Skip to main content
Top

15-04-2024 | Research

Integrated analysis of single-cell RNA-seq and bulk RNA-seq reveals immune suppression subtypes and establishes a novel signature for determining the prognosis in lung adenocarcinoma

Authors: Shengqiang Mao, Yilong Wang, Ningning Chao, Lingyan Zeng, Li Zhang

Published in: Cellular Oncology

Login to get access

Abstract

Background

Lung adenocarcinoma (LUAD) is the most common histological type of lung cancer with lower survival rates. Recent advancements in targeted therapies and immunotherapies targeting immune checkpoints have achieved remarkable success, there is still a large percentage of LUAD that lacks available therapeutic options. Due to tumor heterogeneity, the diagnosis and treatment of LUAD are challenging. Exploring the biology of LUAD and identifying new biomarker and therapeutic targets options are essential.

Method

We performed single-cell RNA sequencing (scRNA-seq) of 6 paired primary and adjacent LUAD tissues, and integrative omics analysis of the scRNA-seq, bulk RNA-seq and whole-exome sequencing data revealed molecular subtype characteristics. Our experimental results confirm that CDC25C gene can serve as a potential marker for poor prognosis in LUAD.

Results

We investigated aberrant gene expression in diverse cell types in LUAD via the scRNA-seq data. Moreover, multi-omics clustering revealed four subgroups defined by transcriptional profile and molecular subtype 4 (MS4) with poor survival probability, and immune cell infiltration signatures revealed that MS4 tended to be the immunosuppressive subtype. Our study revealed that the CDC25C gene can be a distinct prognostic biomarker that indicates immune infiltration levels and response to immunotherapy in LUAD patients. Our experimental results concluded that CDC25C expression affects lung cancer cell invasion and migration, might play a key role in regulating Epithelial-Mesenchymal Transition (EMT) pathways.

Conclusions

Our multi-omics result revealed a comprehensive set of molecular attributes associated with prognosis-related genes in LUAD at the cellular and tissue level. Identification of a subtype of immunosuppressive TME and prognostic signature for LUAD. We identified the cell cycle regulation gene CDC25C affects lung cancer cell invasion and migration, which can be used as a potential biomarker for LUAD.
Appendix
Available only for authorised users
Literature
1.
go back to reference The global challenge of cancer. Nat. Cancer 1, 1–2 (2020) The global challenge of cancer. Nat. Cancer 1, 1–2 (2020)
2.
go back to reference A. Leiter, R.R. Veluswamy, J.P. Wisnivesky, The global burden of lung cancer: current status and future trends. Nat. Rev. Clin. Oncol. 20, 624–639 (2023)PubMedCrossRef A. Leiter, R.R. Veluswamy, J.P. Wisnivesky, The global burden of lung cancer: current status and future trends. Nat. Rev. Clin. Oncol. 20, 624–639 (2023)PubMedCrossRef
3.
go back to reference H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray, Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021)PubMedCrossRef H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray, Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021)PubMedCrossRef
4.
go back to reference J. Chen, H. Yang, A.S.M. Teo, L.B. Amer, F.G. Sherbaf, C.Q. Tan, J.J.S. Alvarez, B. Lu, J.Q. Lim, A. Takano, et al, Genomic landscape of lung adenocarcinoma in East Asians. Nat. Genet. 52, 177–186 (2020)PubMedCrossRef J. Chen, H. Yang, A.S.M. Teo, L.B. Amer, F.G. Sherbaf, C.Q. Tan, J.J.S. Alvarez, B. Lu, J.Q. Lim, A. Takano, et al, Genomic landscape of lung adenocarcinoma in East Asians. Nat. Genet. 52, 177–186 (2020)PubMedCrossRef
5.
go back to reference J.Y. Xu, C. Zhang, X. Wang, L. Zhai, Y. Ma, Y. Mao, K. Qian, C. Sun, Z. Liu, S. Jiang, et al, Integrative proteomic characterization of human lung adenocarcinoma. Cell 182, 245–261 e217 (2020)PubMedCrossRef J.Y. Xu, C. Zhang, X. Wang, L. Zhai, Y. Ma, Y. Mao, K. Qian, C. Sun, Z. Liu, S. Jiang, et al, Integrative proteomic characterization of human lung adenocarcinoma. Cell 182, 245–261 e217 (2020)PubMedCrossRef
6.
go back to reference M. Miyake, S. Hori, Y. Morizawa, Y. Tatsumi, Y. Nakai, S. Anai, K. Torimoto, K. Aoki, N. Tanaka, K. Shimada, et al, CXCL1-mediated interaction of cancer cells with tumor-associated macrophages and cancer-associated fibroblasts promotes tumor progression in human bladder cancer. Neoplasia 18, 636–646 (2016)PubMedPubMedCentralCrossRef M. Miyake, S. Hori, Y. Morizawa, Y. Tatsumi, Y. Nakai, S. Anai, K. Torimoto, K. Aoki, N. Tanaka, K. Shimada, et al, CXCL1-mediated interaction of cancer cells with tumor-associated macrophages and cancer-associated fibroblasts promotes tumor progression in human bladder cancer. Neoplasia 18, 636–646 (2016)PubMedPubMedCentralCrossRef
7.
go back to reference Y. Liang, Y. Tan, B. Guan, B. Guo, M. Xia, J. Li, Y. Shi, Z. Yu, Q. Zhang, D. Liu, et al, Single-cell atlases link macrophages and CD8(+) T-cell subpopulations to disease progression and immunotherapy response in urothelial carcinoma. Theranostics 12, 7745–7759 (2022)PubMedPubMedCentralCrossRef Y. Liang, Y. Tan, B. Guan, B. Guo, M. Xia, J. Li, Y. Shi, Z. Yu, Q. Zhang, D. Liu, et al, Single-cell atlases link macrophages and CD8(+) T-cell subpopulations to disease progression and immunotherapy response in urothelial carcinoma. Theranostics 12, 7745–7759 (2022)PubMedPubMedCentralCrossRef
8.
go back to reference L. Gonzalez-Silva, L. Quevedo, I. Varela, Tumor functional heterogeneity unraveled by scRNA-seq technologies. Trends Cancer 6, 13–19 (2020)PubMedCrossRef L. Gonzalez-Silva, L. Quevedo, I. Varela, Tumor functional heterogeneity unraveled by scRNA-seq technologies. Trends Cancer 6, 13–19 (2020)PubMedCrossRef
9.
10.
go back to reference D. Sun, X. Guan, A.E. Moran, L.Y. Wu, D.Z. Qian, P. Schedin, M.S. Dai, A.V. Danilov, J.J. Alumkal, A.C. Adey, et al, Identifying phenotype-associated subpopulations by integrating bulk and single-cell sequencing data. Nat. Biotechnol. 40, 527–538 (2022)PubMedCrossRef D. Sun, X. Guan, A.E. Moran, L.Y. Wu, D.Z. Qian, P. Schedin, M.S. Dai, A.V. Danilov, J.J. Alumkal, A.C. Adey, et al, Identifying phenotype-associated subpopulations by integrating bulk and single-cell sequencing data. Nat. Biotechnol. 40, 527–538 (2022)PubMedCrossRef
11.
go back to reference A.S. Thind, I. Monga, P.K. Thakur, P. Kumari, K. Dindhoria, M. Krzak, M. Ranson, B. Ashford, Demystifying emerging bulk RNA-Seq applications: the application and utility of bioinformatic methodology. Brief Bioinform. 22, bbab259 (2021)PubMedCrossRef A.S. Thind, I. Monga, P.K. Thakur, P. Kumari, K. Dindhoria, M. Krzak, M. Ranson, B. Ashford, Demystifying emerging bulk RNA-Seq applications: the application and utility of bioinformatic methodology. Brief Bioinform. 22, bbab259 (2021)PubMedCrossRef
12.
go back to reference B. Jew, M. Alvarez, E. Rahmani, Z. Miao, A. Ko, K.M. Garske, J.H. Sul, K.H. Pietilainen, P. Pajukanta, E. Halperin, Accurate estimation of cell composition in bulk expression through robust integration of single-cell information. Nat. Commun. 11, 1971 (2020)PubMedPubMedCentralCrossRef B. Jew, M. Alvarez, E. Rahmani, Z. Miao, A. Ko, K.M. Garske, J.H. Sul, K.H. Pietilainen, P. Pajukanta, E. Halperin, Accurate estimation of cell composition in bulk expression through robust integration of single-cell information. Nat. Commun. 11, 1971 (2020)PubMedPubMedCentralCrossRef
13.
go back to reference J. Liao, J. Qian, Y. Fang, Z. Chen, X. Zhuang, N. Zhang, X. Shao, Y. Hu, P. Yang, J. Cheng, et al, De novo analysis of bulk RNA-seq data at spatially resolved single-cell resolution. Nat. Commun. 13, 6498 (2022)PubMedPubMedCentralCrossRef J. Liao, J. Qian, Y. Fang, Z. Chen, X. Zhuang, N. Zhang, X. Shao, Y. Hu, P. Yang, J. Cheng, et al, De novo analysis of bulk RNA-seq data at spatially resolved single-cell resolution. Nat. Commun. 13, 6498 (2022)PubMedPubMedCentralCrossRef
14.
go back to reference X. Guo, Y. Zhang, L. Zheng, C. Zheng, J. Song, Q. Zhang, B. Kang, Z. Liu, L. Jin, R. Xing, et al, Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing. Nat. Med. 24, 978–985 (2018)PubMedCrossRef X. Guo, Y. Zhang, L. Zheng, C. Zheng, J. Song, Q. Zhang, B. Kang, Z. Liu, L. Jin, R. Xing, et al, Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing. Nat. Med. 24, 978–985 (2018)PubMedCrossRef
15.
go back to reference D. Lambrechts, E. Wauters, B. Boeckx, S. Aibar, D. Nittner, O. Burton, A. Bassez, H. Decaluwe, A. Pircher, K. Van den Eynde, et al, Phenotype molding of stromal cells in the lung tumor microenvironment. Nat. Med. 24, 1277–1289 (2018)PubMedCrossRef D. Lambrechts, E. Wauters, B. Boeckx, S. Aibar, D. Nittner, O. Burton, A. Bassez, H. Decaluwe, A. Pircher, K. Van den Eynde, et al, Phenotype molding of stromal cells in the lung tumor microenvironment. Nat. Med. 24, 1277–1289 (2018)PubMedCrossRef
16.
go back to reference J.D. Klement, P.S. Redd, C. Lu, A.D. Merting, D.B. Poschel, D. Yang, N.M. Savage, G. Zhou, D.H. Munn, P.G. Fallon, K. Liu, Tumor PD-L1 engages myeloid PD-1 to suppress type I interferon to impair cytotoxic T lymphocyte recruitment. Cancer Cell 41, 620–636 e629 (2023)PubMedPubMedCentralCrossRef J.D. Klement, P.S. Redd, C. Lu, A.D. Merting, D.B. Poschel, D. Yang, N.M. Savage, G. Zhou, D.H. Munn, P.G. Fallon, K. Liu, Tumor PD-L1 engages myeloid PD-1 to suppress type I interferon to impair cytotoxic T lymphocyte recruitment. Cancer Cell 41, 620–636 e629 (2023)PubMedPubMedCentralCrossRef
17.
go back to reference L. Zhang, Y. Zhang, C. Wang, Y. Yang, Y. Ni, Z. Wang, T. Song, M. Yao, Z. Liu, N. Chao, et al, Integrated single-cell RNA sequencing analysis reveals distinct cellular and transcriptional modules associated with survival in lung cancer. Signal Transduct. Target. Ther. 7, 9 (2022)PubMedPubMedCentralCrossRef L. Zhang, Y. Zhang, C. Wang, Y. Yang, Y. Ni, Z. Wang, T. Song, M. Yao, Z. Liu, N. Chao, et al, Integrated single-cell RNA sequencing analysis reveals distinct cellular and transcriptional modules associated with survival in lung cancer. Signal Transduct. Target. Ther. 7, 9 (2022)PubMedPubMedCentralCrossRef
18.
go back to reference F. Wu, J. Fan, Y. He, A. Xiong, J. Yu, Y. Li, Y. Zhang, W. Zhao, F. Zhou, W. Li, et al, Single-cell profiling of tumor heterogeneity and the microenvironment in advanced non-small cell lung cancer. Nat. Commun. 12, 2540 (2021)PubMedPubMedCentralCrossRef F. Wu, J. Fan, Y. He, A. Xiong, J. Yu, Y. Li, Y. Zhang, W. Zhao, F. Zhou, W. Li, et al, Single-cell profiling of tumor heterogeneity and the microenvironment in advanced non-small cell lung cancer. Nat. Commun. 12, 2540 (2021)PubMedPubMedCentralCrossRef
19.
go back to reference D. He, D. Wang, P. Lu, N. Yang, Z. Xue, X. Zhu, P. Zhang, G. Fan, Single-cell RNA sequencing reveals heterogeneous tumor and immune cell populations in early-stage lung adenocarcinomas harboring EGFR mutations. Oncogene 40, 355–368 (2021)PubMedCrossRef D. He, D. Wang, P. Lu, N. Yang, Z. Xue, X. Zhu, P. Zhang, G. Fan, Single-cell RNA sequencing reveals heterogeneous tumor and immune cell populations in early-stage lung adenocarcinomas harboring EGFR mutations. Oncogene 40, 355–368 (2021)PubMedCrossRef
20.
go back to reference B. Liu, X. Hu, K. Feng, R. Gao, Z. Xue, S. Zhang, Y. Zhang, E. Corse, Y. Hu, W. Han, Z. Zhang, Temporal single-cell tracing reveals clonal revival and expansion of precursor exhausted T cells during anti-PD-1 therapy in lung cancer. Nat. Cancer 3, 108–121 (2022)PubMedCrossRef B. Liu, X. Hu, K. Feng, R. Gao, Z. Xue, S. Zhang, Y. Zhang, E. Corse, Y. Hu, W. Han, Z. Zhang, Temporal single-cell tracing reveals clonal revival and expansion of precursor exhausted T cells during anti-PD-1 therapy in lung cancer. Nat. Cancer 3, 108–121 (2022)PubMedCrossRef
21.
go back to reference H. Okayama, T. Kohno, Y. Ishii, Y. Shimada, K. Shiraishi, R. Iwakawa, K. Furuta, K. Tsuta, T. Shibata, S. Yamamoto, et al, Identification of genes upregulated in ALK-positive and EGFR/KRAS/ALK-negative lung adenocarcinomas. Cancer Res. 72, 100–111 (2012)PubMedCrossRef H. Okayama, T. Kohno, Y. Ishii, Y. Shimada, K. Shiraishi, R. Iwakawa, K. Furuta, K. Tsuta, T. Shibata, S. Yamamoto, et al, Identification of genes upregulated in ALK-positive and EGFR/KRAS/ALK-negative lung adenocarcinomas. Cancer Res. 72, 100–111 (2012)PubMedCrossRef
22.
go back to reference Y. Hao, T. Stuart, M.H. Kowalski, S. Choudhary, P. Hoffman, A. Hartman, A. Srivastava, G. Molla, S. Madad, C. Fernandez-Granda, R. Satija, Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat. Biotechnol. (2023) Y. Hao, T. Stuart, M.H. Kowalski, S. Choudhary, P. Hoffman, A. Hartman, A. Srivastava, G. Molla, S. Madad, C. Fernandez-Granda, R. Satija, Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat. Biotechnol. (2023)
23.
go back to reference Y. Hao, S. Hao, E. Andersen-Nissen, W.M. Mauck 3rd, S. Zheng, A. Butler, M.J. Lee, A.J. Wilk, C. Darby, M. Zager, et al, Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 e3529 (2021)PubMedPubMedCentralCrossRef Y. Hao, S. Hao, E. Andersen-Nissen, W.M. Mauck 3rd, S. Zheng, A. Butler, M.J. Lee, A.J. Wilk, C. Darby, M. Zager, et al, Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 e3529 (2021)PubMedPubMedCentralCrossRef
24.
go back to reference L.A. Huuki-Myers, K.D. Montgomery, S.H. Kwon, S.C. Page, S.C. Hicks, K.R. Maynard, Collado-Torres L: data-driven identification of total RNA expression genes for estimation of RNA abundance in heterogeneous cell types highlighted in brain tissue. Genome Biol. 24, 233 (2023)PubMedPubMedCentralCrossRef L.A. Huuki-Myers, K.D. Montgomery, S.H. Kwon, S.C. Page, S.C. Hicks, K.R. Maynard, Collado-Torres L: data-driven identification of total RNA expression genes for estimation of RNA abundance in heterogeneous cell types highlighted in brain tissue. Genome Biol. 24, 233 (2023)PubMedPubMedCentralCrossRef
25.
go back to reference S. Hanzelmann, R. Castelo, J. Guinney, GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinform. 14, 7 (2013)CrossRef S. Hanzelmann, R. Castelo, J. Guinney, GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinform. 14, 7 (2013)CrossRef
26.
go back to reference C.B. Thompson, K.H. Vousden, R.S. Johnson, W.H. Koppenol, H. Sies, Z. Lu, L.W.S. Finley, C. Frezza, J. Kim, Z. Hu, C.R. Bartman, A century of the Warburg effect. Nat. Metab. 5, 1840–1843 (2023)PubMedCrossRef C.B. Thompson, K.H. Vousden, R.S. Johnson, W.H. Koppenol, H. Sies, Z. Lu, L.W.S. Finley, C. Frezza, J. Kim, Z. Hu, C.R. Bartman, A century of the Warburg effect. Nat. Metab. 5, 1840–1843 (2023)PubMedCrossRef
27.
go back to reference P. Icard, S. Shulman, D. Farhat, J.M. Steyaert, M. Alifano, H. Lincet, How the Warburg effect supports aggressiveness and drug resistance of cancer cells? Drug Resist. Updat. 38, 1–11 (2018)PubMedCrossRef P. Icard, S. Shulman, D. Farhat, J.M. Steyaert, M. Alifano, H. Lincet, How the Warburg effect supports aggressiveness and drug resistance of cancer cells? Drug Resist. Updat. 38, 1–11 (2018)PubMedCrossRef
28.
go back to reference M. Fedele, R. Sgarra, S. Battista, L. Cerchia, G. Manfioletti, The epithelial-mesenchymal transition at the crossroads between metabolism and tumor progression. Int. J. Mol. Sci. 23, 800 (2022)PubMedPubMedCentralCrossRef M. Fedele, R. Sgarra, S. Battista, L. Cerchia, G. Manfioletti, The epithelial-mesenchymal transition at the crossroads between metabolism and tumor progression. Int. J. Mol. Sci. 23, 800 (2022)PubMedPubMedCentralCrossRef
29.
go back to reference P. Sarode, S. Mansouri, A. Karger, M.B. Schaefer, F. Grimminger, W. Seeger, R. Savai, Epithelial cell plasticity defines heterogeneity in lung cancer. Cell. Signal. 65, 109463 (2020)PubMedCrossRef P. Sarode, S. Mansouri, A. Karger, M.B. Schaefer, F. Grimminger, W. Seeger, R. Savai, Epithelial cell plasticity defines heterogeneity in lung cancer. Cell. Signal. 65, 109463 (2020)PubMedCrossRef
31.
go back to reference A.P. Patel, I. Tirosh, J.J. Trombetta, A.K. Shalek, S.M. Gillespie, H. Wakimoto, D.P. Cahill, B.V. Nahed, W.T. Curry, R.L. Martuza, et al, Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396–1401 (2014)PubMedPubMedCentralCrossRef A.P. Patel, I. Tirosh, J.J. Trombetta, A.K. Shalek, S.M. Gillespie, H. Wakimoto, D.P. Cahill, B.V. Nahed, W.T. Curry, R.L. Martuza, et al, Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396–1401 (2014)PubMedPubMedCentralCrossRef
32.
go back to reference I. Tirosh, B. Izar, S.M. Prakadan, M.H. Wadsworth 2nd, D. Treacy, J.J. Trombetta, A. Rotem, C. Rodman, C. Lian, G. Murphy, et al, Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016)PubMedPubMedCentralCrossRef I. Tirosh, B. Izar, S.M. Prakadan, M.H. Wadsworth 2nd, D. Treacy, J.J. Trombetta, A. Rotem, C. Rodman, C. Lian, G. Murphy, et al, Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016)PubMedPubMedCentralCrossRef
33.
go back to reference C. Trapnell, D. Cacchiarelli, J. Grimsby, P. Pokharel, S. Li, M. Morse, N.J. Lennon, K.J. Livak, T.S. Mikkelsen, J.L. Rinn, The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014)PubMedPubMedCentralCrossRef C. Trapnell, D. Cacchiarelli, J. Grimsby, P. Pokharel, S. Li, M. Morse, N.J. Lennon, K.J. Livak, T.S. Mikkelsen, J.L. Rinn, The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014)PubMedPubMedCentralCrossRef
34.
go back to reference M.D. Wilkerson, D.N. Hayes, ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics 26, 1572–1573 (2010)PubMedPubMedCentralCrossRef M.D. Wilkerson, D.N. Hayes, ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics 26, 1572–1573 (2010)PubMedPubMedCentralCrossRef
35.
go back to reference A.M. Newman, C.L. Liu, M.R. Green, A.J. Gentles, W. Feng, Y. Xu, C.D. Hoang, M. Diehn, A.A. Alizadeh, Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12, 453–457 (2015)PubMedPubMedCentralCrossRef A.M. Newman, C.L. Liu, M.R. Green, A.J. Gentles, W. Feng, Y. Xu, C.D. Hoang, M. Diehn, A.A. Alizadeh, Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12, 453–457 (2015)PubMedPubMedCentralCrossRef
36.
go back to reference J. Al-Matouq, T.R. Holmes, L.A. Hansen, CDC25B and CDC25C overexpression in nonmelanoma skin cancer suppresses cell death. Mol. Carcinog 58, 1691–1700 (2019)PubMedCrossRef J. Al-Matouq, T.R. Holmes, L.A. Hansen, CDC25B and CDC25C overexpression in nonmelanoma skin cancer suppresses cell death. Mol. Carcinog 58, 1691–1700 (2019)PubMedCrossRef
37.
go back to reference N. Xu, Y. Ren, Y. Bao, X. Shen, J. Kang, N. Wang, Z. Wang, X. Han, Z. Li, J. Zuo, et al, PUF60 promotes cell cycle and lung cancer progression by regulating alternative splicing of CDC25C. Cell Rep. 42, 113041 (2023)PubMedCrossRef N. Xu, Y. Ren, Y. Bao, X. Shen, J. Kang, N. Wang, Z. Wang, X. Han, Z. Li, J. Zuo, et al, PUF60 promotes cell cycle and lung cancer progression by regulating alternative splicing of CDC25C. Cell Rep. 42, 113041 (2023)PubMedCrossRef
38.
go back to reference J.C. Marine, S.J. Dawson, M.A. Dawson, Non-genetic mechanisms of therapeutic resistance in cancer. Nat. Rev. Cancer 20, 743–756 (2020)PubMedCrossRef J.C. Marine, S.J. Dawson, M.A. Dawson, Non-genetic mechanisms of therapeutic resistance in cancer. Nat. Rev. Cancer 20, 743–756 (2020)PubMedCrossRef
39.
go back to reference G. Morad, B.A. Helmink, P. Sharma, J.A. Wargo, Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell 184, 5309–5337 (2021)PubMedPubMedCentralCrossRef G. Morad, B.A. Helmink, P. Sharma, J.A. Wargo, Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell 184, 5309–5337 (2021)PubMedPubMedCentralCrossRef
41.
go back to reference L. Sun, X. Kang, C. Wang, R. Wang, G. Yang, W. Jiang, Q. Wu, Y. Wang, Y. Wu, J. Gao, et al., Single-cell and spatial dissection of precancerous lesions underlying the initiation process of oral squamous cell carcinoma. Cell Discov. 9, 28 (2023)PubMedPubMedCentralCrossRef L. Sun, X. Kang, C. Wang, R. Wang, G. Yang, W. Jiang, Q. Wu, Y. Wang, Y. Wu, J. Gao, et al., Single-cell and spatial dissection of precancerous lesions underlying the initiation process of oral squamous cell carcinoma. Cell Discov. 9, 28 (2023)PubMedPubMedCentralCrossRef
42.
