Skip to main content
Top
Published in: BMC Oral Health 1/2023

Open Access 01-12-2023 | Injectable Filler | Research

The effect of water storage on nanoindentation creep of various CAD-CAM composite blocks

Authors: Rasha A. Alamoush, Nesreen A. Salim, Alaaeldin Elraggal, Julian D. Satterthwaite, Nikolaos Silikas

Published in: BMC Oral Health | Issue 1/2023

Login to get access

Abstract

Background

To study the effect of water storage (3 months) on the creep deformation of various CAD-CAM composite structures at the nanoscale and compare it to that at the macroscale.

Methods

Seven CAD-CAM blocks were investigated: five resin-composite blocks (RCB), one polymer-infiltrated ceramic network (PICN) block, and one ceramic-filled polyetheretherketone (PEEK) block. Specimens of each material (n = 6) were separated into two groups (n = 3) according to their storage conditions (24 h dry storage at 23˚C and 3 months storage in 37˚C distilled water). Nano-indentation creep measurements were undertaken (creep depth measured in µm) using a nanoindenter (Nanovea) equipped with Berkovich three-sided pyramidal diamond tip. The machine was set for the chosen parameters: a load of 20 gf, a pause of 20 s, and the material type. Thirty indentations on 3 samples were made for each material for each test. Data were analysed using two-way ANOVA followed by one-way ANOVA and Bonferroni post hoc tests and independent t-test (< 0.05) for comparisons between the materials.

Results

The nanoindentation creep depth after 24 h storage ranged from 0.09 to 0.33 μm and increased after 3 months storage in distilled water to between 0.28 and 3.46 μm. There was a statistically significant difference in nanoindentation creep behaviour between the two storage conditions for each investigated material (independent t-test) and between all materials (Bonferroni post hoc). There was a non-significant negative correlation between nanoindentation creep (µm) and filler weight% at 24 h dry storage but a significant correlation at 3 months of water storage. A further non-significant positive correlation between nanoindentation creep (µm) and bulk compressive creep (%) was found.

Conclusion

The PICN material showed superior dimensional stability in terms of nanoindentation creep depth in both storage conditions. Other composite blocks showed comparable performance at 24 h dry condition, but an increased nanoindentation creep upon water storage.
Literature
1.
go back to reference Lambert H, Durand J-C, Jacquot B, Fages M. Dental biomaterials for chairside CAD/CAM: state of the art. J Adv Prosthodont 2017, 9(6):486–95. Lambert H, Durand J-C, Jacquot B, Fages M. Dental biomaterials for chairside CAD/CAM: state of the art. J Adv Prosthodont 2017, 9(6):486–95.
2.
go back to reference Fasbinder DJ, Neiva GF. Surface evaluation of polishing techniques for new resilient CAD/CAM restorative materials. J Esthet Restor Dent. 2016;28(1):56–66.PubMedCrossRef Fasbinder DJ, Neiva GF. Surface evaluation of polishing techniques for new resilient CAD/CAM restorative materials. J Esthet Restor Dent. 2016;28(1):56–66.PubMedCrossRef
3.
go back to reference Fasbinder D, Dennison J, Heys D, et al. A clinical evaluation of chairside lithium disilicate CAD/CAM crowns: a two-year report. J Am Dent Assoc. 2010;141:10–4.CrossRef Fasbinder D, Dennison J, Heys D, et al. A clinical evaluation of chairside lithium disilicate CAD/CAM crowns: a two-year report. J Am Dent Assoc. 2010;141:10–4.CrossRef
5.
go back to reference Phan AC, Tang M-l, Nguyen J-F, Ruse ND, Sadoun M. High-temperature high-pressure polymerized urethane dimethacrylate—mechanical properties and monomer release. Dent Mater. 2014;30(3):350–6.PubMedCrossRef Phan AC, Tang M-l, Nguyen J-F, Ruse ND, Sadoun M. High-temperature high-pressure polymerized urethane dimethacrylate—mechanical properties and monomer release. Dent Mater. 2014;30(3):350–6.PubMedCrossRef
6.
go back to reference Coldea A, Swain MV, Thiel N. Mechanical properties of polymer-infiltrated-ceramic-network materials. Dent Mater. 2013;29(4):419–26.PubMedCrossRef Coldea A, Swain MV, Thiel N. Mechanical properties of polymer-infiltrated-ceramic-network materials. Dent Mater. 2013;29(4):419–26.PubMedCrossRef
7.
go back to reference Mainjot AK, Dupont NM, Oudkerk JC, Dewael TY, Sadoun MJ. From Artisanal to CAD-CAM Blocks: state of the art of Indirect Composites. J Dent Res. 2016;95(5):487–95.PubMedCrossRef Mainjot AK, Dupont NM, Oudkerk JC, Dewael TY, Sadoun MJ. From Artisanal to CAD-CAM Blocks: state of the art of Indirect Composites. J Dent Res. 2016;95(5):487–95.PubMedCrossRef
8.
go back to reference Alamoush R, Satterthwaite A, Silikas JD, Watts N. Viscoelastic stability of pre-cured resin-composite CAD/CAM structures. Dent Mater. 2019;35(8):1166–72.PubMedCrossRef Alamoush R, Satterthwaite A, Silikas JD, Watts N. Viscoelastic stability of pre-cured resin-composite CAD/CAM structures. Dent Mater. 2019;35(8):1166–72.PubMedCrossRef
10.
go back to reference Nguyen J-F, Migonney V, Ruse ND, Sadoun M. Resin composite blocks via high-pressure high-temperature polymerization. Dent Mater. 2012;28(5):529–34.PubMedCrossRef Nguyen J-F, Migonney V, Ruse ND, Sadoun M. Resin composite blocks via high-pressure high-temperature polymerization. Dent Mater. 2012;28(5):529–34.PubMedCrossRef
11.
go back to reference Stawarczyk B, Sener B, Trottmann A, Roos M, Ozcan M, Hammerle CH. Discoloration of manually fabricated resins and industrially fabricated CAD/CAM blocks versus glass-ceramic: effect of storage media, duration, and subsequent polishing. Dent Mater J. 2012;31(3):377–83.PubMedCrossRef Stawarczyk B, Sener B, Trottmann A, Roos M, Ozcan M, Hammerle CH. Discoloration of manually fabricated resins and industrially fabricated CAD/CAM blocks versus glass-ceramic: effect of storage media, duration, and subsequent polishing. Dent Mater J. 2012;31(3):377–83.PubMedCrossRef
12.
go back to reference Giordano R. Materials for chairside CAD/CAM produced restorations. J Am Dent Assoc. 2006;137(9):14S–21S.PubMedCrossRef Giordano R. Materials for chairside CAD/CAM produced restorations. J Am Dent Assoc. 2006;137(9):14S–21S.PubMedCrossRef
13.
go back to reference Alt V, Hannig M, Wostmann B, Balkenhol M. Fracture strength of temporary fixed partial dentures: CAD/CAM versus directly fabricated restorations. Dent Mater. 2011;27(4):339–47.PubMedCrossRef Alt V, Hannig M, Wostmann B, Balkenhol M. Fracture strength of temporary fixed partial dentures: CAD/CAM versus directly fabricated restorations. Dent Mater. 2011;27(4):339–47.PubMedCrossRef
14.
go back to reference Stawarczyk B, Özcan M, Trottmann A, Schmutz F, Roos M, Hämmerle C. Two-body wear rate of CAD/CAM resin blocks and their enamel antagonists. J Prosthet Dent. 2013;109(5):325–32.PubMedCrossRef Stawarczyk B, Özcan M, Trottmann A, Schmutz F, Roos M, Hämmerle C. Two-body wear rate of CAD/CAM resin blocks and their enamel antagonists. J Prosthet Dent. 2013;109(5):325–32.PubMedCrossRef
15.
16.
go back to reference Della Bona A, Corazza PH, Zhang Y. Characterization of a polymer-infiltrated ceramic-network material. Dent Mater. 2014;30(5):564–9.PubMedCrossRef Della Bona A, Corazza PH, Zhang Y. Characterization of a polymer-infiltrated ceramic-network material. Dent Mater. 2014;30(5):564–9.PubMedCrossRef
17.
go back to reference Swain MV, Coldea A, Bilkhair A, Guess PC. Interpenetrating network ceramic-resin composite dental restorative materials. Dent Mater. 2016;32(1):34–42.PubMedCrossRef Swain MV, Coldea A, Bilkhair A, Guess PC. Interpenetrating network ceramic-resin composite dental restorative materials. Dent Mater. 2016;32(1):34–42.PubMedCrossRef
19.
go back to reference Mehta J, Sachdeva M, Dalaya M. Peek: a New Peak of Dentistry. Int J Curr Med Pharm Res. 2019;05(01):4020–3. Mehta J, Sachdeva M, Dalaya M. Peek: a New Peak of Dentistry. Int J Curr Med Pharm Res. 2019;05(01):4020–3.
20.
go back to reference Vaidyanathan J, Vaidyanathan TK. Flexural creep deformation and recovery in dental composites. J Dent. 2001;29(8):545–51.PubMedCrossRef Vaidyanathan J, Vaidyanathan TK. Flexural creep deformation and recovery in dental composites. J Dent. 2001;29(8):545–51.PubMedCrossRef
21.
go back to reference He LH, Swain M. A novel polymer infiltrated ceramic dental material. Dent Mater. 2011;27(6):527–34.PubMedCrossRef He LH, Swain M. A novel polymer infiltrated ceramic dental material. Dent Mater. 2011;27(6):527–34.PubMedCrossRef
22.
go back to reference Alrahlah A, Khan R, Alotaibi K, Almutawa Z, Fouad H, Elsharawy M, Silikas N. Simultaneous evaluation of Creep deformation and recovery of bulk-fill Dental Composites Immersed in Food-Simulating liquids. Mater (Basel Switzerland) 2018, 11(7). Alrahlah A, Khan R, Alotaibi K, Almutawa Z, Fouad H, Elsharawy M, Silikas N. Simultaneous evaluation of Creep deformation and recovery of bulk-fill Dental Composites Immersed in Food-Simulating liquids. Mater (Basel Switzerland) 2018, 11(7).
23.
go back to reference Wei YJ, Silikas N, Zhang ZT, Watts DC. Diffusion and concurrent solubility of self-adhering and new resin-matrix composites during water sorption/desorption cycles. Dent Mater. 2011;27(2):197–205.PubMedCrossRef Wei YJ, Silikas N, Zhang ZT, Watts DC. Diffusion and concurrent solubility of self-adhering and new resin-matrix composites during water sorption/desorption cycles. Dent Mater. 2011;27(2):197–205.PubMedCrossRef
24.
go back to reference El-Safty S, Silikas N, Watts DC. Temperature-dependence of creep behaviour of dental resin-composites. J Dent. 2013;41(4):287–96.PubMedCrossRef El-Safty S, Silikas N, Watts DC. Temperature-dependence of creep behaviour of dental resin-composites. J Dent. 2013;41(4):287–96.PubMedCrossRef
25.
go back to reference Al-Ahdal K, Silikas N, Watts DC. Development of viscoelastic stability of resin-composites incorporating novel matrices. Dent Mater. 2015;31(12):1561–6.PubMedCrossRef Al-Ahdal K, Silikas N, Watts DC. Development of viscoelastic stability of resin-composites incorporating novel matrices. Dent Mater. 2015;31(12):1561–6.PubMedCrossRef
26.
go back to reference Lucas BN, Oliver WC. Indentation power-law creep of high-purity indium. Metall Mater Trans A. 1999;30(3):601–10.CrossRef Lucas BN, Oliver WC. Indentation power-law creep of high-purity indium. Metall Mater Trans A. 1999;30(3):601–10.CrossRef
27.
go back to reference Masouras K, Akhtar R, Watts DC, Silikas N. Effect of filler size and shape on local nanoindentation modulus of resin-composites. J Mater Sci: Mater Med. 2008;19:3561–6.PubMed Masouras K, Akhtar R, Watts DC, Silikas N. Effect of filler size and shape on local nanoindentation modulus of resin-composites. J Mater Sci: Mater Med. 2008;19:3561–6.PubMed
28.
go back to reference Fischer-Cripps AC. Nanoindentation, Mechanical Engineering in. edn.: LLC: Springer Science + Business Media; 2011. pp. 21–37.CrossRef Fischer-Cripps AC. Nanoindentation, Mechanical Engineering in. edn.: LLC: Springer Science + Business Media; 2011. pp. 21–37.CrossRef
29.
go back to reference Alamoush RA, Silikas N, Salim NA, Al-Nasrawi S, Satterthwaite JD. Effect of the composition of CAD/CAM Composite Blocks on Mechanical Properties. Biomed Res Int. 2018;2018:4893143–3.PubMedPubMedCentralCrossRef Alamoush RA, Silikas N, Salim NA, Al-Nasrawi S, Satterthwaite JD. Effect of the composition of CAD/CAM Composite Blocks on Mechanical Properties. Biomed Res Int. 2018;2018:4893143–3.PubMedPubMedCentralCrossRef
30.
go back to reference Oliver WC, Pharr GM. Nanoindentation in materials research: past, present, and future. MRS Bull. 2011;35(11):897–907.CrossRef Oliver WC, Pharr GM. Nanoindentation in materials research: past, present, and future. MRS Bull. 2011;35(11):897–907.CrossRef
31.
go back to reference Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7(06):1564–83.CrossRef Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7(06):1564–83.CrossRef
32.
go back to reference He L-H, Swain MV. Nanoindentation creep behavior of human enamel. J Biomed Mater Res Part A. 2009;91A(2):352–9.CrossRef He L-H, Swain MV. Nanoindentation creep behavior of human enamel. J Biomed Mater Res Part A. 2009;91A(2):352–9.CrossRef
34.
go back to reference Musanje L, Darvell BW. Aspects of water sorption from the air, water and artificial saliva in resin composite restorative materials. Dent Mater. 2003;19(5):414–22.PubMedCrossRef Musanje L, Darvell BW. Aspects of water sorption from the air, water and artificial saliva in resin composite restorative materials. Dent Mater. 2003;19(5):414–22.PubMedCrossRef
35.
go back to reference ISO10993-13. : Biological evaluation of medical devices —Part 13: identification and quantification of degradation products from polymeric medical devices. 2010. ISO10993-13. : Biological evaluation of medical devices —Part 13: identification and quantification of degradation products from polymeric medical devices. 2010.
36.
go back to reference Sarrett DC. Clinical challenges and the relevance of materials testing for posterior composite restorations. Dent Mater. 2005;21(1):9–20.PubMedCrossRef Sarrett DC. Clinical challenges and the relevance of materials testing for posterior composite restorations. Dent Mater. 2005;21(1):9–20.PubMedCrossRef
37.
go back to reference Alamoush RA, Salim NA, Silikas N, Satterthwaite JD. Long-term hydrolytic stability of CAD/CAM composite blocks. Eur J Oral Sci. 2022;130(1):e12834.PubMedCrossRef Alamoush RA, Salim NA, Silikas N, Satterthwaite JD. Long-term hydrolytic stability of CAD/CAM composite blocks. Eur J Oral Sci. 2022;130(1):e12834.PubMedCrossRef
38.
go back to reference Ferracane JL, Berge HX, Condon JR. In vitro aging of dental composites in water–effect of degree of conversion, filler volume, and filler/matrix coupling. J Biomed Mater Res. 1998;42(3):465–72.PubMedCrossRef Ferracane JL, Berge HX, Condon JR. In vitro aging of dental composites in water–effect of degree of conversion, filler volume, and filler/matrix coupling. J Biomed Mater Res. 1998;42(3):465–72.PubMedCrossRef
39.
go back to reference Ferracane JL. Elution of leachable components from composites. J Oral Rehabil. 1994;21(4):441–52.PubMedCrossRef Ferracane JL. Elution of leachable components from composites. J Oral Rehabil. 1994;21(4):441–52.PubMedCrossRef
40.
go back to reference Fuchs F, Schmidtke J, Hahnel S, Koenig A. The influence of different storage media on Vickers hardness and surface roughness of CAD/CAM resin composites. J Mater Science: Mater Med. 2023;34(3):13. Fuchs F, Schmidtke J, Hahnel S, Koenig A. The influence of different storage media on Vickers hardness and surface roughness of CAD/CAM resin composites. J Mater Science: Mater Med. 2023;34(3):13.
41.
go back to reference Coldea A, Swain MV, Thiel N. Hertzian contact response and damage tolerance of dental ceramics. J Mech Behav Biomed Mater. 2014;34:124–33.PubMedCrossRef Coldea A, Swain MV, Thiel N. Hertzian contact response and damage tolerance of dental ceramics. J Mech Behav Biomed Mater. 2014;34:124–33.PubMedCrossRef
42.
go back to reference Yamaguchi S, Inoue S, Sakai T, Abe T, Kitagawa H, Imazato S. Multi-scale analysis of the effect of nano-filler particle diameter on the physical properties of CAD/CAM composite resin blocks. Comput Methods Biomech Biomed Engin. 2017;20(7):714–9.PubMedCrossRef Yamaguchi S, Inoue S, Sakai T, Abe T, Kitagawa H, Imazato S. Multi-scale analysis of the effect of nano-filler particle diameter on the physical properties of CAD/CAM composite resin blocks. Comput Methods Biomech Biomed Engin. 2017;20(7):714–9.PubMedCrossRef
43.
go back to reference El-Safty S, Silikas N, Watts DC. Creep deformation of restorative resin-composites intended for bulk-fill placement. Dent Mater. 2012;28(8):928–35.PubMedCrossRef El-Safty S, Silikas N, Watts DC. Creep deformation of restorative resin-composites intended for bulk-fill placement. Dent Mater. 2012;28(8):928–35.PubMedCrossRef
44.
go back to reference Hampe R, Lümkemann N, Sener B, Stawarczyk B. The effect of artificial aging on Martens hardness and indentation modulus of different dental CAD/CAM restorative materials. J Mech Behav Biomed Mater. 2018;86:191–8.PubMedCrossRef Hampe R, Lümkemann N, Sener B, Stawarczyk B. The effect of artificial aging on Martens hardness and indentation modulus of different dental CAD/CAM restorative materials. J Mech Behav Biomed Mater. 2018;86:191–8.PubMedCrossRef
45.
go back to reference Rosentritt M, Hahnel S, Schneider-Feyrer S, Strasser T, Schmid A. Martens hardness of CAD/CAM Resin-Based composites. Appl Sci. 2022;12(15):7698.CrossRef Rosentritt M, Hahnel S, Schneider-Feyrer S, Strasser T, Schmid A. Martens hardness of CAD/CAM Resin-Based composites. Appl Sci. 2022;12(15):7698.CrossRef
46.
go back to reference Yamaguchi S, Kani R, Kawakami K, Tsuji M, Inoue S, Lee C, Kiba W, Imazato S. Fatigue behavior and crack initiation of CAD/CAM resin composite molar crowns. Dent Mater. 2018;34(10):1578–84.PubMedCrossRef Yamaguchi S, Kani R, Kawakami K, Tsuji M, Inoue S, Lee C, Kiba W, Imazato S. Fatigue behavior and crack initiation of CAD/CAM resin composite molar crowns. Dent Mater. 2018;34(10):1578–84.PubMedCrossRef
47.
go back to reference Alcala J, Giannakopoulos AE, Suresh S. Continuous measurements of load–penetration curves with spherical microindenters and the estimation of mechanical properties. J Mater Res. 1998;13:1390–1340.CrossRef Alcala J, Giannakopoulos AE, Suresh S. Continuous measurements of load–penetration curves with spherical microindenters and the estimation of mechanical properties. J Mater Res. 1998;13:1390–1340.CrossRef
48.
go back to reference Nayif MM, Nakajima M, Foxton RM, Tagami J. Effect of light irradiation time on the mechanical properties of two flowable composites with different initiation systems in bonded and unbonded cavities. Dent Mater J. 2007;26(5):687–93.PubMedCrossRef Nayif MM, Nakajima M, Foxton RM, Tagami J. Effect of light irradiation time on the mechanical properties of two flowable composites with different initiation systems in bonded and unbonded cavities. Dent Mater J. 2007;26(5):687–93.PubMedCrossRef
49.
go back to reference Shuang Y, Yong Z, Kaiyang Z. Analysis of nanoindentation creep for polymeric materials. J Appl Phys. 2004;95(7):3655–66.CrossRef Shuang Y, Yong Z, Kaiyang Z. Analysis of nanoindentation creep for polymeric materials. J Appl Phys. 2004;95(7):3655–66.CrossRef
50.
go back to reference Zhang Z, Li Y, Wu W. Effects of loading rate and peak load on nanoindentation creep behavior of DD407Ni-base single crystal superalloy. Trans Nonferrous MetSoc China. 2022;32(1):206–16.CrossRef Zhang Z, Li Y, Wu W. Effects of loading rate and peak load on nanoindentation creep behavior of DD407Ni-base single crystal superalloy. Trans Nonferrous MetSoc China. 2022;32(1):206–16.CrossRef
Metadata
Title
The effect of water storage on nanoindentation creep of various CAD-CAM composite blocks
Authors
Rasha A. Alamoush
Nesreen A. Salim
Alaaeldin Elraggal
Julian D. Satterthwaite
Nikolaos Silikas
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Oral Health / Issue 1/2023
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-023-03145-1

Other articles of this Issue 1/2023

BMC Oral Health 1/2023 Go to the issue