Skip to main content
Top
Published in: BMC Medical Informatics and Decision Making 1/2019

Open Access 01-12-2019 | Insulins | Research article

A mobile health monitoring-and-treatment system based on integration of the SSN sensor ontology and the HL7 FHIR standard

Authors: Shaker El-Sappagh, Farman Ali, Abdeltawab Hendawi, Jun-Hyeog Jang, Kyung-Sup Kwak

Published in: BMC Medical Informatics and Decision Making | Issue 1/2019

Login to get access

Abstract

Background

Mobile health (MH) technologies including clinical decision support systems (CDSS) provide an efficient method for patient monitoring and treatment. A mobile CDSS is based on real-time sensor data and historical electronic health record (EHR) data. Raw sensor data have no semantics of their own; therefore, a computer system cannot interpret these data automatically. In addition, the interoperability of sensor data and EHR medical data is a challenge. EHR data collected from distributed systems have different structures, semantics, and coding mechanisms. As a result, building a transparent CDSS that can work as a portable plug-and-play component in any existing EHR ecosystem requires a careful design process. Ontology and medical standards support the construction of semantically intelligent CDSSs.

Methods

This paper proposes a comprehensive MH framework with an integrated CDSS capability. This cloud-based system monitors and manages type 1 diabetes mellitus. The efficiency of any CDSS depends mainly on the quality of its knowledge and its semantic interoperability with different data sources. To this end, this paper concentrates on constructing a semantic CDSS based on proposed FASTO ontology.

Results

This realistic ontology is able to collect, formalize, integrate, analyze, and manipulate all types of patient data. It provides patients with complete, personalized, and medically intuitive care plans, including insulin regimens, diets, exercises, and education sub-plans. These plans are based on the complete patient profile. In addition, the proposed CDSS provides real-time patient monitoring based on vital signs collected from patients’ wireless body area networks. These monitoring include real-time insulin adjustments, mealtime carbohydrate calculations, and exercise recommendations. FASTO integrates the well-known standards of HL7 fast healthcare interoperability resources (FHIR), semantic sensor network (SSN) ontology, basic formal ontology (BFO) 2.0, and clinical practice guidelines. The current version of FASTO includes 9577 classes, 658 object properties, 164 data properties, 460 individuals, and 140 SWRL rules. FASTO is publicly available through the National Center for Biomedical Ontology BioPortal at https://bioportal.bioontology.org/ontologies/FASTO .

Conclusions

The resulting CDSS system can help physicians to monitor more patients efficiently and accurately. In addition, patients in rural areas can depend on the system to manage their diabetes and emergencies.
Appendix
Available only for authorised users
Literature
1.
go back to reference World Health Organization. Global status report on noncommunicable diseases 2010. Geneva: World Health.; Nonserial Publication Series; 2010. 176. World Health Organization. Global status report on noncommunicable diseases 2010. Geneva: World Health.; Nonserial Publication Series; 2010. 176.
4.
go back to reference Cappon G, Acciaroli G, Vettoretti M, Facchinetti A, Id GS. Wearable Continuous Glucose Monitoring Sensors : A Revolution in Diabetes Treatment; 2017. p. 1–16. Cappon G, Acciaroli G, Vettoretti M, Facchinetti A, Id GS. Wearable Continuous Glucose Monitoring Sensors : A Revolution in Diabetes Treatment; 2017. p. 1–16.
5.
go back to reference Caballero-Ruiz E, García-Sáez G, Rigla M, Villaplana M, Pons B, Hernando ME. A web-based clinical decision support system for gestational diabetes: automatic diet prescription and detection of insulin needs. Int J Med Inform. 2017;102:35–49.CrossRef Caballero-Ruiz E, García-Sáez G, Rigla M, Villaplana M, Pons B, Hernando ME. A web-based clinical decision support system for gestational diabetes: automatic diet prescription and detection of insulin needs. Int J Med Inform. 2017;102:35–49.CrossRef
6.
go back to reference Kovatchev B, Renard E, Cobelli C, Zisser HC, Keith-Hynes P, Anderson SM, et al. Feasibility of outpatient fully integrated closed-loop control. Diabetes Care. 2013;36:1851–8.CrossRef Kovatchev B, Renard E, Cobelli C, Zisser HC, Keith-Hynes P, Anderson SM, et al. Feasibility of outpatient fully integrated closed-loop control. Diabetes Care. 2013;36:1851–8.CrossRef
7.
go back to reference Pais S, Parry D, Huang Y. Suitability of Fast Healthcare Interoperability Resources (FHIR) for Wellness Data; 2017. p. 3499–505. Pais S, Parry D, Huang Y. Suitability of Fast Healthcare Interoperability Resources (FHIR) for Wellness Data; 2017. p. 3499–505.
8.
go back to reference Bonte P, Ongenae F, De Backere F, Schaballie J, Arndt D, Verstichel S, et al. The MASSIF platform : a modular and semantic platform for the development of flexible IoT services. Vol. 51, Knowledge and Information Systems. London: Springer; 2017. p. 89–126. Bonte P, Ongenae F, De Backere F, Schaballie J, Arndt D, Verstichel S, et al. The MASSIF platform : a modular and semantic platform for the development of flexible IoT services. Vol. 51, Knowledge and Information Systems. London: Springer; 2017. p. 89–126.
10.
go back to reference El-Sappagh S, Kwak D, Ali F, Kwak K-S. DMTO: a realistic ontology for standard diabetes mellitus treatment. J Biomed Semantics. 2018;9(1):8. El-Sappagh S, Kwak D, Ali F, Kwak K-S. DMTO: a realistic ontology for standard diabetes mellitus treatment. J Biomed Semantics. 2018;9(1):8.
14.
go back to reference Szydło T, Konieczny M. Mobile and wearable devices in an open and universal system for remote patient monitoring. Microprocess Microsyst. 2016;46:44–54.CrossRef Szydło T, Konieczny M. Mobile and wearable devices in an open and universal system for remote patient monitoring. Microprocess Microsyst. 2016;46:44–54.CrossRef
15.
go back to reference El-Sappagh S, Ali F, El-Masri S, Kim K, Ali A, Kwak KS. Mobile Health Technologies for Diabetes Mellitus: Current State and Future Challenges. IEEE Access. 2018;PP(c):1. El-Sappagh S, Ali F, El-Masri S, Kim K, Ali A, Kwak KS. Mobile Health Technologies for Diabetes Mellitus: Current State and Future Challenges. IEEE Access. 2018;PP(c):1.
18.
go back to reference Zhang Y-F, Gou L, Tian Y, Li T-C, Zhang M, Li J-S. Design and development of a sharable clinical decision support system based on a semantic web service framework. J Med Syst. 2016;40(5):118.CrossRef Zhang Y-F, Gou L, Tian Y, Li T-C, Zhang M, Li J-S. Design and development of a sharable clinical decision support system based on a semantic web service framework. J Med Syst. 2016;40(5):118.CrossRef
20.
go back to reference American Diabetes Association (ADA). Standard of medical care in diabetes - 2017. Diabetes Care. 2017;40 (sup 1)(January):s4–128. American Diabetes Association (ADA). Standard of medical care in diabetes - 2017. Diabetes Care. 2017;40 (sup 1)(January):s4–128.
24.
go back to reference Fatehi F, Menon A, Bird D. Diabetes Care in the Digital Era: a Synoptic Overview. Curr Diab Rep. 2018;18(7). Fatehi F, Menon A, Bird D. Diabetes Care in the Digital Era: a Synoptic Overview. Curr Diab Rep. 2018;18(7).
25.
go back to reference Quinn CC, Clough SS, Minor JM, Lender D, Okafor MC, Gruber-Baldini A. WellDoc ™ Mobile diabetes management randomized controlled trial: change in clinical and behavioral outcomes and patient and physician satisfaction. Diabetes Technol Ther. 2008;10(3):160–8.CrossRef Quinn CC, Clough SS, Minor JM, Lender D, Okafor MC, Gruber-Baldini A. WellDoc ™ Mobile diabetes management randomized controlled trial: change in clinical and behavioral outcomes and patient and physician satisfaction. Diabetes Technol Ther. 2008;10(3):160–8.CrossRef
26.
go back to reference Kardas P, Lewandowski K, Bromuri S. Type 2 Diabetes Patients Benefit from the COMODITY12 mHealth System: Results of a Randomised Trial. J Med Syst. 2016;40:12.CrossRef Kardas P, Lewandowski K, Bromuri S. Type 2 Diabetes Patients Benefit from the COMODITY12 mHealth System: Results of a Randomised Trial. J Med Syst. 2016;40:12.CrossRef
27.
go back to reference Rodriguez Rodriguez I, Zamora Izquierdo MA, Rodriguez JV. Towards an ICT-based platform for type 1 diabetes mellitus management. Appl Sci. 2018;8:1–15. Rodriguez Rodriguez I, Zamora Izquierdo MA, Rodriguez JV. Towards an ICT-based platform for type 1 diabetes mellitus management. Appl Sci. 2018;8:1–15.
28.
go back to reference Keith-hynes P, Mize B, Robert A, Place J. The Diabetes Assistant: A Smartphone-Based System for Real-Time Control of Blood Glucose. 2014;(Clc):609–23. Keith-hynes P, Mize B, Robert A, Place J. The Diabetes Assistant: A Smartphone-Based System for Real-Time Control of Blood Glucose. 2014;(Clc):609–23.
29.
go back to reference Su CJ, Chiang CY, Chih MC. Ontological knowledge engine and health screening data enabled ubiquitous personalized physical fitness (UFIT). Sensors (Switzerland). 2014;14(3):4560–84.CrossRef Su CJ, Chiang CY, Chih MC. Ontological knowledge engine and health screening data enabled ubiquitous personalized physical fitness (UFIT). Sensors (Switzerland). 2014;14(3):4560–84.CrossRef
30.
go back to reference Schmidt S, Norgaard K. Bolus calculators. J Diabetes Sci Technol. 2014;8(5):1035–41.CrossRef Schmidt S, Norgaard K. Bolus calculators. J Diabetes Sci Technol. 2014;8(5):1035–41.CrossRef
31.
go back to reference Greenes RA, Bates DW, Kawamoto K, Middleton B, Osheroff J, Shahar Y. Clinical decision support models and frameworks: seeking to address research issues underlying implementation successes and failures. J Biomed Inform. 2018;78(July 2017):134–43.CrossRef Greenes RA, Bates DW, Kawamoto K, Middleton B, Osheroff J, Shahar Y. Clinical decision support models and frameworks: seeking to address research issues underlying implementation successes and failures. J Biomed Inform. 2018;78(July 2017):134–43.CrossRef
32.
go back to reference Suh M, Evangelista LS, Chen V, Hong W, Nahapetian A, Figueras F, et al. WANDA B.: Weight and Activity with Blood Pressure Monitoring System for Heart Failure Patients. 2011; Suh M, Evangelista LS, Chen V, Hong W, Nahapetian A, Figueras F, et al. WANDA B.: Weight and Activity with Blood Pressure Monitoring System for Heart Failure Patients. 2011;
33.
go back to reference Villalba E, Salvi D, Ottaviano M, Peinado I, Arredondo MT, Akay A. Wearable and mobile system to manage remotely heart failure. IEEE Trans Inf Technol Biomed. 2009;13(6):990–6.CrossRef Villalba E, Salvi D, Ottaviano M, Peinado I, Arredondo MT, Akay A. Wearable and mobile system to manage remotely heart failure. IEEE Trans Inf Technol Biomed. 2009;13(6):990–6.CrossRef
34.
go back to reference Sieverdes J, Treiber F, Jenkins C, Hermayer K. Improving diabetes management with Mobile health technology. Am J Med Sci. 2013;345(4):289–95.CrossRef Sieverdes J, Treiber F, Jenkins C, Hermayer K. Improving diabetes management with Mobile health technology. Am J Med Sci. 2013;345(4):289–95.CrossRef
35.
go back to reference Al-Taee MA, Al-Nuaimy W, Al-Ataby A, Muhsin ZJ, Abood SN. Mobile health platform for diabetes management based on the Internet-of-Things. 2015 IEEE Jordan Conf Appl Electr Eng Comput Technol AEECT 2015. 2015;0–4. Al-Taee MA, Al-Nuaimy W, Al-Ataby A, Muhsin ZJ, Abood SN. Mobile health platform for diabetes management based on the Internet-of-Things. 2015 IEEE Jordan Conf Appl Electr Eng Comput Technol AEECT 2015. 2015;0–4.
36.
go back to reference Hsu WC, Hei K, Lau K, Ghiloni S, Le H, Gilroy S, et al. Utilization of a Cloud-Based Diabetes Management Program for Insulin Initiation and Titration Enables Collaborative Decision Making Between Healthcare 2016;18(2):59–67. Hsu WC, Hei K, Lau K, Ghiloni S, Le H, Gilroy S, et al. Utilization of a Cloud-Based Diabetes Management Program for Insulin Initiation and Titration Enables Collaborative Decision Making Between Healthcare 2016;18(2):59–67.
37.
go back to reference Alirezaie M, Renoux J, Köckemann U, Kristoffersson A, Karlsson L, Blomqvist E, et al. An ontology-based context-aware system for smart homes: E-care@home. Sensors (Switzerland). 2017;17(7):1–23.CrossRef Alirezaie M, Renoux J, Köckemann U, Kristoffersson A, Karlsson L, Blomqvist E, et al. An ontology-based context-aware system for smart homes: E-care@home. Sensors (Switzerland). 2017;17(7):1–23.CrossRef
38.
go back to reference Khamparia A, Pandey B. Comprehensive analysis of semantic web reasoners and tools: a survey. Educ Inf Technol. 2017;22(6):3121–45.CrossRef Khamparia A, Pandey B. Comprehensive analysis of semantic web reasoners and tools: a survey. Educ Inf Technol. 2017;22(6):3121–45.CrossRef
39.
go back to reference Roehrs A, da Costa CA, Righi RDR, Rigo SJ, Wichman M. Toward a Model for Personal Health Records Interoperability. IEEE J Biomed Heal Informatics. 2019;23(2):867-73. Roehrs A, da Costa CA, Righi RDR, Rigo SJ, Wichman M. Toward a Model for Personal Health Records Interoperability. IEEE J Biomed Heal Informatics. 2019;23(2):867-73.
40.
go back to reference Zini EM, Lanzola G, Quaglini S, Cornet R. Standardization of immunotherapy adverse events in patient information leaflets and development of an interface terminology for outpatients’ monitoring. J Biomed Inform. 2018;77(September 2017):133–44.CrossRef Zini EM, Lanzola G, Quaglini S, Cornet R. Standardization of immunotherapy adverse events in patient information leaflets and development of an interface terminology for outpatients’ monitoring. J Biomed Inform. 2018;77(September 2017):133–44.CrossRef
41.
go back to reference Basilakis J, Lovell NH, Redmond SJ, Celler BG. Design of a decision-support architecture for management of remotely monitored patients. IEEE Trans Inf Technol Biomed. 2010;14(5):1216–26.CrossRef Basilakis J, Lovell NH, Redmond SJ, Celler BG. Design of a decision-support architecture for management of remotely monitored patients. IEEE Trans Inf Technol Biomed. 2010;14(5):1216–26.CrossRef
42.
go back to reference Lanzola G, Losiouk E, Del Favero S, Facchinetti A, Galderisi A, Quaglini S, Magni L, Cobelli C. Remote blood glucose monitoring in mHealth scenarios: A review. Sensors. 2016;16(12):1983. Lanzola G, Losiouk E, Del Favero S, Facchinetti A, Galderisi A, Quaglini S, Magni L, Cobelli C. Remote blood glucose monitoring in mHealth scenarios: A review. Sensors. 2016;16(12):1983.
44.
go back to reference Hennessy M, Oentojo C, Ray S. A framework and ontology for mobile sensor platforms in home health management. 2013 1st Int Work Eng Mobile-Enabled Syst MOBS 2013 - Proc. 2013;31–5. Hennessy M, Oentojo C, Ray S. A framework and ontology for mobile sensor platforms in home health management. 2013 1st Int Work Eng Mobile-Enabled Syst MOBS 2013 - Proc. 2013;31–5.
45.
go back to reference Benson T, Grieve G. Principles of Health Interoperability SNOMED CT, HL7 and FHIR. Third edit. London: Springer-Verlag; 2016.CrossRef Benson T, Grieve G. Principles of Health Interoperability SNOMED CT, HL7 and FHIR. Third edit. London: Springer-Verlag; 2016.CrossRef
46.
go back to reference Leroux H, Metke-jimenez A, Lawley MJ. Towards achieving semantic interoperability of clinical study data with FHIR; 2017. p. 1–14. Leroux H, Metke-jimenez A, Lawley MJ. Towards achieving semantic interoperability of clinical study data with FHIR; 2017. p. 1–14.
48.
go back to reference Brandt P, Basten T, Stuiik S, Bui V, De Clercq P, Pires LF, et al. Semantic interoperability in sensor applications making sense of sensor data. Proc 2013 IEEE Symp Comput Intell Healthc e-Health, CICARE 2013–2013 IEEE Symp Ser Comput Intell SSCI 2013. 2013;5:34–41. Brandt P, Basten T, Stuiik S, Bui V, De Clercq P, Pires LF, et al. Semantic interoperability in sensor applications making sense of sensor data. Proc 2013 IEEE Symp Comput Intell Healthc e-Health, CICARE 2013–2013 IEEE Symp Ser Comput Intell SSCI 2013. 2013;5:34–41.
49.
go back to reference Martinez-Costa C, Schulz S. HL7 FHIR: ontological reinterpretation of medication resources. Stud Health Technol Inform. 2017;235:451–5.PubMed Martinez-Costa C, Schulz S. HL7 FHIR: ontological reinterpretation of medication resources. Stud Health Technol Inform. 2017;235:451–5.PubMed
51.
go back to reference Dhaliwal R, Weinstock RS. Management of type 1 diabetes in older adults. Diabetes Spectr. 2014;27(1):9–20.CrossRef Dhaliwal R, Weinstock RS. Management of type 1 diabetes in older adults. Diabetes Spectr. 2014;27(1):9–20.CrossRef
52.
go back to reference Wherrett DK, Ho J. 2018 clinical practice guidelines type 1 diabetes in children and adolescents diabetes Canada clinical practice guidelines expert committee. Can J Diabetes. 2018;42:S234–46.CrossRef Wherrett DK, Ho J. 2018 clinical practice guidelines type 1 diabetes in children and adolescents diabetes Canada clinical practice guidelines expert committee. Can J Diabetes. 2018;42:S234–46.CrossRef
53.
go back to reference King AB. Reassessment of insulin dosing guidelines in continuous subcutaneous insulin infusion treated type 1 diabetes; 2014.CrossRef King AB. Reassessment of insulin dosing guidelines in continuous subcutaneous insulin infusion treated type 1 diabetes; 2014.CrossRef
54.
go back to reference Tascini G, Berioli MG, Cerquiglini L, Santi E, Mancini G, Rogari F, et al. Carbohydrate counting in children and adolescents with type 1 diabetes. Nutrients. 2018;10(1):1–11.CrossRef Tascini G, Berioli MG, Cerquiglini L, Santi E, Mancini G, Rogari F, et al. Carbohydrate counting in children and adolescents with type 1 diabetes. Nutrients. 2018;10(1):1–11.CrossRef
55.
go back to reference Walsh J, Roberts R, Varma C, Bailey T. Using Insulin: Everything You Need for Success with Insulin. 1st edition. San Diego, California: Torrey Pines Press; 2003. Walsh J, Roberts R, Varma C, Bailey T. Using Insulin: Everything You Need for Success with Insulin. 1st edition. San Diego, California: Torrey Pines Press; 2003.
57.
go back to reference Compton M, Barnaghi P, Bermudez L, García-Castro R, Corcho O, Cox S, et al. The SSN ontology of the W3C semantic sensor network incubator group. J Web Semant. 2012;17:25–32.CrossRef Compton M, Barnaghi P, Bermudez L, García-Castro R, Corcho O, Cox S, et al. The SSN ontology of the W3C semantic sensor network incubator group. J Web Semant. 2012;17:25–32.CrossRef
58.
go back to reference Temal L, Rosier A, Dameron O, Burgun A. Mapping BFO and DOLCE. Stud Health Technol Inform. 2010;160(PART 1):1065–9.PubMed Temal L, Rosier A, Dameron O, Burgun A. Mapping BFO and DOLCE. Stud Health Technol Inform. 2010;160(PART 1):1065–9.PubMed
59.
go back to reference Huckvale K, Adomaviciute S, Prieto JT, Leow MK, Car J. Smartphone apps for calculating insulin dose : a systematic assessment; 2015. p. 1–10. Huckvale K, Adomaviciute S, Prieto JT, Leow MK, Car J. Smartphone apps for calculating insulin dose : a systematic assessment; 2015. p. 1–10.
60.
go back to reference Mottalib A, Kasetty M, Mar JY, Elseaidy T, Ashrafzadeh S, Hamdy O, et al. Weight Management in Patients with type 1 diabetes and obesity. 2017;CrossRef Mottalib A, Kasetty M, Mar JY, Elseaidy T, Ashrafzadeh S, Hamdy O, et al. Weight Management in Patients with type 1 diabetes and obesity. 2017;CrossRef
61.
go back to reference Harris JA, Benedict FG. A biometric study of human basal metabolism. Proc Natl Acad Sci U S A. 1918;4:370–3.CrossRef Harris JA, Benedict FG. A biometric study of human basal metabolism. Proc Natl Acad Sci U S A. 1918;4:370–3.CrossRef
62.
go back to reference Ainsworth BE, Haskell WL, Herrmann SD, Meckes N, Bassett DR, Tudor-Locke C, et al. 2011 compendium of physical activities: a second update of codes and MET values. Med Sci Sports Exerc. 2011;43(8):1575–81.CrossRef Ainsworth BE, Haskell WL, Herrmann SD, Meckes N, Bassett DR, Tudor-Locke C, et al. 2011 compendium of physical activities: a second update of codes and MET values. Med Sci Sports Exerc. 2011;43(8):1575–81.CrossRef
63.
go back to reference Hlomani H, Stacey D. Approaches, methods, metrics, measures, and subjectivity in ontology evaluation: a survey. Semant Web J. 2014;1:1–11. Hlomani H, Stacey D. Approaches, methods, metrics, measures, and subjectivity in ontology evaluation: a survey. Semant Web J. 2014;1:1–11.
65.
go back to reference El-sappagh S, Franda F, Ali F, Kwak K. SNOMED CT standard ontology based on the ontology for general medical science; 2018. p. 1–19. El-sappagh S, Franda F, Ali F, Kwak K. SNOMED CT standard ontology based on the ontology for general medical science; 2018. p. 1–19.
66.
go back to reference El-Sappagh S, Alonso JM, Ali F, Ali A, Jang JH, Kwak KS. An ontology-based interpretable fuzzy decision support system for diabetes diagnosis. IEEE Access. 2018;6:37371-94. El-Sappagh S, Alonso JM, Ali F, Ali A, Jang JH, Kwak KS. An ontology-based interpretable fuzzy decision support system for diabetes diagnosis. IEEE Access. 2018;6:37371-94.
70.
go back to reference Fan ZY, Gou L, T shu Z, D nan L, Zheng J, Li Y, et al. An ontology-based approach to patient follow-up assessment for continuous and personalized chronic disease management. J Biomed Inform. 2017;72(2017):45–59. Fan ZY, Gou L, T shu Z, D nan L, Zheng J, Li Y, et al. An ontology-based approach to patient follow-up assessment for continuous and personalized chronic disease management. J Biomed Inform. 2017;72(2017):45–59.
71.
go back to reference Sherimon PC, Krishnan R. OntoDiabetic: an ontology-based clinical decision support system for diabetic patients. Arab J Sci Eng. 2016;41(3):1145–60.CrossRef Sherimon PC, Krishnan R. OntoDiabetic: an ontology-based clinical decision support system for diabetic patients. Arab J Sci Eng. 2016;41(3):1145–60.CrossRef
Metadata
Title
A mobile health monitoring-and-treatment system based on integration of the SSN sensor ontology and the HL7 FHIR standard
Authors
Shaker El-Sappagh
Farman Ali
Abdeltawab Hendawi
Jun-Hyeog Jang
Kyung-Sup Kwak
Publication date
01-12-2019
Publisher
BioMed Central
Keywords
Insulins
Insulins
Published in
BMC Medical Informatics and Decision Making / Issue 1/2019
Electronic ISSN: 1472-6947
DOI
https://doi.org/10.1186/s12911-019-0806-z

Other articles of this Issue 1/2019

BMC Medical Informatics and Decision Making 1/2019 Go to the issue