go back to reference J. Qi, H. Sun, Y. Zhang, Z. Wang, Z. Xun, Z. Li, X. Ding, R. Bao, L. Hong, W. Jia, et al, Single-cell and spatial analysis reveal interaction of FAP(+) fibroblasts and SPP1(+) macrophages in colorectal cancer. Nat. Commun. 13, 1742 (2022)PubMedPubMedCentralCrossRef J. Qi, H. Sun, Y. Zhang, Z. Wang, Z. Xun, Z. Li, X. Ding, R. Bao, L. Hong, W. Jia, et al, Single-cell and spatial analysis reveal interaction of FAP(+) fibroblasts and SPP1(+) macrophages in colorectal cancer. Nat. Commun. 13, 1742 (2022)PubMedPubMedCentralCrossRef
43.
go back to reference M. Kumar, R.R. Bowers, J.R. Delaney, Single-cell analysis of copy-number alterations in serous ovarian cancer reveals substantial heterogeneity in both low- and high-grade tumors. Cell Cycle 19, 3154–3166 (2020)PubMedPubMedCentralCrossRef M. Kumar, R.R. Bowers, J.R. Delaney, Single-cell analysis of copy-number alterations in serous ovarian cancer reveals substantial heterogeneity in both low- and high-grade tumors. Cell Cycle 19, 3154–3166 (2020)PubMedPubMedCentralCrossRef
44.
45.
go back to reference W.J. Chen, H. Cao, J.W. Cao, L. Zuo, F.J. Qu, D. Xu, H. Zhang, H.Y. Gong, J.X. Chen, J.Q. Ye, et al, Heterogeneity of tumor microenvironment is associated with clinical prognosis of non-clear cell renal cell carcinoma: a single-cell genomics study. Cell Death Dis. 13, 50 (2022)PubMedPubMedCentralCrossRef W.J. Chen, H. Cao, J.W. Cao, L. Zuo, F.J. Qu, D. Xu, H. Zhang, H.Y. Gong, J.X. Chen, J.Q. Ye, et al, Heterogeneity of tumor microenvironment is associated with clinical prognosis of non-clear cell renal cell carcinoma: a single-cell genomics study. Cell Death Dis. 13, 50 (2022)PubMedPubMedCentralCrossRef
46.
go back to reference S. Wang, G. Fan, L. Li, Y. He, N. Lou, T. Xie, L. Dai, R. Gao, M. Yang, Y. Shi, X. Han, Integrative analyses of bulk and single-cell RNA-seq identified cancer-associated fibroblasts-related signature as a prognostic factor for immunotherapy in NSCLC. Cancer Immunol. Immunother. 72, 2423–2442 (2023)PubMedCrossRef S. Wang, G. Fan, L. Li, Y. He, N. Lou, T. Xie, L. Dai, R. Gao, M. Yang, Y. Shi, X. Han, Integrative analyses of bulk and single-cell RNA-seq identified cancer-associated fibroblasts-related signature as a prognostic factor for immunotherapy in NSCLC. Cancer Immunol. Immunother. 72, 2423–2442 (2023)PubMedCrossRef
47.
go back to reference P. Ma, H.M. Amemiya, L.L. He, S.J. Gandhi, R. Nicol, R.P. Bhattacharyya, C.S. Smillie, D.T. Hung, Bacterial droplet-based single-cell RNA-seq reveals antibiotic-associated heterogeneous cellular states. Cell 186, 877–891 e814 (2023)PubMedPubMedCentralCrossRef P. Ma, H.M. Amemiya, L.L. He, S.J. Gandhi, R. Nicol, R.P. Bhattacharyya, C.S. Smillie, D.T. Hung, Bacterial droplet-based single-cell RNA-seq reveals antibiotic-associated heterogeneous cellular states. Cell 186, 877–891 e814 (2023)PubMedPubMedCentralCrossRef
48.
go back to reference O.E. Rahma, F.S. Hodi, The intersection between tumor angiogenesis and immune suppression. Clin. Cancer Res. 25, 5449–5457 (2019)PubMedCrossRef O.E. Rahma, F.S. Hodi, The intersection between tumor angiogenesis and immune suppression. Clin. Cancer Res. 25, 5449–5457 (2019)PubMedCrossRef
49.
go back to reference S. Matsuda, A. Revandkar, T.D. Dubash, A. Ravi, B.S. Wittner, M. Lin, R. Morris, R. Burr, H. Guo, K. Seeger, et al, TGF-beta in the microenvironment induces a physiologically occurring immune-suppressive senescent state. Cell Rep. 42, 112129 (2023)PubMedPubMedCentralCrossRef S. Matsuda, A. Revandkar, T.D. Dubash, A. Ravi, B.S. Wittner, M. Lin, R. Morris, R. Burr, H. Guo, K. Seeger, et al, TGF-beta in the microenvironment induces a physiologically occurring immune-suppressive senescent state. Cell Rep. 42, 112129 (2023)PubMedPubMedCentralCrossRef
50.
go back to reference S. St Clair, J.J. Manfredi, The dual specificity phosphatase Cdc25C is a direct target for transcriptional repression by the tumor suppressor p53. Cell Cycle 5, 709–713 (2006)PubMedCrossRef S. St Clair, J.J. Manfredi, The dual specificity phosphatase Cdc25C is a direct target for transcriptional repression by the tumor suppressor p53. Cell Cycle 5, 709–713 (2006)PubMedCrossRef
51.
go back to reference K. Liu, M. Zheng, R. Lu, J. Du, Q. Zhao, Z. Li, Y. Li, S. Zhang, The role of CDC25C in cell cycle regulation and clinical cancer therapy: a systematic review. Cancer Cell Int. 20, 213 (2020)PubMedPubMedCentralCrossRef K. Liu, M. Zheng, R. Lu, J. Du, Q. Zhao, Z. Li, Y. Li, S. Zhang, The role of CDC25C in cell cycle regulation and clinical cancer therapy: a systematic review. Cancer Cell Int. 20, 213 (2020)PubMedPubMedCentralCrossRef
52.
go back to reference A. Golebiewska, A.C. Hau, A. Oudin, D. Stieber, Y.A. Yabo, V. Baus, V. Barthelemy, E. Klein, S. Bougnaud, O. Keunen, et al, Patient-derived organoids and orthotopic xenografts of primary and recurrent gliomas represent relevant patient avatars for precision oncology. Acta Neuropathol. 140, 919–949 (2020)PubMedPubMedCentralCrossRef A. Golebiewska, A.C. Hau, A. Oudin, D. Stieber, Y.A. Yabo, V. Baus, V. Barthelemy, E. Klein, S. Bougnaud, O. Keunen, et al, Patient-derived organoids and orthotopic xenografts of primary and recurrent gliomas represent relevant patient avatars for precision oncology. Acta Neuropathol. 140, 919–949 (2020)PubMedPubMedCentralCrossRef
53.
go back to reference E.R. Zanella, E. Grassi, L. Trusolino, Towards precision oncology with patient-derived xenografts. Nat. Rev. Clin. Oncol. 19, 719–732 (2022)PubMedCrossRef E.R. Zanella, E. Grassi, L. Trusolino, Towards precision oncology with patient-derived xenografts. Nat. Rev. Clin. Oncol. 19, 719–732 (2022)PubMedCrossRef
Metadata
Title
Integrated analysis of single-cell RNA-seq and bulk RNA-seq reveals immune suppression subtypes and establishes a novel signature for determining the prognosis in lung adenocarcinoma
Authors
Shengqiang Mao
Yilong Wang
Ningning Chao
Lingyan Zeng
Li Zhang
Publication date
15-04-2024
Publisher
Springer Netherlands
Published in
Cellular Oncology
Print ISSN: 2211-3428
Electronic ISSN: 2211-3436
DOI
https://doi.org/10.1007/s13402-024-00948-4
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine