cyclic AMP phosphodiesterase-4D (PDE4D) and protein kinase a (PKA) provide new insights into the molecular pathology of acrodysostosis. Cell Signal. 2014;26:2446–59.CrossRef Kaname T, Ki C-S, Niikawa N, Baillie GS, Day JP, Yamamura K-I, et al. Heterozygous mutations in cyclic AMP phosphodiesterase-4D (PDE4D) and protein kinase a (PKA) provide new insights into the molecular pathology of acrodysostosis. Cell Signal. 2014;26:2446–59.CrossRef
14.
go back to reference Mitsui T, Kim O-H, Hall CM, Offiah A, Johnson D, Jin D-K, et al. Acroscyphodysplasia as a phenotypic variation of pseudohypoparathyroidism and acrodysostosis type 2. Am J Med Genet. 2014;164A:2529–34.CrossRef Mitsui T, Kim O-H, Hall CM, Offiah A, Johnson D, Jin D-K, et al. Acroscyphodysplasia as a phenotypic variation of pseudohypoparathyroidism and acrodysostosis type 2. Am J Med Genet. 2014;164A:2529–34.CrossRef
15.
go back to reference Lynch DC, Dyment DA, Huang L, Nikkel SM, Lacombe D, Campeau PM, et al. Identification of novel mutations confirms PDE4D as a major gene causing acrodysostosis. Hum Mutat. 2012;34:97–102.CrossRef Lynch DC, Dyment DA, Huang L, Nikkel SM, Lacombe D, Campeau PM, et al. Identification of novel mutations confirms PDE4D as a major gene causing acrodysostosis. Hum Mutat. 2012;34:97–102.CrossRef
16.
go back to reference Linglart A, Fryssira H, Hiort O, Holterhus PM, Perez de Nanclares G, Argente J, et al. PRKAR1A and PDE4D mutations cause acrodysostosis but two distinct syndromes with or without GPCR-signaling hormone resistance. J Clin Endocrinol Metab. 2012;97:E2328–38.CrossRef Linglart A, Fryssira H, Hiort O, Holterhus PM, Perez de Nanclares G, Argente J, et al. PRKAR1A and PDE4D mutations cause acrodysostosis but two distinct syndromes with or without GPCR-signaling hormone resistance. J Clin Endocrinol Metab. 2012;97:E2328–38.CrossRef
17.
go back to reference Briet C, Pereda A, Le Stunff C, Motte E, de Dios G-DJ, de Nanclares GP, et al. Mutations causing acrodysostosis-2 facilitate activation of phosphodiesterase 4D3. Hum Mol Genet. 2017;26:3883–94.CrossRef Briet C, Pereda A, Le Stunff C, Motte E, de Dios G-DJ, de Nanclares GP, et al. Mutations causing acrodysostosis-2 facilitate activation of phosphodiesterase 4D3. Hum Mol Genet. 2017;26:3883–94.CrossRef
18.
go back to reference Elli FM, Bordogna P, de Sanctis L, Giachero F, Verrua E, Segni M, et al. Screening of PRKAR1A and PDE4D in a large Italian series of patients clinically diagnosed with Albright hereditary Osteodystrophy and/or Pseudohypoparathyroidism. J Bone Miner Res. 2016;31:1215–24.CrossRef Elli FM, Bordogna P, de Sanctis L, Giachero F, Verrua E, Segni M, et al. Screening of PRKAR1A and PDE4D in a large Italian series of patients clinically diagnosed with Albright hereditary Osteodystrophy and/or Pseudohypoparathyroidism. J Bone Miner Res. 2016;31:1215–24.CrossRef
Metadata
Title
A novel variant in the PDE4D gene is the cause of Acrodysostosis type 2 in a Lithuanian patient: a case report
Authors
Gunda Petraitytė
Kamilė Šiaurytė
Violeta Mikštienė
Loreta Cimbalistienė
Dovilė Kriaučiūnienė
Aušra Matulevičienė
Algirdas Utkus
Eglė Preikšaitienė
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Endocrine Disorders / Issue 1/2021
Electronic ISSN: 1472-6823
DOI
https://doi.org/10.1186/s12902-021-00741-6

Other articles of this Issue 1/2021

BMC Endocrine Disorders 1/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine