Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2020

01-12-2020 | Insulins | Research article

Alisol A-24-acetate promotes glucose uptake via activation of AMPK in C2C12 myotubes

Authors: Jia-xiang Chen, Hai-yan Li, Tian-tian Li, Wen-cheng Fu, Xin Du, Chun-hui Liu, Wen Zhang

Published in: BMC Complementary Medicine and Therapies | Issue 1/2020

Login to get access

Abstract

Background

Alisol A-24-acetate (AA-24-a) is one of the main active triterpenes isolated from the well-known medicinal plant Alisma orientale (Sam.) Juz., which possesses multiple biological activities, including a hypoglycemic effect. Whether AA-24-a is a hypoglycemic-active compound of A. orientale (Sam.) Juz. is unclear. The present study aimed to clarify the effect and potential mechanism of action of AA-24-a on glucose uptake in C2C12 myotubes.

Method

Effects of AA-24-a on glucose uptake and GLUT4 translocation to the plasma membrane were evaluated. Glucose uptake was determined using a 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino)-2-deoxyglucose (2-NBDG) uptake assay. Cell membrane proteins were isolated and glucose transporter 4 (GLUT4) protein was detected by western blotting to examine the translocation of GLUT4 to the plasma membrane. To determine the underlying mechanism, the phosphorylation levels of proteins involved in the insulin and 5′-adenosine monophosphate-activated protein kinase (AMPK) pathways were examined using western blotting. Furthermore, specific inhibitors of key enzymes in AMPK signaling pathway were used to examine the role of these kinases in the AA-24-a-induced glucose uptake and GLUT4 translocation.

Results

We found that AA-24-a significantly promoted glucose uptake and GLUT4 translocation in C2C12 myotubes. AA-24-a increased the phosphorylation of AMPK, but had no effect on the insulin-dependent pathway involving insulin receptor substrate 1 (IRS1) and protein kinase B (PKB/AKT). In addition, the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and the AKT substrate of 160 kDa (AS160), two proteins that act downstream of AMPK, was upregulated. Compound C, an AMPK inhibitor, blocked AA-24-a–induced AMPK pathway activation and reversed AA-24-a–induced glucose uptake and GLUT4 translocation to the plasma membrane, indicating that AA-24-a promotes glucose metabolism via the AMPK pathway in vitro. STO-609, a calcium/calmodulin-dependent protein kinase kinase β (CaMKKβ) inhibitor, also attenuated AA-24-a–induced glucose uptake and GLUT4 translocation. Moreover, STO-609 weakened AA-24-a-induced phosphorylation of AMPK, p38 MAPK and AS160.

Conclusions

These results indicate that AA-24-a isolated from A. orientale (Sam.) Juz. significantly enhances glucose uptake via the CaMKKβ-AMPK-p38 MAPK/AS160 pathway.
Appendix
Available only for authorised users
Literature
1.
go back to reference Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, et al. IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271–81.CrossRef Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, et al. IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271–81.CrossRef
2.
go back to reference Rosberger DF. Diabetic retinopathy: current concepts and emerging therapy. Endocrinol Metab Clin N Am. 2013;42:721–45.CrossRef Rosberger DF. Diabetic retinopathy: current concepts and emerging therapy. Endocrinol Metab Clin N Am. 2013;42:721–45.CrossRef
3.
go back to reference Ripsin CM, Kang H, Urban RJ. Management of blood glucose in type 2 diabetes mellitus. Am Fam Physician. 2009;79:29–36.PubMed Ripsin CM, Kang H, Urban RJ. Management of blood glucose in type 2 diabetes mellitus. Am Fam Physician. 2009;79:29–36.PubMed
4.
go back to reference Kitabchi AE, Umpierrez GE, Miles JM, Fisher JN. Hyperglycemic crises in adult patients with diabetes. Diabetes Care. 2009;32:1335–43.CrossRef Kitabchi AE, Umpierrez GE, Miles JM, Fisher JN. Hyperglycemic crises in adult patients with diabetes. Diabetes Care. 2009;32:1335–43.CrossRef
5.
go back to reference Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol. 1997;7:261–9.CrossRef Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol. 1997;7:261–9.CrossRef
6.
go back to reference Taylor EB, An D, Kramer HF, Yu H, Fujii NL, Roeckl KS, et al. Discovery of TBC1D1 as an insulin-, AICAR-, and contraction-stimulated signaling nexus in mouse skeletal muscle. J Biol Chem. 2008;283:9787–96.CrossRef Taylor EB, An D, Kramer HF, Yu H, Fujii NL, Roeckl KS, et al. Discovery of TBC1D1 as an insulin-, AICAR-, and contraction-stimulated signaling nexus in mouse skeletal muscle. J Biol Chem. 2008;283:9787–96.CrossRef
7.
go back to reference Ke R, Xu Q, Li C, Luo L, Huang D. Mechanisms of AMPK in the maintenance of ATP balance during energy metabolism. Cell Biol Int. 2018;42:384–92.CrossRef Ke R, Xu Q, Li C, Luo L, Huang D. Mechanisms of AMPK in the maintenance of ATP balance during energy metabolism. Cell Biol Int. 2018;42:384–92.CrossRef
8.
go back to reference Hardie DG, Alessi DR. LKB1 and AMPK and the cancer-metabolism link - ten years after. BMC Biol. 2013;11:36.CrossRef Hardie DG, Alessi DR. LKB1 and AMPK and the cancer-metabolism link - ten years after. BMC Biol. 2013;11:36.CrossRef
9.
go back to reference Hardie DG, Pan DA. Regulation of fatty acid synthesis and oxidation by the AMP-activated protein kinase. Biochem Soc Trans. 2002;30:1064–70.CrossRef Hardie DG, Pan DA. Regulation of fatty acid synthesis and oxidation by the AMP-activated protein kinase. Biochem Soc Trans. 2002;30:1064–70.CrossRef
10.
go back to reference Lee Y, Lee J, Jung J, Kim J, Park S, Park J, et al. Retinoic acid leads to cytoskeletal rearrangement through AMPK-Rac1 and stimulates glucose uptake through AMPK-p38 MAPK in skeletal muscle cells. J Biol Chem. 2008;283:33969–74.CrossRef Lee Y, Lee J, Jung J, Kim J, Park S, Park J, et al. Retinoic acid leads to cytoskeletal rearrangement through AMPK-Rac1 and stimulates glucose uptake through AMPK-p38 MAPK in skeletal muscle cells. J Biol Chem. 2008;283:33969–74.CrossRef
11.
go back to reference Kim N, Lee JO, Lee HJ, Lee YW, Kim HI, Kim SJ, et al. AMPK, a metabolic sensor, is involved in isoeugenol-induced glucose uptake in muscle cells. J Endocrinol. 2016;228:105–14.CrossRef Kim N, Lee JO, Lee HJ, Lee YW, Kim HI, Kim SJ, et al. AMPK, a metabolic sensor, is involved in isoeugenol-induced glucose uptake in muscle cells. J Endocrinol. 2016;228:105–14.CrossRef
12.
go back to reference Jeon S-M. Regulation and function of AMPK in physiology and diseases. Exp Mol Med 2016; 48:e245.CrossRef Jeon S-M. Regulation and function of AMPK in physiology and diseases. Exp Mol Med 2016; 48:e245.CrossRef
13.
go back to reference Zhang X, Li XY, Lin N, Zhao WL, Huang XQ, Chen Y, et al. Diuretic activity of compatible triterpene components of Alismatis rhizoma. Molecules. 2017;22:E1459.CrossRef Zhang X, Li XY, Lin N, Zhao WL, Huang XQ, Chen Y, et al. Diuretic activity of compatible triterpene components of Alismatis rhizoma. Molecules. 2017;22:E1459.CrossRef
14.
go back to reference Lee JH, Kwon OS, Jin HG, Woo ER, Kim YS, Kim HP. The rhizomes of Alisma orientale and alisol derivatives inhibit allergic response and experimental atopic dermatitis. Biol Pharm Bull. 2012;35:1581–7.CrossRef Lee JH, Kwon OS, Jin HG, Woo ER, Kim YS, Kim HP. The rhizomes of Alisma orientale and alisol derivatives inhibit allergic response and experimental atopic dermatitis. Biol Pharm Bull. 2012;35:1581–7.CrossRef
15.
go back to reference Han CW, Kwun MJ, Kim KH, Choi J-Y, Oh S-R, Ahn K-S, et al. Ethanol extract of Alismatis Rhizoma reduces acute lung inflammation by suppressing NF-κB and activating Nrf2. J Ethnopharmacol. 2013;146:402–10.CrossRef Han CW, Kwun MJ, Kim KH, Choi J-Y, Oh S-R, Ahn K-S, et al. Ethanol extract of Alismatis Rhizoma reduces acute lung inflammation by suppressing NF-κB and activating Nrf2. J Ethnopharmacol. 2013;146:402–10.CrossRef
16.
go back to reference Fong WF, Wang C, Zhu GY, Leung CH, Yang MS, Cheung HY. Reversal of multidrug resistance in cancer cells by Rhizoma Alismatis extract. Phytomedicine. 2007;14:160–5.CrossRef Fong WF, Wang C, Zhu GY, Leung CH, Yang MS, Cheung HY. Reversal of multidrug resistance in cancer cells by Rhizoma Alismatis extract. Phytomedicine. 2007;14:160–5.CrossRef
17.
go back to reference Li Q, Qu HB. Study on the hypoglycemic activities and metabolism of alcohol extract of Alismatis Rhizoma. Fitoterapia. 2012;83:1046–53.CrossRef Li Q, Qu HB. Study on the hypoglycemic activities and metabolism of alcohol extract of Alismatis Rhizoma. Fitoterapia. 2012;83:1046–53.CrossRef
18.
go back to reference Zhang L, Xu W, Xu Y, Chen X, Huang M, Lu J. Therapeutic potential of Rhizoma Alismatis: a review on ethnomedicinal application, phytochemistry, pharmacology, and toxicology. Ann N Y Acad Sci. 2017;1401:90–101.CrossRef Zhang L, Xu W, Xu Y, Chen X, Huang M, Lu J. Therapeutic potential of Rhizoma Alismatis: a review on ethnomedicinal application, phytochemistry, pharmacology, and toxicology. Ann N Y Acad Sci. 2017;1401:90–101.CrossRef
19.
go back to reference Xu F, Yu H, Lu C, Chen J, Gu W. The cholesterol-lowering effect of alisol acetates based on HMG-CoA reductase and its molecular mechanism. Evid-based Compl Alt. 2016;2016:4753852. Xu F, Yu H, Lu C, Chen J, Gu W. The cholesterol-lowering effect of alisol acetates based on HMG-CoA reductase and its molecular mechanism. Evid-based Compl Alt. 2016;2016:4753852.
20.
go back to reference Zeng L, Tang W, Yin J, Feng L, Li Y, Yao X, et al. Alisol a 24-acetate prevents hepatic steatosis and metabolic disorders in hepG2 cells. Cell Physiol Biochem. 2016;40:453–64.CrossRef Zeng L, Tang W, Yin J, Feng L, Li Y, Yao X, et al. Alisol a 24-acetate prevents hepatic steatosis and metabolic disorders in hepG2 cells. Cell Physiol Biochem. 2016;40:453–64.CrossRef
21.
go back to reference Balasubramanian R, Robaye B, Boeynaems J-M, Jacobson KA. Enhancement of glucose uptake in mouse skeletal muscle cells and adipocytes by P2Y6 receptor agonists. PLoS One. 2015;9:e116203.CrossRef Balasubramanian R, Robaye B, Boeynaems J-M, Jacobson KA. Enhancement of glucose uptake in mouse skeletal muscle cells and adipocytes by P2Y6 receptor agonists. PLoS One. 2015;9:e116203.CrossRef
22.
go back to reference Jensen TE, Rose AJ, Jorgensen SB, Brandt N, Schjerling P, Wojtaszewski JF, et al. Possible CaMKK-dependent regulation of AMPK phosphorylation and glucose uptake at the onset of mild tetanic skeletal muscle contraction. Am J Physiol Endocrinol Metab. 2007;292:E1308–17.CrossRef Jensen TE, Rose AJ, Jorgensen SB, Brandt N, Schjerling P, Wojtaszewski JF, et al. Possible CaMKK-dependent regulation of AMPK phosphorylation and glucose uptake at the onset of mild tetanic skeletal muscle contraction. Am J Physiol Endocrinol Metab. 2007;292:E1308–17.CrossRef
23.
go back to reference Cahová M, Vavrínková H, Kazdová L. Glucose-fatty acid interaction in skeletal muscle and adipose tissue in insulin resistance. Physiol Res. 2007;56:1–15.PubMed Cahová M, Vavrínková H, Kazdová L. Glucose-fatty acid interaction in skeletal muscle and adipose tissue in insulin resistance. Physiol Res. 2007;56:1–15.PubMed
24.
go back to reference Kanzaki M, Watson RT, Pessin JE. Regulated membrane trafficking of the insulin-responsive glucose transporter 4 in adipocytes. Endocr Rev. 2004;25:177–204.CrossRef Kanzaki M, Watson RT, Pessin JE. Regulated membrane trafficking of the insulin-responsive glucose transporter 4 in adipocytes. Endocr Rev. 2004;25:177–204.CrossRef
25.
go back to reference Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001;108:1167–74.CrossRef Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001;108:1167–74.CrossRef
26.
go back to reference Wu C, Jing M, Yang L, Jin L, Ding Y, Lu J, et al. Alisol a 24-acetate ameliorates nonalcoholic steatohepatitis by inhibiting oxidative stress and stimulating autophagy through the AMPK/mTOR pathway. Chem Biol Interact. 2018;291:111–9.CrossRef Wu C, Jing M, Yang L, Jin L, Ding Y, Lu J, et al. Alisol a 24-acetate ameliorates nonalcoholic steatohepatitis by inhibiting oxidative stress and stimulating autophagy through the AMPK/mTOR pathway. Chem Biol Interact. 2018;291:111–9.CrossRef
27.
go back to reference Pelletier A, Joly E, Prentki M, Coderre L. Adenosine 5′-monophosphate-activated protein kinase and p38 mitogen-activated protein kinase participate in the stimulation of glucose uptake by dinitrophenol in adult cardiomyocytes. Endocrinology. 2005;146:2285–94.CrossRef Pelletier A, Joly E, Prentki M, Coderre L. Adenosine 5′-monophosphate-activated protein kinase and p38 mitogen-activated protein kinase participate in the stimulation of glucose uptake by dinitrophenol in adult cardiomyocytes. Endocrinology. 2005;146:2285–94.CrossRef
28.
go back to reference Jaswal JS, Gandhi M, Finegan BA, Dyck JR, Clanachan AS. Inhibition of p38 MAPK and AMPK restores adenosine-induced cardioprotection in hearts stressed by antecedent ischemia by altering glucose utilization. Am J Physiol-Heart C. 2007;293:H1107–14.CrossRef Jaswal JS, Gandhi M, Finegan BA, Dyck JR, Clanachan AS. Inhibition of p38 MAPK and AMPK restores adenosine-induced cardioprotection in hearts stressed by antecedent ischemia by altering glucose utilization. Am J Physiol-Heart C. 2007;293:H1107–14.CrossRef
Metadata
Title
Alisol A-24-acetate promotes glucose uptake via activation of AMPK in C2C12 myotubes
Authors
Jia-xiang Chen
Hai-yan Li
Tian-tian Li
Wen-cheng Fu
Xin Du
Chun-hui Liu
Wen Zhang
Publication date
01-12-2020
Publisher
BioMed Central
Keywords
Insulins
Insulins
Published in
BMC Complementary Medicine and Therapies / Issue 1/2020
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-019-2802-3

Other articles of this Issue 1/2020

BMC Complementary Medicine and Therapies 1/2020 Go to the issue