Skip to main content
Top
Published in: Endocrine 2/2019

01-08-2019 | Insulins | Original Article

Impact of adrenomedullin blockage on lipid metabolism in female mice exposed to high-fat diet

Authors: Yuanlin Dong, Nicola van der Walt, Kathleen A. Pennington, Chandra Yallampalli

Published in: Endocrine | Issue 2/2019

Login to get access

Abstract

Purpose

Adrenomedullin (ADM) levels are elevated in gestational and type 2 diabetic patients. ADM also stimulates lipolysis in vitro. Disturbed lipid metabolism has been implicated in the pathogenesis of diabetes. Here, we explore whether blockade of ADM is beneficial for metabolic homeostasis in a diabetic mouse model.

Methods

C57BL/6J female mice were placed on either a control or a high fat high sucrose (HFHS) diet for 8 weeks. At week 4, osmotic mini-pumps were implanted for constant infusion of either saline or ADM antagonist, ADM22–52. Glucose tolerance tests were performed prior to infusion and 4 weeks after infusion began. Animals were then sacrificed and visceral adipose tissue collected for further analysis.

Results

Mice fed HFHS displayed glucose intolerance, increased mRNA expressions in VAT for Adm and its receptor components, Crlr. HFHS fed mice also had increased basal and isoprenaline-induced glycerol release by VAT explants. ADM22–52 did not significantly affect glucose intolerance. ADM22–52 did suppress basal and isoprenaline-induced glycerol release by VAT explants. This alteration was associated with enhanced mRNA expression of insulin signaling factors Insr and Glut4, and adipogenic factor Pck1.

Conclusions

HFHS diet induces glucose intolerance and enhances ADM and its receptor expressions in VAT in female mice. ADM22–52 treatment did not affect glucose intolerance in HFHS mice, but reduced both basal and isoprenaline-induced lipolysis, which is associated with enhanced expression of genes involved in adipogenesis. These results warrant further research on the effects of ADM blockade in improving lipid homeostasis in diabetic patients.
Literature
1.
go back to reference S. Martin, Caveolae, lipid droplets, and adipose tissue biology: pathophysiological aspects. Horm. Mol. Biol. Clin. Investig. 15(1), 11–18 (2013)PubMed S. Martin, Caveolae, lipid droplets, and adipose tissue biology: pathophysiological aspects. Horm. Mol. Biol. Clin. Investig. 15(1), 11–18 (2013)PubMed
2.
go back to reference T. Nambu, H. Arai, Y. Komatsu, A. Yasoda, K. Moriyama, N. Kanamoto, H. Itoh, K. Nakao, Expression of the adrenomedullin gene in adipose tissue. Regul. Pept. 132(1-3), 17–22 (2005)CrossRefPubMed T. Nambu, H. Arai, Y. Komatsu, A. Yasoda, K. Moriyama, N. Kanamoto, H. Itoh, K. Nakao, Expression of the adrenomedullin gene in adipose tissue. Regul. Pept. 132(1-3), 17–22 (2005)CrossRefPubMed
3.
go back to reference R. Harmancey, J.M. Senard, A. Pathak, F. Desmoulin, C. Claparols, P. Rouet, F. Smih, The vasoactive peptide adrenomedullin is secreted by adipocytes and inhibits lipolysis through NO-mediated beta-adrenergic agonist oxidation. FASEB J. 19(8), 1045–1047 (2005)CrossRefPubMed R. Harmancey, J.M. Senard, A. Pathak, F. Desmoulin, C. Claparols, P. Rouet, F. Smih, The vasoactive peptide adrenomedullin is secreted by adipocytes and inhibits lipolysis through NO-mediated beta-adrenergic agonist oxidation. FASEB J. 19(8), 1045–1047 (2005)CrossRefPubMed
4.
go back to reference Y. Li, C. Jiang, X. Wang, Y. Zhang, S. Shibahara, K. Takahashi, Adrenomedullin is a novel adipokine: adrenomedullin in adipocytes and adipose tissues. Peptides 28(5), 1129–1143 (2007)CrossRefPubMed Y. Li, C. Jiang, X. Wang, Y. Zhang, S. Shibahara, K. Takahashi, Adrenomedullin is a novel adipokine: adrenomedullin in adipocytes and adipose tissues. Peptides 28(5), 1129–1143 (2007)CrossRefPubMed
5.
go back to reference J.P. Hinson, S. Kapas, D.M. Smith, Adrenomedullin, a multifunctional regulatory peptide. Endocr. Rev. 21(2), 138–167 (2000)PubMed J.P. Hinson, S. Kapas, D.M. Smith, Adrenomedullin, a multifunctional regulatory peptide. Endocr. Rev. 21(2), 138–167 (2000)PubMed
6.
go back to reference L.M. McLatchie, N.J. Fraser, M.J. Main, A. Wise, J. Brown, N. Thompson, R. Solari, M.G. Lee, S.M. Foord, RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 393(6683), 333–339 (1998)CrossRefPubMed L.M. McLatchie, N.J. Fraser, M.J. Main, A. Wise, J. Brown, N. Thompson, R. Solari, M.G. Lee, S.M. Foord, RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 393(6683), 333–339 (1998)CrossRefPubMed
7.
go back to reference N. Fukai, T. Yoshimoto, T. Sugiyama, N. Ozawa, R. Sato, M. Shichiri, Y. Hirata, Concomitant expression of adrenomedullin and its receptor components in rat adipose tissues. Am. J. Physiol. Endocrinol. Metab. 288(1), E56–E62 (2005)CrossRefPubMed N. Fukai, T. Yoshimoto, T. Sugiyama, N. Ozawa, R. Sato, M. Shichiri, Y. Hirata, Concomitant expression of adrenomedullin and its receptor components in rat adipose tissues. Am. J. Physiol. Endocrinol. Metab. 288(1), E56–E62 (2005)CrossRefPubMed
8.
go back to reference A. Martinez, T.H. Elsasser, S.J. Bhathena, R. Pio, T.A. Buchanan, C.J. Macri, F. Cuttitta, Is adrenomedullin a causal agent in some cases of type 2 diabetes? Peptides 20(12), 1471–1478 (1999)CrossRefPubMed A. Martinez, T.H. Elsasser, S.J. Bhathena, R. Pio, T.A. Buchanan, C.J. Macri, F. Cuttitta, Is adrenomedullin a causal agent in some cases of type 2 diabetes? Peptides 20(12), 1471–1478 (1999)CrossRefPubMed
9.
go back to reference H.M. Turk, S. Buyukberber, A. Sevinc, G. Ak, M. Ates, R. Sari, H. Savli, A. Cigli, Relationship between plasma adrenomedullin levels and metabolic control, risk factors, and diabetic microangiopathy in patients with type 2 diabetes. Diabetes Care 23(6), 864–867 (2000)CrossRefPubMed H.M. Turk, S. Buyukberber, A. Sevinc, G. Ak, M. Ates, R. Sari, H. Savli, A. Cigli, Relationship between plasma adrenomedullin levels and metabolic control, risk factors, and diabetic microangiopathy in patients with type 2 diabetes. Diabetes Care 23(6), 864–867 (2000)CrossRefPubMed
10.
go back to reference K. Kitamura, K. Kangawa, M. Kawamoto, Y. Ichiki, S. Nakamura, H. Matsuo, T. Eto, Adrenomedullin: a novel hypotensive peptide isolated from human pheochromocytoma. Biochem. Biophys. Res. Commun. 192(2), 553–560 (1993)CrossRefPubMed K. Kitamura, K. Kangawa, M. Kawamoto, Y. Ichiki, S. Nakamura, H. Matsuo, T. Eto, Adrenomedullin: a novel hypotensive peptide isolated from human pheochromocytoma. Biochem. Biophys. Res. Commun. 192(2), 553–560 (1993)CrossRefPubMed
11.
go back to reference C. Iemura-Inaba, T. Nishikimi, K. Akimoto, F. Yoshihara, N. Minamino, H. Matsuoka, Role of adrenomedullin system in lipid metabolism and its signaling mechanism in cultured adipocytes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295(5), R1376–R1384 (2008)CrossRefPubMed C. Iemura-Inaba, T. Nishikimi, K. Akimoto, F. Yoshihara, N. Minamino, H. Matsuoka, Role of adrenomedullin system in lipid metabolism and its signaling mechanism in cultured adipocytes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295(5), R1376–R1384 (2008)CrossRefPubMed
12.
go back to reference K.A. Pennington, N. van der Walt, K.E. Pollock, O.O. Talton, L.C. Schulz, Effects of acute exposure to a high fat, high sucrose diet on gestational glucose tolerance and subsequent maternal health in mice. Biol. Reprod. 96(2), 435–445 (2017)CrossRefPubMed K.A. Pennington, N. van der Walt, K.E. Pollock, O.O. Talton, L.C. Schulz, Effects of acute exposure to a high fat, high sucrose diet on gestational glucose tolerance and subsequent maternal health in mice. Biol. Reprod. 96(2), 435–445 (2017)CrossRefPubMed
13.
go back to reference K.A. Pennington, J.L. Harper, A.N. Sigafoos, L.M. Beffa, S.M. Carleton, C.L. Phillips, L.C. Schulz, Effect of food restriction and leptin supplementation on fetal programming in mice. Endocrinology 153(9), 4556–4567 (2012)CrossRefPubMedPubMedCentral K.A. Pennington, J.L. Harper, A.N. Sigafoos, L.M. Beffa, S.M. Carleton, C.L. Phillips, L.C. Schulz, Effect of food restriction and leptin supplementation on fetal programming in mice. Endocrinology 153(9), 4556–4567 (2012)CrossRefPubMedPubMedCentral
14.
go back to reference Y. Dong, A. Betancourt, M. Chauhan, M. Balakrishnan, F. Lugo, M.L. Anderson, J. Espinoza, K. Fox, M. Belfort, C. Yallampalli, Pregnancy increases relaxation in human omental arteries to the CGRP family of peptides. Biol. Reprod. 93(6), 134 (2015)CrossRefPubMedPubMedCentral Y. Dong, A. Betancourt, M. Chauhan, M. Balakrishnan, F. Lugo, M.L. Anderson, J. Espinoza, K. Fox, M. Belfort, C. Yallampalli, Pregnancy increases relaxation in human omental arteries to the CGRP family of peptides. Biol. Reprod. 93(6), 134 (2015)CrossRefPubMedPubMedCentral
15.
go back to reference G. Barker, R. Lim, H.M. Georgiou, M. Lappas, Omentin-1 is decreased in maternal plasma, placenta and adipose tissue of women with pre-existing obesity. PLoS ONE 7(8), e42943 (2012)CrossRefPubMedPubMedCentral G. Barker, R. Lim, H.M. Georgiou, M. Lappas, Omentin-1 is decreased in maternal plasma, placenta and adipose tissue of women with pre-existing obesity. PLoS ONE 7(8), e42943 (2012)CrossRefPubMedPubMedCentral
16.
go back to reference Y. Dong, M. Chauhan, A. Betancourt, M. Belfort, C. Yallampalli, Adipose tissue inflammation and adrenomedullin overexpression contribute to lipid dysregulation in diabetic pregnancies. J. Clin. Endocrinol. Metab. 103(10), 3810–3818 (2018)CrossRefPubMedPubMedCentral Y. Dong, M. Chauhan, A. Betancourt, M. Belfort, C. Yallampalli, Adipose tissue inflammation and adrenomedullin overexpression contribute to lipid dysregulation in diabetic pregnancies. J. Clin. Endocrinol. Metab. 103(10), 3810–3818 (2018)CrossRefPubMedPubMedCentral
18.
go back to reference S. Guo, Insulin signaling, resistance, and the metabolic syndrome: insights from mouse models into disease mechanisms. J. Endocrinol. 220(2), T1–T23 (2014)CrossRefPubMedPubMedCentral S. Guo, Insulin signaling, resistance, and the metabolic syndrome: insights from mouse models into disease mechanisms. J. Endocrinol. 220(2), T1–T23 (2014)CrossRefPubMedPubMedCentral
19.
go back to reference R. Govers, Molecular mechanisms of GLUT4 regulation in adipocytes. Diabetes Metab. 40(6), 400–410 (2014)CrossRefPubMed R. Govers, Molecular mechanisms of GLUT4 regulation in adipocytes. Diabetes Metab. 40(6), 400–410 (2014)CrossRefPubMed
20.
go back to reference A.U. Hasan, K. Ohmori, T. Hashimoto, K. Kamitori, F. Yamaguchi, A. Rahman, M. Tokuda, H. Kobori, PPARgamma activation mitigates glucocorticoid receptor-induced excessive lipolysis in adipocytes via homeostatic crosstalk. J. Cell. Biochem. 119(6), 4627–4635 (2018)CrossRefPubMedPubMedCentral A.U. Hasan, K. Ohmori, T. Hashimoto, K. Kamitori, F. Yamaguchi, A. Rahman, M. Tokuda, H. Kobori, PPARgamma activation mitigates glucocorticoid receptor-induced excessive lipolysis in adipocytes via homeostatic crosstalk. J. Cell. Biochem. 119(6), 4627–4635 (2018)CrossRefPubMedPubMedCentral
21.
go back to reference K. Shirai, Y. Itoh, H. Sasaki, M. Totsuka, T. Murano, H. Watanabe, Y. Miyashita, The effect of insulin sensitizer, troglitazone, on lipoprotein lipase mass in preheparin serum. Diabetes Res. Clin. Pract. 46(1), 35–41 (1999)CrossRefPubMed K. Shirai, Y. Itoh, H. Sasaki, M. Totsuka, T. Murano, H. Watanabe, Y. Miyashita, The effect of insulin sensitizer, troglitazone, on lipoprotein lipase mass in preheparin serum. Diabetes Res. Clin. Pract. 46(1), 35–41 (1999)CrossRefPubMed
22.
go back to reference P.E. Scherer, Adipose tissue: from lipid storage compartment to endocrine organ. Diabetes 55(6), 1537–1545 (2006)CrossRefPubMed P.E. Scherer, Adipose tissue: from lipid storage compartment to endocrine organ. Diabetes 55(6), 1537–1545 (2006)CrossRefPubMed
23.
go back to reference D.B. Savage, K.F. Petersen, G.I. Shulman, Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiol. Rev. 87(2), 507–520 (2007)CrossRefPubMed D.B. Savage, K.F. Petersen, G.I. Shulman, Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiol. Rev. 87(2), 507–520 (2007)CrossRefPubMed
24.
go back to reference M. Ohira, Y. Miyashita, M. Ebisuno, A. Saiki, K. Endo, N. Koide, T. Oyama, T. Murano, H. Watanabe, K. Shirai, Effect of metformin on serum lipoprotein lipase mass levels and LDL particle size in type 2 diabetes mellitus patients. Diabetes Res. Clin. Pract. 78(1), 34–41 (2007)CrossRefPubMed M. Ohira, Y. Miyashita, M. Ebisuno, A. Saiki, K. Endo, N. Koide, T. Oyama, T. Murano, H. Watanabe, K. Shirai, Effect of metformin on serum lipoprotein lipase mass levels and LDL particle size in type 2 diabetes mellitus patients. Diabetes Res. Clin. Pract. 78(1), 34–41 (2007)CrossRefPubMed
25.
go back to reference T. Cadoudal, F. Fouque, C. Benelli, C. Forest, Glyceroneogenesis and PEPCK-C: pharmacological targets in type 2 diabetes. Med. Sci. 24(4), 407–413 (2008) T. Cadoudal, F. Fouque, C. Benelli, C. Forest, Glyceroneogenesis and PEPCK-C: pharmacological targets in type 2 diabetes. Med. Sci. 24(4), 407–413 (2008)
26.
go back to reference C.H. Lee, P. Olson, R.M. Evans, Minireview: lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors. Endocrinology 144(6), 2201–2207 (2003)CrossRefPubMed C.H. Lee, P. Olson, R.M. Evans, Minireview: lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors. Endocrinology 144(6), 2201–2207 (2003)CrossRefPubMed
27.
go back to reference K. Schoonjans, B. Staels, J. Auwerx, The peroxisome proliferator activated receptors (PPARS) and their effects on lipid metabolism and adipocyte differentiation. Biochim. Biophys. Acta 1302(2), 93–109 (1996)CrossRefPubMed K. Schoonjans, B. Staels, J. Auwerx, The peroxisome proliferator activated receptors (PPARS) and their effects on lipid metabolism and adipocyte differentiation. Biochim. Biophys. Acta 1302(2), 93–109 (1996)CrossRefPubMed
Metadata
Title
Impact of adrenomedullin blockage on lipid metabolism in female mice exposed to high-fat diet
Authors
Yuanlin Dong
Nicola van der Walt
Kathleen A. Pennington
Chandra Yallampalli
Publication date
01-08-2019
Publisher
Springer US
Published in
Endocrine / Issue 2/2019
Print ISSN: 1355-008X
Electronic ISSN: 1559-0100
DOI
https://doi.org/10.1007/s12020-019-01927-8

Other articles of this Issue 2/2019

Endocrine 2/2019 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine