Skip to main content
Top
Published in: BMC Medicine 1/2022

Open Access 01-12-2022 | Insulins | Research article

Early emergence of sexual dimorphism in offspring leukocyte telomere length was associated with maternal and children’s glucose metabolism—a longitudinal study

Authors: Kwun Kiu Wong, Feifei Cheng, Cadmon K. P. Lim, Claudia H. T. Tam, Greg Tutino, Lai Yuk Yuen, Chi Chiu Wang, Yong Hou, Michael H. M. Chan, Chung Shun Ho, Mugdha V. Joglekar, Anandwardhan A. Hardikar, Alicia J. Jenkins, Boyd E. Metzger, William L. Lowe Jr., Wing Hung Tam, Ronald C. W. Ma

Published in: BMC Medicine | Issue 1/2022

Login to get access

Abstract

Background

Leukocyte telomere length (LTL) is suggested to be a biomarker of biological age and reported to be associated with metabolic diseases such as type 2 diabetes. Glucose metabolic traits including glucose and insulin levels have been reported to be associated with LTL in adulthood. However, there is relatively little research focusing on children’s LTL and the association with prenatal exposures. This study investigates the relationship between maternal and offspring glucose metabolism with offspring LTL in early life.

Methods

This study included 882 mother-child pairs from the HAPO Hong Kong Field Centre, with children evaluated at age 7.0 ± 0.4 (mean ± SD) years. Glucose metabolic traits including maternal post-load glucose during pregnancy, children’s glucose and insulin levels, and their derived indices at follow-up were measured or calculated. Offspring LTL was assessed using real-time polymerase chain reaction.

Results

Sex- and age-adjusted children’s LTL was found to be associated with children’s HOMA-IR (β=−0.046 ± 0.016, p=0.005). Interestingly, both children’s and maternal post-load glucose levels were positively associated with children’s LTL. However, negative associations were observed between children’s LTL and children’s OGTT insulin levels. In addition, the LTL in females was more strongly associated with pancreatic beta-cell function whilst LTL in males was more strongly associated with OGTT glucose levels.

Conclusions

Our findings suggest a close association between maternal and offspring glucose metabolic traits with early life LTL, with the offspring sex as an important modifier of the disparate relationships in insulin production and response.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lee M, Martin H, Firpo MA, Demerath EW. Inverse association between adiposity and telomere length: The Fels Longitudinal Study. Am J Hum Biol. 2011;23(1):100–6.CrossRef Lee M, Martin H, Firpo MA, Demerath EW. Inverse association between adiposity and telomere length: The Fels Longitudinal Study. Am J Hum Biol. 2011;23(1):100–6.CrossRef
2.
go back to reference Liu Z, Zhang J, Yan J, Wang Y, Li Y. Leucocyte telomere shortening in relation to newly diagnosed type 2 diabetic patients with depression. Oxidative Med Cell Longev 2014;2014:673959. Liu Z, Zhang J, Yan J, Wang Y, Li Y. Leucocyte telomere shortening in relation to newly diagnosed type 2 diabetic patients with depression. Oxidative Med Cell Longev 2014;2014:673959.
3.
go back to reference Khalangot MD, Krasnienkov DS, Chizhova VP, Korkushko OV, Shatilo VB, Kukharsky VM, et al. Additional impact of glucose tolerance on telomere length in persons with and without metabolic syndrome in the elderly Ukraine population. Front Endocrinol. 2019;10:128.CrossRef Khalangot MD, Krasnienkov DS, Chizhova VP, Korkushko OV, Shatilo VB, Kukharsky VM, et al. Additional impact of glucose tolerance on telomere length in persons with and without metabolic syndrome in the elderly Ukraine population. Front Endocrinol. 2019;10:128.CrossRef
4.
go back to reference Gardner JP, Li S, Srinivasan SR, Chen W, Kimura M, Lu X, et al. Rise in insulin resistance is associated with escalated telomere attrition. Circulation. 2005;111(17):2171–7.CrossRef Gardner JP, Li S, Srinivasan SR, Chen W, Kimura M, Lu X, et al. Rise in insulin resistance is associated with escalated telomere attrition. Circulation. 2005;111(17):2171–7.CrossRef
5.
go back to reference Verhulst S, Dalgård C, Labat C, Kark JD, Kimura M, Christensen K, et al. A short leucocyte telomere length is associated with development of insulin resistance. Diabetologia. 2016;59(6):1258–65.CrossRef Verhulst S, Dalgård C, Labat C, Kark JD, Kimura M, Christensen K, et al. A short leucocyte telomere length is associated with development of insulin resistance. Diabetologia. 2016;59(6):1258–65.CrossRef
6.
go back to reference Buxton JL, Walters RG, Visvikis-Siest S, Meyre D, Froguel P, Blakemore AI. Childhood obesity is associated with shorter leukocyte telomere length. J Clin Endocrinol Metab. 2011;96(5):1500–5.CrossRef Buxton JL, Walters RG, Visvikis-Siest S, Meyre D, Froguel P, Blakemore AI. Childhood obesity is associated with shorter leukocyte telomere length. J Clin Endocrinol Metab. 2011;96(5):1500–5.CrossRef
7.
go back to reference Liu H, Chen Q, Lei L, Zhou W, Huang L, Zhang J, et al. Prenatal exposure to perfluoroalkyl and polyfluoroalkyl substances affects leukocyte telomere length in female newborns. Environ Pollut. 2018;235:446–52.CrossRef Liu H, Chen Q, Lei L, Zhou W, Huang L, Zhang J, et al. Prenatal exposure to perfluoroalkyl and polyfluoroalkyl substances affects leukocyte telomere length in female newborns. Environ Pollut. 2018;235:446–52.CrossRef
8.
go back to reference Alexeeff SE, Schaefer CA, Kvale MN, Shan J, Blackburn EH, Risch N, et al. Telomere length and socioeconomic status at neighborhood and individual levels among 80,000 adults in the Genetic Epidemiology Research on Adult Health and Aging cohort. Environmental. Epidemiol. 2019;3(3):e049. Alexeeff SE, Schaefer CA, Kvale MN, Shan J, Blackburn EH, Risch N, et al. Telomere length and socioeconomic status at neighborhood and individual levels among 80,000 adults in the Genetic Epidemiology Research on Adult Health and Aging cohort. Environmental. Epidemiol. 2019;3(3):e049.
9.
go back to reference Frenck RW, Blackburn EH, Shannon KM. The rate of telomere sequence loss in human leukocytes varies with age. Proc Natl Acad Sci. 1998;95(10):5607–10.CrossRef Frenck RW, Blackburn EH, Shannon KM. The rate of telomere sequence loss in human leukocytes varies with age. Proc Natl Acad Sci. 1998;95(10):5607–10.CrossRef
10.
go back to reference Enlow MB, Kane-Grade F, De Vivo I, Petty CR, Nelson CA. Patterns of change in telomere length over the first three years of life in healthy children. Psychoneuroendocrinology. 2020;115:104602.CrossRef Enlow MB, Kane-Grade F, De Vivo I, Petty CR, Nelson CA. Patterns of change in telomere length over the first three years of life in healthy children. Psychoneuroendocrinology. 2020;115:104602.CrossRef
11.
go back to reference Gielen M, Hageman GJ, Antoniou EE, Nordfjall K, Mangino M, Balasubramanyam M, et al. Body mass index is negatively associated with telomere length: a collaborative cross-sectional meta-analysis of 87 observational studies. Am J Clin Nutr. 2018;108(3):453–75.CrossRef Gielen M, Hageman GJ, Antoniou EE, Nordfjall K, Mangino M, Balasubramanyam M, et al. Body mass index is negatively associated with telomere length: a collaborative cross-sectional meta-analysis of 87 observational studies. Am J Clin Nutr. 2018;108(3):453–75.CrossRef
12.
go back to reference Cheng F, Carroll L, Joglekar MV, Januszewski AS, Wong KK, Hardikar AA, et al. Diabetes, metabolic disease, and telomere length. Lancet Diabetes Endocrinol. 2021;9(2):117–26.CrossRef Cheng F, Carroll L, Joglekar MV, Januszewski AS, Wong KK, Hardikar AA, et al. Diabetes, metabolic disease, and telomere length. Lancet Diabetes Endocrinol. 2021;9(2):117–26.CrossRef
13.
go back to reference HAPO Study Cooperative Research Group, Metzger BE, Lowe LP, Dyer AR, Trimble ER, Chaovarindr U, et al. Hyperglycemia and adverse pregnancy outcomes. N Engl J Med. 2008;358(19):1991–2002.CrossRef HAPO Study Cooperative Research Group, Metzger BE, Lowe LP, Dyer AR, Trimble ER, Chaovarindr U, et al. Hyperglycemia and adverse pregnancy outcomes. N Engl J Med. 2008;358(19):1991–2002.CrossRef
14.
go back to reference Tam WH, Ma RCW, Ozaki R, Li AM, Chan MHM, Yuen LY, et al. In utero exposure to maternal hyperglycemia increases childhood cardiometabolic risk in offspring. Diabetes Care. 2017;40(5):679–86.CrossRef Tam WH, Ma RCW, Ozaki R, Li AM, Chan MHM, Yuen LY, et al. In utero exposure to maternal hyperglycemia increases childhood cardiometabolic risk in offspring. Diabetes Care. 2017;40(5):679–86.CrossRef
15.
go back to reference Clemente DB, Maitre L, Bustamante M, Chatzi L, Roumeliotaki T, Fossati S, et al. Obesity is associated with shorter telomeres in 8 year-old children. Sci Rep. 2019;9(1):1–8.CrossRef Clemente DB, Maitre L, Bustamante M, Chatzi L, Roumeliotaki T, Fossati S, et al. Obesity is associated with shorter telomeres in 8 year-old children. Sci Rep. 2019;9(1):1–8.CrossRef
16.
go back to reference Cawthon RM. Telomere measurement by quantitative PCR. Nucleic Acids Res. 2002;30(10):e47-e.CrossRef Cawthon RM. Telomere measurement by quantitative PCR. Nucleic Acids Res. 2002;30(10):e47-e.CrossRef
17.
go back to reference Joglekar MV, Satoor SN, Wong WKM, Cheng F, Ma RCW, Hardikar AA. An Optimised Step-by-Step Protocol for Measuring Relative Telomere Length. Methods Protoc. 2020;3(2):27. Joglekar MV, Satoor SN, Wong WKM, Cheng F, Ma RCW, Hardikar AA. An Optimised Step-by-Step Protocol for Measuring Relative Telomere Length. Methods Protoc. 2020;3(2):27.
18.
go back to reference Cheng F, Luk AO, Tam CH, Fan B, Wu H, Yang A, et al. Shortened relative leukocyte telomere length is associated with prevalent and incident cardiovascular complications in type 2 diabetes: analysis from the Hong Kong diabetes register. Diabetes Care. 2020;43(9):2257–65.CrossRef Cheng F, Luk AO, Tam CH, Fan B, Wu H, Yang A, et al. Shortened relative leukocyte telomere length is associated with prevalent and incident cardiovascular complications in type 2 diabetes: analysis from the Hong Kong diabetes register. Diabetes Care. 2020;43(9):2257–65.CrossRef
19.
go back to reference Ding Z, Mangino M, Aviv A, Consortium UK, Spector T, Durbin R. Estimating telomere length from whole genome sequence data. Nucleic Acids Res. 2014;42(9):e75-e.CrossRef Ding Z, Mangino M, Aviv A, Consortium UK, Spector T, Durbin R. Estimating telomere length from whole genome sequence data. Nucleic Acids Res. 2014;42(9):e75-e.CrossRef
20.
go back to reference Cheng F, Luk AO, Shi M, Huang C, Jiang G, Yang A, et al. Shortened leukocyte telomere length is associated with glycemic progression in type 2 diabetes: a prospective and Mendelian randomization analysis. Diabetes Care. 2022;45(3):701–9.CrossRef Cheng F, Luk AO, Shi M, Huang C, Jiang G, Yang A, et al. Shortened leukocyte telomere length is associated with glycemic progression in type 2 diabetes: a prospective and Mendelian randomization analysis. Diabetes Care. 2022;45(3):701–9.CrossRef
21.
go back to reference Wojcicki JM, Shiboski S, Heyman MB, Elwan D, Lin J, Blackburn E, et al. Telomere length change plateaus at 4 years of age in Latino children: associations with baseline length and maternal change. Mol Gen Genomics. 2016;291(3):1379–89.CrossRef Wojcicki JM, Shiboski S, Heyman MB, Elwan D, Lin J, Blackburn E, et al. Telomere length change plateaus at 4 years of age in Latino children: associations with baseline length and maternal change. Mol Gen Genomics. 2016;291(3):1379–89.CrossRef
22.
go back to reference Farzaneh-Far R, Lin J, Epel E, Lapham K, Blackburn E, Whooley MA. Telomere length trajectory and its determinants in persons with coronary artery disease: longitudinal findings from the heart and soul study. PLoS One. 2010;5(1):e8612.CrossRef Farzaneh-Far R, Lin J, Epel E, Lapham K, Blackburn E, Whooley MA. Telomere length trajectory and its determinants in persons with coronary artery disease: longitudinal findings from the heart and soul study. PLoS One. 2010;5(1):e8612.CrossRef
23.
go back to reference Hjort L, Vryer R, Grunnet LG, Burgner D, Olsen SF, Saffery R, et al. Telomere length is reduced in 9-to 16-year-old girls exposed to gestational diabetes in utero. Diabetologia. 2018;61(4):870–80.CrossRef Hjort L, Vryer R, Grunnet LG, Burgner D, Olsen SF, Saffery R, et al. Telomere length is reduced in 9-to 16-year-old girls exposed to gestational diabetes in utero. Diabetologia. 2018;61(4):870–80.CrossRef
24.
go back to reference Ly K, Walker C, Berry S, Snell R, Marks E, Thayer Z, et al. Telomere length in early childhood is associated with sex and ethnicity. Sci Rep. 2019;9(1):1–7.CrossRef Ly K, Walker C, Berry S, Snell R, Marks E, Thayer Z, et al. Telomere length in early childhood is associated with sex and ethnicity. Sci Rep. 2019;9(1):1–7.CrossRef
25.
go back to reference Gardner M, Bann D, Wiley L, Cooper R, Hardy R, Nitsch D, et al. Gender and telomere length: systematic review and meta-analysis. Exp Gerontol. 2014;51:15–27.CrossRef Gardner M, Bann D, Wiley L, Cooper R, Hardy R, Nitsch D, et al. Gender and telomere length: systematic review and meta-analysis. Exp Gerontol. 2014;51:15–27.CrossRef
26.
go back to reference Lamprokostopoulou A, Moschonis G, Manios Y, Critselis E, Nicolaides NC, Stefa A, et al. Childhood obesity and leucocyte telomere length. Eur J Clin Investig. 2019;49(12):e13178.CrossRef Lamprokostopoulou A, Moschonis G, Manios Y, Critselis E, Nicolaides NC, Stefa A, et al. Childhood obesity and leucocyte telomere length. Eur J Clin Investig. 2019;49(12):e13178.CrossRef
27.
go back to reference Liu Y, Ma C, Li P, Ma C, He S, Ping F, et al. Leukocyte telomere length independently predicts 3-year diabetes risk in a longitudinal study of Chinese Population. Oxidative Med Cell Longev. 2020;2020:9256107. Liu Y, Ma C, Li P, Ma C, He S, Ping F, et al. Leukocyte telomere length independently predicts 3-year diabetes risk in a longitudinal study of Chinese Population. Oxidative Med Cell Longev. 2020;2020:9256107.
28.
go back to reference Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care. 1999;22(9):1462–70.CrossRef Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care. 1999;22(9):1462–70.CrossRef
29.
go back to reference Ohn JH, Kwak SH, Cho YM, Lim S, Jang HC, Park KS, et al. 10-Year trajectory of β-cell function and insulin sensitivity in the development of type 2 diabetes: a community-based prospective cohort study. Lancet Diabetes Endocrinol. 2016;4(1):27–34.CrossRef Ohn JH, Kwak SH, Cho YM, Lim S, Jang HC, Park KS, et al. 10-Year trajectory of β-cell function and insulin sensitivity in the development of type 2 diabetes: a community-based prospective cohort study. Lancet Diabetes Endocrinol. 2016;4(1):27–34.CrossRef
30.
go back to reference Kasuga M. Insulin resistance and pancreatic β cell failure. J Clin Invest. 2006;116(7):1756–60.CrossRef Kasuga M. Insulin resistance and pancreatic β cell failure. J Clin Invest. 2006;116(7):1756–60.CrossRef
31.
go back to reference Saisho Y, Butler A, Meier J, Monchamp T, Allen-Auerbach M, Rizza R, et al. Pancreas volumes in humans from birth to age one hundred taking into account sex, obesity, and presence of type-2 diabetes. Clin Anat. 2007;20(8):933–42.CrossRef Saisho Y, Butler A, Meier J, Monchamp T, Allen-Auerbach M, Rizza R, et al. Pancreas volumes in humans from birth to age one hundred taking into account sex, obesity, and presence of type-2 diabetes. Clin Anat. 2007;20(8):933–42.CrossRef
32.
go back to reference Bonner-Weir S, Aguayo-Mazzucato C, Weir GC. Dynamic development of the pancreas from birth to adulthood. Ups J Med Sci. 2016;121(2):155–8.CrossRef Bonner-Weir S, Aguayo-Mazzucato C, Weir GC. Dynamic development of the pancreas from birth to adulthood. Ups J Med Sci. 2016;121(2):155–8.CrossRef
33.
go back to reference Esser N, Utzschneider KM, Kahn SE. Early beta cell dysfunction vs insulin hypersecretion as the primary event in the pathogenesis of dysglycaemia. Diabetologia. 2020;63(10):2007–21.CrossRef Esser N, Utzschneider KM, Kahn SE. Early beta cell dysfunction vs insulin hypersecretion as the primary event in the pathogenesis of dysglycaemia. Diabetologia. 2020;63(10):2007–21.CrossRef
34.
go back to reference Prasad KN, Wu M, Bondy SC. Telomere shortening during aging: Attenuation by antioxidants and anti-inflammatory agents. Mech Ageing Dev. 2017;164:61–6.CrossRef Prasad KN, Wu M, Bondy SC. Telomere shortening during aging: Attenuation by antioxidants and anti-inflammatory agents. Mech Ageing Dev. 2017;164:61–6.CrossRef
35.
go back to reference Révész D, Milaneschi Y, Verhoeven JE, Lin J, Penninx BW. Longitudinal associations between metabolic syndrome components and telomere shortening. J Clin Endocrinol Metab. 2015;100(8):3050–9.CrossRef Révész D, Milaneschi Y, Verhoeven JE, Lin J, Penninx BW. Longitudinal associations between metabolic syndrome components and telomere shortening. J Clin Endocrinol Metab. 2015;100(8):3050–9.CrossRef
36.
go back to reference Nguyen MT, Vryer R, Ranganathan S, Lycett K, Grobler A, Dwyer T, et al. Telomere length and vascular phenotypes in a population-based cohort of children and midlife adults. J Am Heart Assoc. 2019;8(11):e012707.CrossRef Nguyen MT, Vryer R, Ranganathan S, Lycett K, Grobler A, Dwyer T, et al. Telomere length and vascular phenotypes in a population-based cohort of children and midlife adults. J Am Heart Assoc. 2019;8(11):e012707.CrossRef
37.
go back to reference Nguyen MT, Saffery R, Burgner D, Lycett K, Vryer R, Grobler A, et al. Telomere length and lung function in a population-based cohort of children and mid-life adults. Pediatr Pulmonol. 2019;54(12):2044–52.CrossRef Nguyen MT, Saffery R, Burgner D, Lycett K, Vryer R, Grobler A, et al. Telomere length and lung function in a population-based cohort of children and mid-life adults. Pediatr Pulmonol. 2019;54(12):2044–52.CrossRef
38.
go back to reference Scholtens DM, Kuang A, Lowe LP, Hamilton J, Lawrence JM, Lebenthal Y, et al. Hyperglycemia and Adverse Pregnancy Outcome Follow-up Study (HAPO FUS): maternal glycemia and childhood glucose metabolism. Diabetes Care. 2019;42(3):381–92.CrossRef Scholtens DM, Kuang A, Lowe LP, Hamilton J, Lawrence JM, Lebenthal Y, et al. Hyperglycemia and Adverse Pregnancy Outcome Follow-up Study (HAPO FUS): maternal glycemia and childhood glucose metabolism. Diabetes Care. 2019;42(3):381–92.CrossRef
39.
go back to reference Flannagan KS, Bowman AA, Mora-Plazas M, Marín C, Rentschler KM, Rozek LS, et al. Micronutrient status and leukocyte telomere length in school-age Colombian children. Eur J Nutr. 2020;59(3):1055–65.CrossRef Flannagan KS, Bowman AA, Mora-Plazas M, Marín C, Rentschler KM, Rozek LS, et al. Micronutrient status and leukocyte telomere length in school-age Colombian children. Eur J Nutr. 2020;59(3):1055–65.CrossRef
40.
go back to reference Regnault N, Gillman MW, Rifas-Shiman SL, Eggleston E, Oken E. Sex-specific associations of gestational glucose tolerance with childhood body composition. Diabetes Care. 2013;36(10):3045–53.CrossRef Regnault N, Gillman MW, Rifas-Shiman SL, Eggleston E, Oken E. Sex-specific associations of gestational glucose tolerance with childhood body composition. Diabetes Care. 2013;36(10):3045–53.CrossRef
41.
go back to reference Kautzky-Willer A, Kosi L, Lin J, Mihaljevic R. Gender-based differences in glycaemic control and hypoglycaemia prevalence in patients with type 2 diabetes: results from patient-level pooled data of six randomized controlled trials. Diabetes Obes Metab. 2015;17(6):533–40.CrossRef Kautzky-Willer A, Kosi L, Lin J, Mihaljevic R. Gender-based differences in glycaemic control and hypoglycaemia prevalence in patients with type 2 diabetes: results from patient-level pooled data of six randomized controlled trials. Diabetes Obes Metab. 2015;17(6):533–40.CrossRef
42.
go back to reference Sandovici I, Fernandez-Twinn DS, Hufnagel A, Constância M, Ozanne SE. Sex differences in the intergenerational inheritance of metabolic traits. Nature. Metabolism. 2022;4(5):507–23. Sandovici I, Fernandez-Twinn DS, Hufnagel A, Constância M, Ozanne SE. Sex differences in the intergenerational inheritance of metabolic traits. Nature. Metabolism. 2022;4(5):507–23.
43.
go back to reference Duckworth A, Gibbons MA, Allen RJ, Almond H, Beaumont RN, Wood AR, et al. Telomere length and risk of idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease: a mendelian randomisation study. Lancet Respir Med. 2021;9(3):285–94. Duckworth A, Gibbons MA, Allen RJ, Almond H, Beaumont RN, Wood AR, et al. Telomere length and risk of idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease: a mendelian randomisation study. Lancet Respir Med. 2021;9(3):285–94.
44.
go back to reference Kuo CL, Pilling LC, Kuchel GA, Ferrucci L, Melzer D. Telomere length and aging-related outcomes in humans: a Mendelian randomization study in 261,000 older participants. Aging Cell. 2019;18(6):e13017.CrossRef Kuo CL, Pilling LC, Kuchel GA, Ferrucci L, Melzer D. Telomere length and aging-related outcomes in humans: a Mendelian randomization study in 261,000 older participants. Aging Cell. 2019;18(6):e13017.CrossRef
Metadata
Title
Early emergence of sexual dimorphism in offspring leukocyte telomere length was associated with maternal and children’s glucose metabolism—a longitudinal study
Authors
Kwun Kiu Wong
Feifei Cheng
Cadmon K. P. Lim
Claudia H. T. Tam
Greg Tutino
Lai Yuk Yuen
Chi Chiu Wang
Yong Hou
Michael H. M. Chan
Chung Shun Ho
Mugdha V. Joglekar
Anandwardhan A. Hardikar
Alicia J. Jenkins
Boyd E. Metzger
William L. Lowe Jr.
Wing Hung Tam
Ronald C. W. Ma
Publication date
01-12-2022
Publisher
BioMed Central
Keywords
Insulins
Insulins
Published in
BMC Medicine / Issue 1/2022
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-022-02687-5

Other articles of this Issue 1/2022

BMC Medicine 1/2022 Go to the issue