Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2020

01-12-2020 | Insulins | Research article

Water extract from processed Polygonum multiflorum modulate gut microbiota and glucose metabolism on insulin resistant rats

Authors: Wen Gu, Min Yang, Qian Bi, Lin-Xi Zeng, Xi Wang, Jin-Cai Dong, Feng-Jiao Li, Xing-Xin Yang, Jing-Ping Li, Jie Yu

Published in: BMC Complementary Medicine and Therapies | Issue 1/2020

Login to get access

Abstract

Background

The incidence of insulin resistance (IR) has rapidly increased worldwide over the last 20 years, no perfect solution has yet been identified. Finding new therapeutic drugs will help improve this situation. As a traditional Chinese medicine, PPM (processed Polygonum multiflorum) has widely been used in the clinic. Recently, other clinical functions of PPM have been widely analyzed.

Results

Administration of the water extract from PPM decreased the level of FBG, TC, and TG, and increased the level of FGC, thereby reducing the IR index and improving IR. Furthermore, Western blot analysis revealed that PPM significantly increased GPR43 and AMPK expression when compared with the MOD group, and GPR43, AMPK were known as glucose metabolism-related proteins. In addition, treatment with PPM can restore the balance of gut microbiota by adjusting the relative abundance of bacteria both at the phylum and genus level, and these changes have been reported to be related to IR.

Methods

Sprague Dawley (SD) rats were fed a high-fat diet and were gavaged daily with either normal saline solution or PPM for 12 weeks. Major biochemical indexes, such as fasting blood glucose (FBG), fasting glucagon (FGC), total cholesterol (TC), and triglyceride (TG) were measured. Then the protein expression of adenosine 5′-monophosphate -activated protein kinase (AMPK) and G protein-coupled receptor 43 (GPR43) was evaluated by using Western blot analysis. Moreover, the composition of gut microbiota was assessed by analyzing 16S rRNA sequences.

Conclusions

Our findings showed that PPM reversed the increasing of FBG and the decreasing of IRI, PPM accelerated the expression of glucose metabolism-related proteins and regulated the intestinal microecological balance. Therefore, we hold the opinion that PPM may be an effective option for treating IR.
Appendix
Available only for authorised users
Literature
1.
go back to reference Meikle PJ, Summers SA. Sphingolipids and phospholipids in insulin resistance and related metabolic disorders. Nat Rev Endocrinol. 2017;13(2):79–91.CrossRef Meikle PJ, Summers SA. Sphingolipids and phospholipids in insulin resistance and related metabolic disorders. Nat Rev Endocrinol. 2017;13(2):79–91.CrossRef
2.
go back to reference Alberti KG. Zimmet P, Shaw J, IDF epidemiology task force consensus group. The metabolic syndrome-a new worldwide definition. Lancet. 2005;366:1059–62.CrossRef Alberti KG. Zimmet P, Shaw J, IDF epidemiology task force consensus group. The metabolic syndrome-a new worldwide definition. Lancet. 2005;366:1059–62.CrossRef
3.
go back to reference Reaven GM. Insulin resistance: the link between obesity and cardiovascular disease. Med Clin North Am. 2011;95:875–92.CrossRef Reaven GM. Insulin resistance: the link between obesity and cardiovascular disease. Med Clin North Am. 2011;95:875–92.CrossRef
4.
go back to reference Kittiskulnam P, Thokanit NS, Katavetin P, Susanthitaphong P, Srisawat N, Praditpornsilpa K, Eiam-Ong S. The magnitude of obesity and metabolic syndrome among diabetic chronic kidney disease population: a nationwide study. PLoS One. 2018;13(5):e0196332.CrossRef Kittiskulnam P, Thokanit NS, Katavetin P, Susanthitaphong P, Srisawat N, Praditpornsilpa K, Eiam-Ong S. The magnitude of obesity and metabolic syndrome among diabetic chronic kidney disease population: a nationwide study. PLoS One. 2018;13(5):e0196332.CrossRef
5.
go back to reference Etchegoyen M, Nobile MH, Baez F, Posesorski B, González J, Lago N, Milei J, Otero-Losada M. Otero-Losada Matilde. Metab Syndr Neuroprotection Front Neurosci. 2018;12:196. Etchegoyen M, Nobile MH, Baez F, Posesorski B, González J, Lago N, Milei J, Otero-Losada M. Otero-Losada Matilde. Metab Syndr Neuroprotection Front Neurosci. 2018;12:196.
6.
go back to reference McAuley KA, Smith KJ, Taylor RW, McLay RT, Williams SM, Mann JI. Long-term effects of popular dietary approaches on weight loss and features of insulin resistance. Int J Obes. 2006;30(2):342–9.CrossRef McAuley KA, Smith KJ, Taylor RW, McLay RT, Williams SM, Mann JI. Long-term effects of popular dietary approaches on weight loss and features of insulin resistance. Int J Obes. 2006;30(2):342–9.CrossRef
7.
go back to reference Ojo B, Simenson AJ, O'Hara C, Wu L, Gou X, Peterson SK, Lin D, Smith BJ, Lucas EA. Wheat germ supplementation alleviates insulin resistance and cardiac mitochondrial dysfunction in an animal model of diet-induced obesity. Br J Nutr. 2017;118(04):241–9.CrossRef Ojo B, Simenson AJ, O'Hara C, Wu L, Gou X, Peterson SK, Lin D, Smith BJ, Lucas EA. Wheat germ supplementation alleviates insulin resistance and cardiac mitochondrial dysfunction in an animal model of diet-induced obesity. Br J Nutr. 2017;118(04):241–9.CrossRef
8.
go back to reference Cuthbert CE, Foster JE, Ramdath DD. A maternal high-fat, high-sucrose diet alters insulin sensitivity and expression of insulin signalling and lipid metabolism genes and proteins in male rat offspring: effect of folic acid supplementation. Br J Nutr. 2017;118(8):580–8.CrossRef Cuthbert CE, Foster JE, Ramdath DD. A maternal high-fat, high-sucrose diet alters insulin sensitivity and expression of insulin signalling and lipid metabolism genes and proteins in male rat offspring: effect of folic acid supplementation. Br J Nutr. 2017;118(8):580–8.CrossRef
9.
go back to reference Zhou M, Zhu L, Cui X, Feng L, Zhao X, He S, Ping F, Li W, Li Y. The triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio as a predictor of insulin resistance but not of β cell function in a Chinese population with different glucose tolerance status. Lipids Health Dis. 2016;15:104.CrossRef Zhou M, Zhu L, Cui X, Feng L, Zhao X, He S, Ping F, Li W, Li Y. The triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio as a predictor of insulin resistance but not of β cell function in a Chinese population with different glucose tolerance status. Lipids Health Dis. 2016;15:104.CrossRef
10.
go back to reference Zheng S, Xu H, Zhou H, Ren X, Han T, Chen Y, Qiu H, Wu P, Zheng J, Wang L, Liu W, Hu Y. Associations of lipid profiles with insulin resistance and β cell function in adults with normal glucose tolerance and different categories of impaired glucose regulation. PLoS One. 2017;12:e0172221.CrossRef Zheng S, Xu H, Zhou H, Ren X, Han T, Chen Y, Qiu H, Wu P, Zheng J, Wang L, Liu W, Hu Y. Associations of lipid profiles with insulin resistance and β cell function in adults with normal glucose tolerance and different categories of impaired glucose regulation. PLoS One. 2017;12:e0172221.CrossRef
11.
go back to reference Wang WG, He YR, Lin P, Li YF, Sun RF, Gu W, Yu J, Zhao RH. In vitro effects of active components of Polygonum Multiflorum on enzymes involved in the lipid metabolism. J Ethnopharmacol. 2014;153:763–70.CrossRef Wang WG, He YR, Lin P, Li YF, Sun RF, Gu W, Yu J, Zhao RH. In vitro effects of active components of Polygonum Multiflorum on enzymes involved in the lipid metabolism. J Ethnopharmacol. 2014;153:763–70.CrossRef
12.
go back to reference Wang MJ, Zhao RH, Wang WG, Mao XJ, Yu J. Lipid regulation effects of Polygoni Multiflori Radix, its processed products and its major substances on steatosis human liver cell line L02. J Ethnopharmacol. 2012;139(1):287–93.CrossRef Wang MJ, Zhao RH, Wang WG, Mao XJ, Yu J. Lipid regulation effects of Polygoni Multiflori Radix, its processed products and its major substances on steatosis human liver cell line L02. J Ethnopharmacol. 2012;139(1):287–93.CrossRef
13.
go back to reference Bounda GA, Feng YU. Review of clinical studies of Polygonum multiflorum Thunb. And its isolated bioactive compounds. Pharm Res. 2015;7(3):225–36. Bounda GA, Feng YU. Review of clinical studies of Polygonum multiflorum Thunb. And its isolated bioactive compounds. Pharm Res. 2015;7(3):225–36.
15.
go back to reference Tang W, Li S, Liu Y, Wu J, Pan M, Huang M, Ho C. Anti-diabetic activities of cis- and trans-2,3,5,4′-tetrahydroxystilbene-2-O-β-glucopyranoside from Polygonum multiflorum. Mol Nutr Food Res. 2017;61:1600871.CrossRef Tang W, Li S, Liu Y, Wu J, Pan M, Huang M, Ho C. Anti-diabetic activities of cis- and trans-2,3,5,4′-tetrahydroxystilbene-2-O-β-glucopyranoside from Polygonum multiflorum. Mol Nutr Food Res. 2017;61:1600871.CrossRef
16.
go back to reference Zhang J, Chen X, Chen B, Tong L, Zhang Y. Tetrahydroxy stilbene glucoside protected against diabetes-induced osteoporosis in mice with streptozotocin-induced hyperglycemia. Phytother Res. 2019;33:442–51.CrossRef Zhang J, Chen X, Chen B, Tong L, Zhang Y. Tetrahydroxy stilbene glucoside protected against diabetes-induced osteoporosis in mice with streptozotocin-induced hyperglycemia. Phytother Res. 2019;33:442–51.CrossRef
17.
go back to reference Lin P, Lu JM, Wang YF, Gu W, Yu J, Zhang RH. Naturally occurring stilbenoid TSG reverses non-alcoholic fatty liver diseases via gut-liver axis. PLoS One. 2015;10(10):e0140346.CrossRef Lin P, Lu JM, Wang YF, Gu W, Yu J, Zhang RH. Naturally occurring stilbenoid TSG reverses non-alcoholic fatty liver diseases via gut-liver axis. PLoS One. 2015;10(10):e0140346.CrossRef
18.
go back to reference He C, Yang Z, Cheng D, Xie C, Zhu Y, Ge Z, Lu N. Helicobacter pylori infection aggravates diet-induced insulin resistance in association with gut microbiota of mice. Ebiomedicine. 2016;12:247–54.CrossRef He C, Yang Z, Cheng D, Xie C, Zhu Y, Ge Z, Lu N. Helicobacter pylori infection aggravates diet-induced insulin resistance in association with gut microbiota of mice. Ebiomedicine. 2016;12:247–54.CrossRef
19.
go back to reference Song H, Chu Q, Yan F, Yang Y, Han W, Zheng X. Red pitaya betacyanins protects from diet-induced obesity, liver steatosis and insulin resistance in association with modulation of gut microbiota in mice. J Gastroenterol Hepatol. 2016;31(8):1462–9.CrossRef Song H, Chu Q, Yan F, Yang Y, Han W, Zheng X. Red pitaya betacyanins protects from diet-induced obesity, liver steatosis and insulin resistance in association with modulation of gut microbiota in mice. J Gastroenterol Hepatol. 2016;31(8):1462–9.CrossRef
20.
go back to reference Maniar K, Moideen A, Bhattacharyya R, Banerjee D. Metformin exerts anti-obesity effect via gut microbiome modulation in prediabetics: a hypothesis. Med Hypotheses. 2017;104:117–20.CrossRef Maniar K, Moideen A, Bhattacharyya R, Banerjee D. Metformin exerts anti-obesity effect via gut microbiome modulation in prediabetics: a hypothesis. Med Hypotheses. 2017;104:117–20.CrossRef
21.
go back to reference Pedersen HK, Gudmundsdottir V, Nielsen HB, Hyotylainen T, Nielsen T, Jensen BA. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016;535(7612):376.CrossRef Pedersen HK, Gudmundsdottir V, Nielsen HB, Hyotylainen T, Nielsen T, Jensen BA. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016;535(7612):376.CrossRef
22.
go back to reference TKC LE, Hosaka T, TTT LE, Nguyen TG, Tran QB, THH LE, Pham XD. Oral administration of Bifidobacterium spp. improves insulin resistance, induces adiponectin, and prevents inflammatory adipokine expressions. Biomed Res. 2014;35(5):303–10.CrossRef TKC LE, Hosaka T, TTT LE, Nguyen TG, Tran QB, THH LE, Pham XD. Oral administration of Bifidobacterium spp. improves insulin resistance, induces adiponectin, and prevents inflammatory adipokine expressions. Biomed Res. 2014;35(5):303–10.CrossRef
23.
go back to reference Van HM, Geurts L, Plovier H, Druart C, Everard A, Ståhlman M, Cani PD. Reduced obesity, diabetes, and steatosis upon cinnamon and grape pomace are associated with changes in gut microbiota and markers of gut barrier. Am J Physiol Endocrinol Metab. 2018;314(4):E334–52.CrossRef Van HM, Geurts L, Plovier H, Druart C, Everard A, Ståhlman M, Cani PD. Reduced obesity, diabetes, and steatosis upon cinnamon and grape pomace are associated with changes in gut microbiota and markers of gut barrier. Am J Physiol Endocrinol Metab. 2018;314(4):E334–52.CrossRef
24.
go back to reference Panasevich MR, Meers GM, Linden MA, Booth FW, Perfield JW, Fritsche KL. High-fat, high-fructose, high-cholesterol feeding causes severe NASH and cecal microbiota dysbiosis in juvenile Ossabaw swine. Am J Physiol Endocrinol Metab. 2018;314(1):E78–92.CrossRef Panasevich MR, Meers GM, Linden MA, Booth FW, Perfield JW, Fritsche KL. High-fat, high-fructose, high-cholesterol feeding causes severe NASH and cecal microbiota dysbiosis in juvenile Ossabaw swine. Am J Physiol Endocrinol Metab. 2018;314(1):E78–92.CrossRef
25.
go back to reference Lam YY, Ha CWY, Campbell CR, Mitchell AJ, Dinudom A, Oscarsson J, Storlien LH. Increased gut permeability and microbiota change associate with mesenteric fat inflammation and metabolic dysfunction in diet-induced obese mice. PLoS One. 2012;7(3):e34233.CrossRef Lam YY, Ha CWY, Campbell CR, Mitchell AJ, Dinudom A, Oscarsson J, Storlien LH. Increased gut permeability and microbiota change associate with mesenteric fat inflammation and metabolic dysfunction in diet-induced obese mice. PLoS One. 2012;7(3):e34233.CrossRef
26.
go back to reference DeFilipp Z, Duarte RF, Snowden JA, Majhail NS, Greenfield D, Miranda JL, Shaw BE. Metabolicsyndrome and cardiovascular disease following hematopoietic celltransplantation: screening and preventive practice recommendations from CIBMTR and EBMT. Bone Marrow Transpl. 2017;52(2):1493–503.CrossRef DeFilipp Z, Duarte RF, Snowden JA, Majhail NS, Greenfield D, Miranda JL, Shaw BE. Metabolicsyndrome and cardiovascular disease following hematopoietic celltransplantation: screening and preventive practice recommendations from CIBMTR and EBMT. Bone Marrow Transpl. 2017;52(2):1493–503.CrossRef
27.
go back to reference Lin P, Lu JM, Wang YF, Gu W, Zhao RH, Yu J. Prevention mechanism of 2,3,5,4′-tetrahydroxy-stilbene-2-O-β-D-glucoside on lipid accumulation in steatosis hepatic L-02 cell. Pharmacogn Mag. 2017;13(50):245–53.CrossRef Lin P, Lu JM, Wang YF, Gu W, Zhao RH, Yu J. Prevention mechanism of 2,3,5,4′-tetrahydroxy-stilbene-2-O-β-D-glucoside on lipid accumulation in steatosis hepatic L-02 cell. Pharmacogn Mag. 2017;13(50):245–53.CrossRef
28.
go back to reference Chan CM, Chan YW, Lau CH, Lau TW, Lau KM, Lam F, Che CT, Leung P, Fung KP, Lau CB, Ho YY. Influence of an anti-diabetic foot ulcer formula and its component herbs on tissue and systemic glucose homeostasis. J Ethnopharmacol. 2007;109:10–20.CrossRef Chan CM, Chan YW, Lau CH, Lau TW, Lau KM, Lam F, Che CT, Leung P, Fung KP, Lau CB, Ho YY. Influence of an anti-diabetic foot ulcer formula and its component herbs on tissue and systemic glucose homeostasis. J Ethnopharmacol. 2007;109:10–20.CrossRef
29.
go back to reference He Y, Wang F, Chen S, Liu M, Pan W, Li X. The protective effect of Radix Polygoni Multiflori on diabetic encephalopathy via regulating myosin light chain kinase expression. J Diabetes Res. 2015;2015:484721.CrossRef He Y, Wang F, Chen S, Liu M, Pan W, Li X. The protective effect of Radix Polygoni Multiflori on diabetic encephalopathy via regulating myosin light chain kinase expression. J Diabetes Res. 2015;2015:484721.CrossRef
30.
go back to reference Nakajima A, Nakatani A, Hasegawa S, Irie J, Ozawa K, Tsujimoto G, Kimura I. The short chain fatty acid receptor GPR43 regulates inflammatory signals in adipose tissue M2-type macrophages. PLoS One. 2017;12(7):e0179696.CrossRef Nakajima A, Nakatani A, Hasegawa S, Irie J, Ozawa K, Tsujimoto G, Kimura I. The short chain fatty acid receptor GPR43 regulates inflammatory signals in adipose tissue M2-type macrophages. PLoS One. 2017;12(7):e0179696.CrossRef
31.
go back to reference Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K, Maeda T, Tsujimoto G. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun. 2013;4:1829.CrossRef Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K, Maeda T, Tsujimoto G. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun. 2013;4:1829.CrossRef
32.
go back to reference Schönke M, Massart J, Zierath JR. Effects of high-fat diet and AMP-activated protein kinase modulation on the regulation of whole-body lipid metabolism. J Lipid Res. 2018;59:1276–82.CrossRef Schönke M, Massart J, Zierath JR. Effects of high-fat diet and AMP-activated protein kinase modulation on the regulation of whole-body lipid metabolism. J Lipid Res. 2018;59:1276–82.CrossRef
33.
go back to reference Choi SH, Silvey DT, Johnson BJ, Doumit M, Chung KY, Sawyer JE, Go G, Smith SB. Conjugated linoleic acid (t-10, c-12) reduces fatty acid synthesis de novo, but not expression of genes for lipid metabolism in bovine adipose tissue ex vivo. Lipids. 2014;49(1):15–24.CrossRef Choi SH, Silvey DT, Johnson BJ, Doumit M, Chung KY, Sawyer JE, Go G, Smith SB. Conjugated linoleic acid (t-10, c-12) reduces fatty acid synthesis de novo, but not expression of genes for lipid metabolism in bovine adipose tissue ex vivo. Lipids. 2014;49(1):15–24.CrossRef
34.
go back to reference Arias-Jayo N, Abecia L, Alonso-Saez L, Ramirez-Garcia A, Rodriguez A, Pardo MA. High-fat diet consumption induces microbiota dysbiosis and intestinal inflammation in zebrafish. Microb Ecol. 2018;76:1089–101.CrossRef Arias-Jayo N, Abecia L, Alonso-Saez L, Ramirez-Garcia A, Rodriguez A, Pardo MA. High-fat diet consumption induces microbiota dysbiosis and intestinal inflammation in zebrafish. Microb Ecol. 2018;76:1089–101.CrossRef
35.
go back to reference Nihei N, Okamoto H, Furune T, Ikuta N, Sasaki K, Rimbach G, Terao K. Dietary α-cyclodextrin modifies gut microbiota and reduces fat accumulation in high-fat-diet-fed obese mice. Biofactors. 2018;44(4):336–47. Nihei N, Okamoto H, Furune T, Ikuta N, Sasaki K, Rimbach G, Terao K. Dietary α-cyclodextrin modifies gut microbiota and reduces fat accumulation in high-fat-diet-fed obese mice. Biofactors. 2018;44(4):336–47.
36.
go back to reference Koliada A, Syzenko G, Moseiko V, Budovska L, Puchkov K, Perederiy V, Vaiserman A. Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiol. 2017;17(1):120.CrossRef Koliada A, Syzenko G, Moseiko V, Budovska L, Puchkov K, Perederiy V, Vaiserman A. Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiol. 2017;17(1):120.CrossRef
37.
go back to reference Xue B, Xie J, Huang J, Chen L, Gao L, Ou S, Peng X. Plant polyphenols alter a pathway of energy metabolism by inhibiting fecal Bacteroidetes and Firmicutes in vitro. Food Funct. 2016;7(3):1501–7.CrossRef Xue B, Xie J, Huang J, Chen L, Gao L, Ou S, Peng X. Plant polyphenols alter a pathway of energy metabolism by inhibiting fecal Bacteroidetes and Firmicutes in vitro. Food Funct. 2016;7(3):1501–7.CrossRef
38.
go back to reference Barczynska R, Kapusniak J, Litwin M, Slizewska K, Szalecki M. Dextrins from maize starch as substances activating the growth of Bacteroidetes and Actinobacteria simultaneously inhibiting the growth of Firmicutes, responsible for the occurrence of obesity. Plant Foods Hum Nutr. 2016;71:190–6.CrossRef Barczynska R, Kapusniak J, Litwin M, Slizewska K, Szalecki M. Dextrins from maize starch as substances activating the growth of Bacteroidetes and Actinobacteria simultaneously inhibiting the growth of Firmicutes, responsible for the occurrence of obesity. Plant Foods Hum Nutr. 2016;71:190–6.CrossRef
39.
go back to reference Huang Y, Li SC, Hu J, Ruan HB, Guo HM, Zhang HH, Fang C. Gut microbiota profiling in Han Chinese with type 1 diabetes. Diabetes Res Clin Pract. 2018;141:256–63.CrossRef Huang Y, Li SC, Hu J, Ruan HB, Guo HM, Zhang HH, Fang C. Gut microbiota profiling in Han Chinese with type 1 diabetes. Diabetes Res Clin Pract. 2018;141:256–63.CrossRef
40.
go back to reference Li H, Qi T, Huang ZS, Ying Y, Zhang Y, Wang B, Chen J. Relationship between gut microbiota and type 2 diabetic erectile dysfunction in Sprague-Dawley rats. J. Huazhong Univ. Sci. Technol. Med. Sci. 2017;37(4):523–30. Li H, Qi T, Huang ZS, Ying Y, Zhang Y, Wang B, Chen J. Relationship between gut microbiota and type 2 diabetic erectile dysfunction in Sprague-Dawley rats. J. Huazhong Univ. Sci. Technol. Med. Sci. 2017;37(4):523–30.
Metadata
Title
Water extract from processed Polygonum multiflorum modulate gut microbiota and glucose metabolism on insulin resistant rats
Authors
Wen Gu
Min Yang
Qian Bi
Lin-Xi Zeng
Xi Wang
Jin-Cai Dong
Feng-Jiao Li
Xing-Xin Yang
Jing-Ping Li
Jie Yu
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2020
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-020-02897-5

Other articles of this Issue 1/2020

BMC Complementary Medicine and Therapies 1/2020 Go to the issue