Skip to main content
Top
Published in: Thyroid Research 1/2020

01-12-2020 | Insulins | Commentary

Teprotumumab: a disease modifying treatment for graves’ orbitopathy

Authors: Michelle Ting, Daniel G. Ezra

Published in: Thyroid Research | Issue 1/2020

Login to get access

Abstract

Background

On 21st January 2020, the FDA approved Tepezza (teprotumumab-trbw) for the treatment of active Graves’ orbitopathy (GO) in adults. This approval was based on positive results from two multinational randomised double-blind placebo-controlled clinical trials.

Discussion

This article discusses the outcomes of those trials and the potential role of teprotumumab in altering current treatment paradigms in Graves’ orbitopathy. Future challenges are explored, including the need to confirm its disease-modifying effect, to establish its optimal position in the treatment pathway, and to define the appropriate subset of patients who would benefit from its use.

Conclusions

The results from these two large clinical trials have shown teprotumumab to have remarkable effects on multiple clinical outcomes in GO, particularly in its ability to reverse proptosis. It may herald a new era in the treatment of thyroid eye disease and could offer an alternative to surgery and its associated complications. Additional studies will continue to shape the treatment of GO and define the role of teprotumumab within the treatment paradigm.
Literature
2.
go back to reference Smith TJ, et al. Teprotumumab for thyroid-associated Ophthalmopathy. N Engl J Med. 2017;376:1748–61.CrossRef Smith TJ, et al. Teprotumumab for thyroid-associated Ophthalmopathy. N Engl J Med. 2017;376:1748–61.CrossRef
3.
go back to reference Douglas RS, et al. Teprotumumab for the treatment of active thyroid eye disease. N Engl J Med. 2020;382:341–52.CrossRef Douglas RS, et al. Teprotumumab for the treatment of active thyroid eye disease. N Engl J Med. 2020;382:341–52.CrossRef
4.
go back to reference Jain D, Mor S, Aggarwal HK, Chhabra P, Jain P. Thyroid association Ophthalmopathy in Hashimoto’s thyroiditis: a case report. Maedica. 2017;12:65–7.PubMedPubMedCentral Jain D, Mor S, Aggarwal HK, Chhabra P, Jain P. Thyroid association Ophthalmopathy in Hashimoto’s thyroiditis: a case report. Maedica. 2017;12:65–7.PubMedPubMedCentral
5.
go back to reference Wiersinga WM, Bartalena L. Epidemiology and prevention of graves’ ophthalmopathy. Thyroid Off J Am Thyroid Assoc. 2002;12:855–60.CrossRef Wiersinga WM, Bartalena L. Epidemiology and prevention of graves’ ophthalmopathy. Thyroid Off J Am Thyroid Assoc. 2002;12:855–60.CrossRef
6.
go back to reference Kahaly GJ, Petrak F, Hardt J, Pitz S, Egle UT. Psychosocial morbidity of graves’ orbitopathy. Clin Endocrinol. 2005;63:395–402.CrossRef Kahaly GJ, Petrak F, Hardt J, Pitz S, Egle UT. Psychosocial morbidity of graves’ orbitopathy. Clin Endocrinol. 2005;63:395–402.CrossRef
7.
go back to reference Perros P, Crombie AL, Kendall-Taylor P. Natural history of thyroid associated ophthalmopathy. Clin Endocrinol. 1995;42:45–50.CrossRef Perros P, Crombie AL, Kendall-Taylor P. Natural history of thyroid associated ophthalmopathy. Clin Endocrinol. 1995;42:45–50.CrossRef
8.
go back to reference Bartley GB. Rundle and his curve. Arch Ophthalmol Chic Ill. 2011;1960(129):356–8.CrossRef Bartley GB. Rundle and his curve. Arch Ophthalmol Chic Ill. 2011;1960(129):356–8.CrossRef
9.
go back to reference Mourits MP, Prummel MF, Wiersinga WM, Koornneef L. Clinical activity score as a guide in the management of patients with graves’ ophthalmopathy. Clin Endocrinol. 1997;47:9–14.CrossRef Mourits MP, Prummel MF, Wiersinga WM, Koornneef L. Clinical activity score as a guide in the management of patients with graves’ ophthalmopathy. Clin Endocrinol. 1997;47:9–14.CrossRef
10.
go back to reference Eckstein A, Schittkowski M, Esser J. Surgical treatment of graves’ ophthalmopathy. Best Pract Res Clin Endocrinol Metab. 2012;26:339–58.CrossRef Eckstein A, Schittkowski M, Esser J. Surgical treatment of graves’ ophthalmopathy. Best Pract Res Clin Endocrinol Metab. 2012;26:339–58.CrossRef
11.
go back to reference Feldon SE, et al. Activated human T lymphocytes express cyclooxygenase-2 and produce proadipogenic prostaglandins that drive human orbital fibroblast differentiation to adipocytes. Am J Pathol. 2006;169:1183–93.CrossRef Feldon SE, et al. Activated human T lymphocytes express cyclooxygenase-2 and produce proadipogenic prostaglandins that drive human orbital fibroblast differentiation to adipocytes. Am J Pathol. 2006;169:1183–93.CrossRef
12.
13.
go back to reference Kahaly GJ, et al. 2018 European thyroid association guideline for the Management of Graves’ hyperthyroidism. Eur Thyroid J. 2018;7:167–86.CrossRef Kahaly GJ, et al. 2018 European thyroid association guideline for the Management of Graves’ hyperthyroidism. Eur Thyroid J. 2018;7:167–86.CrossRef
14.
go back to reference Douglas RS, Gupta S. The pathophysiology of thyroid eye disease: implications for immunotherapy. Curr Opin Ophthalmol. 2011;22:385–90.CrossRef Douglas RS, Gupta S. The pathophysiology of thyroid eye disease: implications for immunotherapy. Curr Opin Ophthalmol. 2011;22:385–90.CrossRef
15.
go back to reference Bartalena L, et al. Efficacy and safety of three different cumulative doses of intravenous methylprednisolone for moderate to severe and active graves’ orbitopathy. J Clin Endocrinol Metab. 2012;97:4454–63.CrossRef Bartalena L, et al. Efficacy and safety of three different cumulative doses of intravenous methylprednisolone for moderate to severe and active graves’ orbitopathy. J Clin Endocrinol Metab. 2012;97:4454–63.CrossRef
16.
go back to reference van Geest RJ, et al. Methylprednisolone pulse therapy for patients with moderately severe graves’ orbitopathy: a prospective, randomized, placebo-controlled study. Eur J Endocrinol. 2008;158:229–37.CrossRef van Geest RJ, et al. Methylprednisolone pulse therapy for patients with moderately severe graves’ orbitopathy: a prospective, randomized, placebo-controlled study. Eur J Endocrinol. 2008;158:229–37.CrossRef
17.
go back to reference Prummel MF, et al. Randomized double-blind trial of prednisone versus radiotherapy in graves’ ophthalmopathy. Lancet Lond Engl. 1993;342:949–54.CrossRef Prummel MF, et al. Randomized double-blind trial of prednisone versus radiotherapy in graves’ ophthalmopathy. Lancet Lond Engl. 1993;342:949–54.CrossRef
18.
go back to reference Godfrey KJ, Kazim M. Radiotherapy for active thyroid eye disease. Ophthal Plast Reconstr Surg. 2018;34:S98–S104.CrossRef Godfrey KJ, Kazim M. Radiotherapy for active thyroid eye disease. Ophthal Plast Reconstr Surg. 2018;34:S98–S104.CrossRef
19.
go back to reference Kahaly G, et al. Ciclosporin and prednisone v. prednisone in treatment of Graves’ ophthalmopathy: a controlled, randomized and prospective study. Eur J Clin Invest. 1986;16:415–22.CrossRef Kahaly G, et al. Ciclosporin and prednisone v. prednisone in treatment of Graves’ ophthalmopathy: a controlled, randomized and prospective study. Eur J Clin Invest. 1986;16:415–22.CrossRef
20.
go back to reference Rivera-Grana E, Lin P, Suhler EB, Rosenbaum JT. Methotrexate as a corticosteroid-sparing agent for thyroid eye disease. J Clin Exp Ophthalmol. 2015;6:422.PubMedPubMedCentral Rivera-Grana E, Lin P, Suhler EB, Rosenbaum JT. Methotrexate as a corticosteroid-sparing agent for thyroid eye disease. J Clin Exp Ophthalmol. 2015;6:422.PubMedPubMedCentral
21.
go back to reference Perros P, Weightman DR, Crombie AL, Kendall-Taylor P. Azathioprine in the treatment of thyroid-associated ophthalmopathy. Acta Endocrinol. 1990;122:8–12.CrossRef Perros P, Weightman DR, Crombie AL, Kendall-Taylor P. Azathioprine in the treatment of thyroid-associated ophthalmopathy. Acta Endocrinol. 1990;122:8–12.CrossRef
22.
go back to reference Dickinson AJ, et al. Double-blind, placebo-controlled trial of octreotide long-acting repeatable (LAR) in thyroid-associated ophthalmopathy. J Clin Endocrinol Metab. 2004;89:5910–5.CrossRef Dickinson AJ, et al. Double-blind, placebo-controlled trial of octreotide long-acting repeatable (LAR) in thyroid-associated ophthalmopathy. J Clin Endocrinol Metab. 2004;89:5910–5.CrossRef
23.
go back to reference Kahaly GJ, et al. Mycophenolate plus methylprednisolone versus methylprednisolone alone in active, moderate-to-severe graves’ orbitopathy (MINGO): a randomised, observer-masked, multicentre trial. Lancet Diabetes Endocrinol. 2018;6:287–98.CrossRef Kahaly GJ, et al. Mycophenolate plus methylprednisolone versus methylprednisolone alone in active, moderate-to-severe graves’ orbitopathy (MINGO): a randomised, observer-masked, multicentre trial. Lancet Diabetes Endocrinol. 2018;6:287–98.CrossRef
25.
go back to reference Shen W-C, et al. Efficacy and safety of rituximab for the treatment of graves’ Orbitopathy: a meta-analysis of randomized controlled trials. Pharmacotherapy. 2018;38:503–10.CrossRef Shen W-C, et al. Efficacy and safety of rituximab for the treatment of graves’ Orbitopathy: a meta-analysis of randomized controlled trials. Pharmacotherapy. 2018;38:503–10.CrossRef
26.
go back to reference Douglas RS. Teprotumumab, an insulin-like growth factor-1 receptor antagonist antibody, in the treatment of active thyroid eye disease: a focus on proptosis. Eye Lond Engl. 2019;33:183–90. Douglas RS. Teprotumumab, an insulin-like growth factor-1 receptor antagonist antibody, in the treatment of active thyroid eye disease: a focus on proptosis. Eye Lond Engl. 2019;33:183–90.
27.
go back to reference Pritchard J, Han R, Horst N, Cruikshank WW, Smith TJ. Immunoglobulin activation of T cell chemoattractant expression in fibroblasts from patients with graves’ disease is mediated through the insulin-like growth factor I receptor pathway. J Immunol Baltim Md. 2003;1950(170):6348–54. Pritchard J, Han R, Horst N, Cruikshank WW, Smith TJ. Immunoglobulin activation of T cell chemoattractant expression in fibroblasts from patients with graves’ disease is mediated through the insulin-like growth factor I receptor pathway. J Immunol Baltim Md. 2003;1950(170):6348–54.
28.
go back to reference Tsui S, et al. Evidence for an association between thyroid-stimulating hormone and insulin-like growth factor 1 receptors: a tale of two antigens implicated in graves’ disease. J Immunol Baltim Md. 2008;1950(181):4397–405. Tsui S, et al. Evidence for an association between thyroid-stimulating hormone and insulin-like growth factor 1 receptors: a tale of two antigens implicated in graves’ disease. J Immunol Baltim Md. 2008;1950(181):4397–405.
29.
go back to reference Smith TJ, Hoa N. Immunoglobulins from patients with graves’ disease induce hyaluronan synthesis in their orbital fibroblasts through the self-antigen, insulin-like growth factor-I receptor. J Clin Endocrinol Metab. 2004;89:5076–80.CrossRef Smith TJ, Hoa N. Immunoglobulins from patients with graves’ disease induce hyaluronan synthesis in their orbital fibroblasts through the self-antigen, insulin-like growth factor-I receptor. J Clin Endocrinol Metab. 2004;89:5076–80.CrossRef
30.
go back to reference Ezra DG, et al. Transcriptome-level microarray expression profiling implicates IGF-1 and Wnt signalling dysregulation in the pathogenesis of thyroid-associated orbitopathy. J Clin Pathol. 2012;65:608–13.CrossRef Ezra DG, et al. Transcriptome-level microarray expression profiling implicates IGF-1 and Wnt signalling dysregulation in the pathogenesis of thyroid-associated orbitopathy. J Clin Pathol. 2012;65:608–13.CrossRef
31.
go back to reference Varewijck AJ, et al. Circulating IgGs may modulate IGF-I receptor stimulating activity in a subset of patients with graves’ ophthalmopathy. J Clin Endocrinol Metab. 2013;98:769–76.CrossRef Varewijck AJ, et al. Circulating IgGs may modulate IGF-I receptor stimulating activity in a subset of patients with graves’ ophthalmopathy. J Clin Endocrinol Metab. 2013;98:769–76.CrossRef
32.
go back to reference Minich WB, et al. Autoantibodies to the IGF1 receptor in graves’ orbitopathy. J Clin Endocrinol Metab. 2013;98:752–60.CrossRef Minich WB, et al. Autoantibodies to the IGF1 receptor in graves’ orbitopathy. J Clin Endocrinol Metab. 2013;98:752–60.CrossRef
33.
go back to reference Hwang CJ, Eftekhari K. Teprotumumab for thyroid eye disease. Int Ophthalmol Clin. 2020;60:47–55.CrossRef Hwang CJ, Eftekhari K. Teprotumumab for thyroid eye disease. Int Ophthalmol Clin. 2020;60:47–55.CrossRef
34.
go back to reference Chen H, et al. Teprotumumab, an IGF-1R blocking monoclonal antibody inhibits TSH and IGF-1 action in fibrocytes. J Clin Endocrinol Metab. 2014;99:E1635–40.CrossRef Chen H, et al. Teprotumumab, an IGF-1R blocking monoclonal antibody inhibits TSH and IGF-1 action in fibrocytes. J Clin Endocrinol Metab. 2014;99:E1635–40.CrossRef
35.
go back to reference Rootman DB, Golan S, Pavlovich P, Rootman J. Postoperative changes in strabismus, Ductions, Exophthalmometry, and eyelid retraction after orbital decompression for thyroid Orbitopathy. Ophthal Plast Reconstr Surg. 2017;33:289–93.CrossRef Rootman DB, Golan S, Pavlovich P, Rootman J. Postoperative changes in strabismus, Ductions, Exophthalmometry, and eyelid retraction after orbital decompression for thyroid Orbitopathy. Ophthal Plast Reconstr Surg. 2017;33:289–93.CrossRef
36.
37.
go back to reference Piantanida E, Bartalena L. Teprotumumab: a new avenue for the management of moderate-to-severe and active graves’ orbitopathy? J Endocrinol Investig. 2017;40:885–7.CrossRef Piantanida E, Bartalena L. Teprotumumab: a new avenue for the management of moderate-to-severe and active graves’ orbitopathy? J Endocrinol Investig. 2017;40:885–7.CrossRef
38.
go back to reference Kim JW, Woo YJ, Yoon JS. Is modified clinical activity score an accurate indicator of diplopia progression in graves’ orbitopathy patients? Endocr J. 2016;63:1133–40.CrossRef Kim JW, Woo YJ, Yoon JS. Is modified clinical activity score an accurate indicator of diplopia progression in graves’ orbitopathy patients? Endocr J. 2016;63:1133–40.CrossRef
Metadata
Title
Teprotumumab: a disease modifying treatment for graves’ orbitopathy
Authors
Michelle Ting
Daniel G. Ezra
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Thyroid Research / Issue 1/2020
Electronic ISSN: 1756-6614
DOI
https://doi.org/10.1186/s13044-020-00086-7

Other articles of this Issue 1/2020

Thyroid Research 1/2020 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine