Skip to main content
Top
Published in: Cardiovascular Drugs and Therapy 1/2023

Open Access 08-10-2021 | Insulins | Original Article

Kv1.3 Channel Blockade Improves Inflammatory Profile, Reduces Cardiac Electrical Remodeling, and Prevents Arrhythmia in Type 2 Diabetic Rats

Authors: Julián Zayas-Arrabal, Amaia Alquiza, Ainhoa Rodríguez-de-Yurre, Leyre Echeazarra, Víctor Fernández-López, Mónica Gallego, Oscar Casis

Published in: Cardiovascular Drugs and Therapy | Issue 1/2023

Login to get access

Abstract

Purpose

Kv1.3 channel regulates the activity of lymphocytes, macrophages, or adipose tissue and its blockade reduces inflammatory cytokine secretion and improves insulin sensitivity in animals with metabolic syndrome and in genetically obese mice. Thus, Kv1.3 blockade could be a strategy for the treatment of type 2 diabetes. Elevated circulating levels of TNFα and IL-1b mediate the higher susceptibility to cardiac arrhythmia in type 2 diabetic rats. We hypothesized that Kv1.3 channel blockade with the psoralen PAP1 could have immunomodulatory properties that prevent QTc prolongation and reduce the risk of arrhythmia in type 2 diabetic rats.

Methods

Type 2 diabetes was induced to Sprague-Dawley rats by high-fat diet and streptozotocin injection. Diabetic animals were untreated, treated with metformin, or treated with PAP1 for 4 weeks. Plasma glucose, insulin, cholesterol, triglycerides, and cytokine levels were measured using commercial kits. ECG were recorded weekly, and an arrhythmia-inducing protocol was performed at the end of the experimental period. Action potentials were recorded in isolated ventricular cardiomyocytes.

Results

In diabetic animals, PAP1 normalized glycaemia, insulin resistance, adiposity, and lipid profile. In addition, PAP1 prevented the diabetes-induced repolarization defects through reducing the secretion of the inflammatory cytokines IL-10, IL-12p70, GM-CSF, IFNγ, and TNFα. Moreover, compared to diabetic untreated and metformin-treated animals, those treated with PAP1 had the lowest risk of developing the life-threatening arrhythmia Torsade de Pointes under cardiac challenge.

Conclusion

Kv1.3 inhibition improves diabetes and diabetes-associated low-grade inflammation and cardiac electrical remodeling, resulting in more protection against cardiac arrhythmia compared to metformin.
Appendix
Available only for authorised users
Literature
1.
go back to reference Gallego, M., Casis, O. Cellular mechanism underlying the misfunction of cardiac ionic channels in diabetes. In: Turan, B., Dhalla, N. editors. Diabetic Cardiomyopathy. Advances in Biochemistry in Health and Disease, vol. 9. Springer, New York; 2014. pp. 189-200 Gallego, M., Casis, O. Cellular mechanism underlying the misfunction of cardiac ionic channels in diabetes. In: Turan, B., Dhalla, N. editors. Diabetic Cardiomyopathy. Advances in Biochemistry in Health and Disease, vol. 9. Springer, New York; 2014. pp. 189-200
2.
go back to reference Lu Z, Lense L, Sharma M, et al. Prevalence of QT prolongation and associated LVEF changes in diabetic patients over a four-year retrospective time period. J Community Hosp Intern Med Perspect. 2017;7:87–94.CrossRef Lu Z, Lense L, Sharma M, et al. Prevalence of QT prolongation and associated LVEF changes in diabetic patients over a four-year retrospective time period. J Community Hosp Intern Med Perspect. 2017;7:87–94.CrossRef
3.
go back to reference Li X, Ren H, Xu ZR, et al. Prevalence and risk factors of prolonged QTc interval among Chinese patients with type 2 diabetes. Exp. Diabetes Res. 2012;234084. Li X, Ren H, Xu ZR, et al. Prevalence and risk factors of prolonged QTc interval among Chinese patients with type 2 diabetes. Exp. Diabetes Res. 2012;234084.
4.
go back to reference Timar R, Popescu S, Simu M, et al. QTc interval and insulin resistance in type 2 diabetes mellitus. Eur Sci J. 2013;9:70–7. Timar R, Popescu S, Simu M, et al. QTc interval and insulin resistance in type 2 diabetes mellitus. Eur Sci J. 2013;9:70–7.
5.
go back to reference Cox AJ, Azeem A, Yeboah J, et al. Heart rate-corrected QT interval is an independent predictor of all-cause and cardiovascular mortality in individuals with type 2 diabetes: the Diabetes Heart Study. Diabetes Care. 2014;37:1454–61.CrossRef Cox AJ, Azeem A, Yeboah J, et al. Heart rate-corrected QT interval is an independent predictor of all-cause and cardiovascular mortality in individuals with type 2 diabetes: the Diabetes Heart Study. Diabetes Care. 2014;37:1454–61.CrossRef
6.
go back to reference Hegyi B, Bers DM, Bossuyt J. CaMKII signaling in heart diseases: emerging role in diabetic cardiomyopathy. J Mol Cell Cardiol. 2019;127:246–59.CrossRef Hegyi B, Bers DM, Bossuyt J. CaMKII signaling in heart diseases: emerging role in diabetic cardiomyopathy. J Mol Cell Cardiol. 2019;127:246–59.CrossRef
7.
go back to reference Tse G, Lai ETH, Tse V, Yeo JM. Molecular and electrophysiological mechanisms underlying cardiac arrhythmogenesis in diabetes mellitus. J Diabetes Res. 2016;2848759 Tse G, Lai ETH, Tse V, Yeo JM. Molecular and electrophysiological mechanisms underlying cardiac arrhythmogenesis in diabetes mellitus. J Diabetes Res. 2016;2848759
8.
go back to reference Dandona P, Aljada A, Bandyopadhyay A. Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol. 2004;25:4–7.CrossRef Dandona P, Aljada A, Bandyopadhyay A. Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol. 2004;25:4–7.CrossRef
9.
go back to reference Zatterale F, Longo M, Naderi J, et al. Chronic adipose tissue inflammation linking obesity to insulin resistance and type 2 diabetes. Front Physiol. 2020;10:1607.CrossRef Zatterale F, Longo M, Naderi J, et al. Chronic adipose tissue inflammation linking obesity to insulin resistance and type 2 diabetes. Front Physiol. 2020;10:1607.CrossRef
10.
go back to reference Monnerat G, Alarcon ML, Vasconcellos LR, et al. Macrophage-dependent IL-1 beta production induces cardiac arrhythmias in diabetic mice. Nat Commun. 2016;7:13344.CrossRef Monnerat G, Alarcon ML, Vasconcellos LR, et al. Macrophage-dependent IL-1 beta production induces cardiac arrhythmias in diabetic mice. Nat Commun. 2016;7:13344.CrossRef
11.
go back to reference Fernandez-Velasco M, Ruiz-Hurtado G, Hurtado O, Moro MA, Delgado C. TNF-alpha downregulates transient outward potassium current in rat ventricular myocytes through iNOS overexpression and oxidant species generation. Am J Physiol-HCP. 2007;293:H238-H245. Fernandez-Velasco M, Ruiz-Hurtado G, Hurtado O, Moro MA, Delgado C. TNF-alpha downregulates transient outward potassium current in rat ventricular myocytes through iNOS overexpression and oxidant species generation. Am J Physiol-HCP. 2007;293:H238-H245.
12.
go back to reference Bello F, Marchi A, Prisco D, Olivotto I, Emmi G. Antiarrhythmic efficacy of anakinra in a young patient with autoimmune lymphocytic myocarditis. Rheumatology. 2020;59:E88–90.CrossRef Bello F, Marchi A, Prisco D, Olivotto I, Emmi G. Antiarrhythmic efficacy of anakinra in a young patient with autoimmune lymphocytic myocarditis. Rheumatology. 2020;59:E88–90.CrossRef
13.
go back to reference Xu J, Wang P, Li Y, et al. The voltage-gated potassium channel Kv1.3 regulates peripheral insulin sensitivity. Proc Natl Acad Sci USA. 2004;101:3112–7.CrossRef Xu J, Wang P, Li Y, et al. The voltage-gated potassium channel Kv1.3 regulates peripheral insulin sensitivity. Proc Natl Acad Sci USA. 2004;101:3112–7.CrossRef
14.
go back to reference Upadhyay SK, Eckel-Mahan KL, Mirbolooki MR, et al. Selective Kv1.3 channel blocker as therapeutic for obesity and insulin resistance. Proc Natl Acad Sci USA. 2013;110:E2239–48.CrossRef Upadhyay SK, Eckel-Mahan KL, Mirbolooki MR, et al. Selective Kv1.3 channel blocker as therapeutic for obesity and insulin resistance. Proc Natl Acad Sci USA. 2013;110:E2239–48.CrossRef
15.
go back to reference Perez-Verdaguer M, Capera J, Serrano-Novillo C, Estadella I, Sastre D, Felipe A. The voltage-gated potassium channel Kv1.3 is a promising multitherapeutic target against human pathologies. Exp Op Therap Targ. 2016;20:577–91.CrossRef Perez-Verdaguer M, Capera J, Serrano-Novillo C, Estadella I, Sastre D, Felipe A. The voltage-gated potassium channel Kv1.3 is a promising multitherapeutic target against human pathologies. Exp Op Therap Targ. 2016;20:577–91.CrossRef
16.
go back to reference Beeton C, Wulff H, Standifer NE, et al. Kv1.3 channels are a therapeutic target for T cell-mediated autoimmune diseases. Proc Natl Acad Sci USA. 2006;103:17414–9.CrossRef Beeton C, Wulff H, Standifer NE, et al. Kv1.3 channels are a therapeutic target for T cell-mediated autoimmune diseases. Proc Natl Acad Sci USA. 2006;103:17414–9.CrossRef
17.
go back to reference Dasu MR, Devaraj S, Park S, Jialal I. Increased toll-like receptor (TLR) activation and TLR ligands in recently diagnosed type 2 diabetic subjects. Diabetes Care. 2010;33:861–8.CrossRef Dasu MR, Devaraj S, Park S, Jialal I. Increased toll-like receptor (TLR) activation and TLR ligands in recently diagnosed type 2 diabetic subjects. Diabetes Care. 2010;33:861–8.CrossRef
18.
go back to reference Maida CD, Vasto S, Di Raimondo D, et al. Inflammatory activation and endothelial dysfunction markers in patients with permanent atrial fibrillation: a cross-sectional study. Aging-Us. 2020;12:8423–33.CrossRef Maida CD, Vasto S, Di Raimondo D, et al. Inflammatory activation and endothelial dysfunction markers in patients with permanent atrial fibrillation: a cross-sectional study. Aging-Us. 2020;12:8423–33.CrossRef
19.
go back to reference Zayas-Arrabal J, Alquiza A, Tuncay E, Turan B, Gallego M, Casis O. Molecular and electrophysiological role of diabetes-associated circulating inflammatory factors in cardiac arrhythmia remodeling in a metabolic-induced model of type 2 diabetic rat. Int J Mol Sci. 2021;22(13):6827.CrossRef Zayas-Arrabal J, Alquiza A, Tuncay E, Turan B, Gallego M, Casis O. Molecular and electrophysiological role of diabetes-associated circulating inflammatory factors in cardiac arrhythmia remodeling in a metabolic-induced model of type 2 diabetic rat. Int J Mol Sci. 2021;22(13):6827.CrossRef
20.
go back to reference Schmitz A, Sankaranarayanan A, Azam P, et al. Design of PAP-1, a selective small molecule Kv1.3 blocker, for the suppression of effector memory T cells in autoimmune diseases. Mol Pharmacol. 2005;68:1254–70.CrossRef Schmitz A, Sankaranarayanan A, Azam P, et al. Design of PAP-1, a selective small molecule Kv1.3 blocker, for the suppression of effector memory T cells in autoimmune diseases. Mol Pharmacol. 2005;68:1254–70.CrossRef
21.
go back to reference Pereira LE, Villinger F, Wulff H, Sankaranarayanan A, Raman G, Ansari AA. Pharmacokinetics, toxicity, and functional studies of the selective Kv1.3 channel blocker 5-(4-phenoxybutoxy)psoralen in rhesus macaques. Exp Biol Med. 2007;232:1338–54.CrossRef Pereira LE, Villinger F, Wulff H, Sankaranarayanan A, Raman G, Ansari AA. Pharmacokinetics, toxicity, and functional studies of the selective Kv1.3 channel blocker 5-(4-phenoxybutoxy)psoralen in rhesus macaques. Exp Biol Med. 2007;232:1338–54.CrossRef
22.
go back to reference Di Lucente J, Nguyen HM, Wulff H, Jin LW, Maezawa I. The voltage-gated potassium channel Kv1.3 is required for microglial pro-inflammatory activation in vivo. Glia. 2018;66:1881–95.CrossRef Di Lucente J, Nguyen HM, Wulff H, Jin LW, Maezawa I. The voltage-gated potassium channel Kv1.3 is required for microglial pro-inflammatory activation in vivo. Glia. 2018;66:1881–95.CrossRef
23.
go back to reference Ti Y, Xie GL, Wang ZH, Bi XL, Ding WY, Wang J, et al. TRB3 gene silencing alleviates diabetic cardiomyopathy in a type 2 diabetic rat model. Diabetes. 2011;60:2963–74.CrossRef Ti Y, Xie GL, Wang ZH, Bi XL, Ding WY, Wang J, et al. TRB3 gene silencing alleviates diabetic cardiomyopathy in a type 2 diabetic rat model. Diabetes. 2011;60:2963–74.CrossRef
24.
go back to reference Azam P, Sankaranarayanan A, Homerick D, Griffey S, Wulff H. Targeting effector memory T cells with the small molecule Kv1.3 blocker PAP-1 suppresses allergic contact dermatitis. J Invest Dermatol. 2007;127:1419–29.CrossRef Azam P, Sankaranarayanan A, Homerick D, Griffey S, Wulff H. Targeting effector memory T cells with the small molecule Kv1.3 blocker PAP-1 suppresses allergic contact dermatitis. J Invest Dermatol. 2007;127:1419–29.CrossRef
25.
go back to reference Erickson JR, Pereira L, Wang L, et al. Diabetic hyperglycaemia activates CaMKII and arrhythmias by O-linked glycosylation. Nature. 2013;502:372–6.CrossRef Erickson JR, Pereira L, Wang L, et al. Diabetic hyperglycaemia activates CaMKII and arrhythmias by O-linked glycosylation. Nature. 2013;502:372–6.CrossRef
26.
go back to reference Xu JC, Koni PA, Wang PL, et al. The voltage-gated potassium channel Kv1.3 regulates energy homeostasis and body weight. Hum Mol Genet. 2003;12:551–9.CrossRef Xu JC, Koni PA, Wang PL, et al. The voltage-gated potassium channel Kv1.3 regulates energy homeostasis and body weight. Hum Mol Genet. 2003;12:551–9.CrossRef
27.
go back to reference Guilherme A, Virbasius JV, Puri V, Czech MP. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nature Rev Mol Cell Biol. 2008;9:367–77.CrossRef Guilherme A, Virbasius JV, Puri V, Czech MP. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nature Rev Mol Cell Biol. 2008;9:367–77.CrossRef
28.
go back to reference Randeria SN, Thomson GJA, Nell TA, Roberts T, Pretorius E. Inflammatory cytokines in type 2 diabetes mellitus as facilitators of hypercoagulation and abnormal clot formation. Cardiovasc Diabetol. 2019;18:7242.CrossRef Randeria SN, Thomson GJA, Nell TA, Roberts T, Pretorius E. Inflammatory cytokines in type 2 diabetes mellitus as facilitators of hypercoagulation and abnormal clot formation. Cardiovasc Diabetol. 2019;18:7242.CrossRef
29.
go back to reference Xu H, Barnes GT, Yang Q, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003;112:1821–30.CrossRef Xu H, Barnes GT, Yang Q, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003;112:1821–30.CrossRef
30.
go back to reference Panyi G, Vamosi G, Bacso Z, et al. Kv1.3 potassium channels are localized in the immunological synapse formed between cytotoxic and target cells. Proc Natl Acad Sci USA. 2004;101:1285–90.CrossRef Panyi G, Vamosi G, Bacso Z, et al. Kv1.3 potassium channels are localized in the immunological synapse formed between cytotoxic and target cells. Proc Natl Acad Sci USA. 2004;101:1285–90.CrossRef
31.
go back to reference Hu L, Pennington M, Jiang Q, Whartenby KA, Calabresi PA. Characterization of the functional properties of the voltage-gated potassium channel Kv1.3 in human CD4(+) T lymphocytes. J Immunol. 2007;179:4563–70.CrossRef Hu L, Pennington M, Jiang Q, Whartenby KA, Calabresi PA. Characterization of the functional properties of the voltage-gated potassium channel Kv1.3 in human CD4(+) T lymphocytes. J Immunol. 2007;179:4563–70.CrossRef
32.
go back to reference Vallejo-Gracia A, Bielanska J, Hernandez-Losa J, et al. Emerging role for the voltage-dependent K+ channel Kv1.5 in B-lymphocyte physiology: expression associated with human lymphoma malignancy. J Leukoc Biol. 2013;94:779–89.CrossRef Vallejo-Gracia A, Bielanska J, Hernandez-Losa J, et al. Emerging role for the voltage-dependent K+ channel Kv1.5 in B-lymphocyte physiology: expression associated with human lymphoma malignancy. J Leukoc Biol. 2013;94:779–89.CrossRef
33.
go back to reference Villalonga N, Escalada A, Vicente R, et al. Kv1.3/Kv1.5 heteromeric channels compromise pharmacological responses in macrophages. Biochem Biophys Res Commun. 2007;352:913–8.CrossRef Villalonga N, Escalada A, Vicente R, et al. Kv1.3/Kv1.5 heteromeric channels compromise pharmacological responses in macrophages. Biochem Biophys Res Commun. 2007;352:913–8.CrossRef
34.
go back to reference Cahalan MD, Chandy KG. The functional network of ion channels in T lymphocytes. Immunol Rev. 2009;231:59–87.CrossRef Cahalan MD, Chandy KG. The functional network of ion channels in T lymphocytes. Immunol Rev. 2009;231:59–87.CrossRef
35.
go back to reference Pahapill PA, Schlichter LC. Modulation of potassium channels in intact human lymphocytes-T. J Physiol-Lond. 1992;445:407–30.CrossRef Pahapill PA, Schlichter LC. Modulation of potassium channels in intact human lymphocytes-T. J Physiol-Lond. 1992;445:407–30.CrossRef
36.
go back to reference Lu CH, Hung YJ, Hsieh PS. Additional effect of metformin and celecoxib against lipid dysregulation and adipose tissue inflammation in high-fat fed rats with insulin resistance and fatty liver. Eur J Pharmacol. 2016;789:60–7.CrossRef Lu CH, Hung YJ, Hsieh PS. Additional effect of metformin and celecoxib against lipid dysregulation and adipose tissue inflammation in high-fat fed rats with insulin resistance and fatty liver. Eur J Pharmacol. 2016;789:60–7.CrossRef
37.
go back to reference Jing Y, Wu F, Li D, Yang L, Li Q, Li R. Metformin improves obesity-associated inflammation by altering macrophages polarization. Mol Cell Endocrinol. 2018;461:256–64.CrossRef Jing Y, Wu F, Li D, Yang L, Li Q, Li R. Metformin improves obesity-associated inflammation by altering macrophages polarization. Mol Cell Endocrinol. 2018;461:256–64.CrossRef
38.
go back to reference Li H, Chen C, Wang DW. Inflammatory cytokines, immune cells, and organ interactions in heart failure. Front Physiol. 2021;12:903. Li H, Chen C, Wang DW. Inflammatory cytokines, immune cells, and organ interactions in heart failure. Front Physiol. 2021;12:903.
39.
go back to reference Cohen CD, De Blasio MJ, Lee MKS, Farrugia GE, Prakoso D, Krstevski C, Deo M, Donner DG, Kiriazis H, Flynn MC, Gaynor TL, Murphy AJ, Drummond GR, Pinto AR, Ritchie RH. Diastolic dysfunction in a pre-clinical model of diabetes is associated with changes in the cardiac non-myocyte cellular composition. Cardiovasc Diabetol. 2021;20:116.CrossRef Cohen CD, De Blasio MJ, Lee MKS, Farrugia GE, Prakoso D, Krstevski C, Deo M, Donner DG, Kiriazis H, Flynn MC, Gaynor TL, Murphy AJ, Drummond GR, Pinto AR, Ritchie RH. Diastolic dysfunction in a pre-clinical model of diabetes is associated with changes in the cardiac non-myocyte cellular composition. Cardiovasc Diabetol. 2021;20:116.CrossRef
40.
go back to reference Immler R, Nadolni W, Bertsch A, Morikis V, Rohwedder I, Masgrau-Alsina S, Schroll T, Yevtushenko A, Soehnlein O, Moser M, Gudermann T, Barnea ER, Rehberg M, Simon SI, Zierler S, Pruenster M, Sperandio M. The voltage-gated potassium channel KV1.3 regulates neutrophil recruitment during inflammation. Cardiovasc Res. 2021. Immler R, Nadolni W, Bertsch A, Morikis V, Rohwedder I, Masgrau-Alsina S, Schroll T, Yevtushenko A, Soehnlein O, Moser M, Gudermann T, Barnea ER, Rehberg M, Simon SI, Zierler S, Pruenster M, Sperandio M. The voltage-gated potassium channel KV1.3 regulates neutrophil recruitment during inflammation. Cardiovasc Res. 2021.
Metadata
Title
Kv1.3 Channel Blockade Improves Inflammatory Profile, Reduces Cardiac Electrical Remodeling, and Prevents Arrhythmia in Type 2 Diabetic Rats
Authors
Julián Zayas-Arrabal
Amaia Alquiza
Ainhoa Rodríguez-de-Yurre
Leyre Echeazarra
Víctor Fernández-López
Mónica Gallego
Oscar Casis
Publication date
08-10-2021
Publisher
Springer US
Published in
Cardiovascular Drugs and Therapy / Issue 1/2023
Print ISSN: 0920-3206
Electronic ISSN: 1573-7241
DOI
https://doi.org/10.1007/s10557-021-07264-1

Other articles of this Issue 1/2023

Cardiovascular Drugs and Therapy 1/2023 Go to the issue