Skip to main content
Top
Published in: Clinical and Translational Oncology 11/2017

01-11-2017 | Research Article

Inhibitory effect and mechanism of mesenchymal stem cells on melanoma cells

Authors: J. Zhang, L. Hou, D. Zhao, M. Pan, Z. Wang, H. Hu, J. He

Published in: Clinical and Translational Oncology | Issue 11/2017

Login to get access

Abstract

Purpose

To explore the inhibitory effect and mechanism of MSCs on melanoma proliferation.

Methods

The inhibitory effect of MSCs on melanoma A375 cells was detected by co-culture and conditioned medium (CM) experiments using MTT method. The cell cycle was analyzed by flow cytometry. Then, Western Blot experiment detected the expression of proteins related to NF-κB signaling in A375 cells. The expression of IL-1Ra in MSCs was proved by RT-PCR. The over-expression and silencing vector pcDNA3.1-EGFP-IL-1Ra and pGPH1-IL-1R were constructed and transfected into MSCs cells. After that, the changes of inhibitory effect and cell cycle from MSCs-S and MSCs-O CM on A375 cells were explored. The expression of proteins related to NF-κB signaling in A375 cells after MSCs-S or MSCs-O CM treatment was detected by Western Blot. MSCs, MSCs-S, or MSCs-O and A375 cells were co-injected into nude mice under the arms, the growth of tumor was observed, the frozen sections were made, and H&E staining of tumor tissue was performed.

Results

The proliferation of A375 cells was inhibited and the cell cycle of A375 was arrested by MSCs. The expressions of cytokines related to NF-κB signaling were down-regulated. Over-expression and silence of Interleukin 1 receptor antagonist (IL-1Ra), specifically blocking activation of NF-κB signaling, indicated that inhibitory effect from MSCs was enhanced or weakened respectively, which suggested that IL-1Ra was involved in the inhibitory effect. In vivo, tumor initiation and growth were significantly inhibited when A375 cells were co-injected with MSCs into nude mice, which were related to the expression level of IL-1Ra.

Conclusion

MSCs could inhibit the proliferation and tumor initiation of melanoma A375 cells through NF-κB signaling. MSCs could secret IL-1Ra and inhibit expressions of NF-κB signaling-related factors of tumor cells, and cause cell cycle arrest in G1 phase.
Literature
1.
go back to reference Chamberlain G, Fox J, Ashton B, Middleton J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells. 2007;25(11):2739–49.CrossRefPubMed Chamberlain G, Fox J, Ashton B, Middleton J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells. 2007;25(11):2739–49.CrossRefPubMed
2.
go back to reference Hung CN, Mar K, Chang HC, Chiang YL, Hu HY, Lai CC, et al. A comparison between adipose tissue and dental pulp as sources of MSCs for tooth regeneration. Biomaterials. 2011;32(29):6995–7005.CrossRefPubMed Hung CN, Mar K, Chang HC, Chiang YL, Hu HY, Lai CC, et al. A comparison between adipose tissue and dental pulp as sources of MSCs for tooth regeneration. Biomaterials. 2011;32(29):6995–7005.CrossRefPubMed
3.
go back to reference Volarevic V, Arsenijevic N, Lukic ML, Stojkovic M. Concise review: mesenchymal stem cell treatment of the complications of diabetes mellitus. Stem Cells. 2011;29(1):5–10.CrossRefPubMed Volarevic V, Arsenijevic N, Lukic ML, Stojkovic M. Concise review: mesenchymal stem cell treatment of the complications of diabetes mellitus. Stem Cells. 2011;29(1):5–10.CrossRefPubMed
4.
go back to reference Manuguerra-Gagné R, Boulos PR, Ammar A, Leblond FA, Krosl G, Pichette V, et al. Transplantation of mesenchymal stem cells promotes tissue regeneration in a glaucoma model through laser-induced paracrine factor secretion and progenitor cell recruitment. Stem Cells. 2013;31(6):1136–48.CrossRefPubMed Manuguerra-Gagné R, Boulos PR, Ammar A, Leblond FA, Krosl G, Pichette V, et al. Transplantation of mesenchymal stem cells promotes tissue regeneration in a glaucoma model through laser-induced paracrine factor secretion and progenitor cell recruitment. Stem Cells. 2013;31(6):1136–48.CrossRefPubMed
5.
go back to reference Saito F, Nakatani T, Iwase M, Maeda Y, Hirakawa A, Murao Y, et al. Spinal cord injury treatment with intrathecal autologous bone marrow stromal cell transplantation: the first clinical trial case report. J Trauma. 2008;64(1):53–9.CrossRefPubMed Saito F, Nakatani T, Iwase M, Maeda Y, Hirakawa A, Murao Y, et al. Spinal cord injury treatment with intrathecal autologous bone marrow stromal cell transplantation: the first clinical trial case report. J Trauma. 2008;64(1):53–9.CrossRefPubMed
6.
go back to reference Tan J, Wu W, Xu X, Liao L, Zheng F, Messinger S, et al. Induction therapy with autologous mesenchymal stem cells in living-related kidney transplants: a randomized controlled trial. JAMA. 2012;307(11):1169–77.CrossRefPubMed Tan J, Wu W, Xu X, Liao L, Zheng F, Messinger S, et al. Induction therapy with autologous mesenchymal stem cells in living-related kidney transplants: a randomized controlled trial. JAMA. 2012;307(11):1169–77.CrossRefPubMed
8.
go back to reference Qiao L, Xu Z, Zhao T, Zhao Z, Shi M, Zhao RC, et al. Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model. Cell Res. 2008;18(4):500–7.CrossRefPubMed Qiao L, Xu Z, Zhao T, Zhao Z, Shi M, Zhao RC, et al. Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model. Cell Res. 2008;18(4):500–7.CrossRefPubMed
9.
go back to reference Hou L, Wang X, Zhou Y, Ma H, Wang Z, He J, et al. Inhibitory effect and mechanism of mesenchymal stem cells on liver cancer cells. Tumor Biol. 2014;35(2):1239–50.CrossRef Hou L, Wang X, Zhou Y, Ma H, Wang Z, He J, et al. Inhibitory effect and mechanism of mesenchymal stem cells on liver cancer cells. Tumor Biol. 2014;35(2):1239–50.CrossRef
10.
go back to reference Zhang L, Su XS, Ye JS, Wang YY, Guan Z, Yin YF. Bone marrow mesenchymal stem cells suppress metastatic tumor development in mouse by modulating immune system. Stem Cell Res Ther. 2015;6(1):1–11.CrossRef Zhang L, Su XS, Ye JS, Wang YY, Guan Z, Yin YF. Bone marrow mesenchymal stem cells suppress metastatic tumor development in mouse by modulating immune system. Stem Cell Res Ther. 2015;6(1):1–11.CrossRef
11.
go back to reference Lee JK, Park SR, Jung BK, Jeon YK, Lee YS, Kim MK, et al. Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells. PLoS One. 2013;8(12):e84256.CrossRefPubMedPubMedCentral Lee JK, Park SR, Jung BK, Jeon YK, Lee YS, Kim MK, et al. Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells. PLoS One. 2013;8(12):e84256.CrossRefPubMedPubMedCentral
12.
go back to reference Liu J, Han G, Liu H, Qin C. Suppression of cholangiocarcinoma cell growth by human umbilical cord mesenchymal stem cells: a possible role of Wnt and Akt signaling. PLoS One. 2013;8(4):e62844.CrossRefPubMedPubMedCentral Liu J, Han G, Liu H, Qin C. Suppression of cholangiocarcinoma cell growth by human umbilical cord mesenchymal stem cells: a possible role of Wnt and Akt signaling. PLoS One. 2013;8(4):e62844.CrossRefPubMedPubMedCentral
13.
go back to reference Qiao L, Zhao TJ, Wang FZ, Shan CL, Ye LH, Zhang XD. NF-kappaB downregulation may be involved the depression of tumor cell proliferation mediated by human mesenchymal stem cells. Acta Pharmacol Sin. 2008;29(3):333–40.CrossRefPubMed Qiao L, Zhao TJ, Wang FZ, Shan CL, Ye LH, Zhang XD. NF-kappaB downregulation may be involved the depression of tumor cell proliferation mediated by human mesenchymal stem cells. Acta Pharmacol Sin. 2008;29(3):333–40.CrossRefPubMed
14.
go back to reference Lynn V, Rudi B. Receptor proximal kinases in NF-κB signaling as potential therapeutic targets in cancer and inflammation. Biochem Pharmacol. 2014;92(4):519–29.CrossRef Lynn V, Rudi B. Receptor proximal kinases in NF-κB signaling as potential therapeutic targets in cancer and inflammation. Biochem Pharmacol. 2014;92(4):519–29.CrossRef
15.
go back to reference DiDonato JA, Mercurio F, Karin M. NF-kappaB and the link between inflammation and cancer. Immunol Rev. 2012;246(1):379–400.CrossRefPubMed DiDonato JA, Mercurio F, Karin M. NF-kappaB and the link between inflammation and cancer. Immunol Rev. 2012;246(1):379–400.CrossRefPubMed
17.
go back to reference Bernard WS, Christopher PW. World cancer report 2014. France: International Agency for Research on Cancer; 2014. ISBN 978-92-832-0432-9. Bernard WS, Christopher PW. World cancer report 2014. France: International Agency for Research on Cancer; 2014. ISBN 978-92-832-0432-9.
18.
go back to reference Bollag G, Hirth P, Tsai J, Zhang J, Ibrahim PN, Cho H, et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature. 2013;467(7315):596–9.CrossRef Bollag G, Hirth P, Tsai J, Zhang J, Ibrahim PN, Cho H, et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature. 2013;467(7315):596–9.CrossRef
19.
go back to reference Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.CrossRefPubMed Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.CrossRefPubMed
20.
go back to reference Seckinger P, Lowenthal JW, Williamson K, Dayer JM, MacDonald HR. A urine inhibitor of interleukin 1 activity that blocks ligand binding. J Immunol. 1987;139(5):1546–9.PubMed Seckinger P, Lowenthal JW, Williamson K, Dayer JM, MacDonald HR. A urine inhibitor of interleukin 1 activity that blocks ligand binding. J Immunol. 1987;139(5):1546–9.PubMed
21.
go back to reference Lukic ML, Stosic-Grujicic S, Ostojic N, Chan WL, Liew FY. Inhibition of nitric oxide generation affects the induction of diabetes by streptozotocin in mice. Biochem Biophys Res Commun. 1991;178(3):913–20.CrossRefPubMed Lukic ML, Stosic-Grujicic S, Ostojic N, Chan WL, Liew FY. Inhibition of nitric oxide generation affects the induction of diabetes by streptozotocin in mice. Biochem Biophys Res Commun. 1991;178(3):913–20.CrossRefPubMed
22.
go back to reference Akash MSH, Rehman K, Chen S. Role of inflammatory mechanisms in pathogenesis of type 2 diabetes mellitus. J Cell Biochem. 2013;114(3):525–31.CrossRefPubMed Akash MSH, Rehman K, Chen S. Role of inflammatory mechanisms in pathogenesis of type 2 diabetes mellitus. J Cell Biochem. 2013;114(3):525–31.CrossRefPubMed
23.
go back to reference Pinteaux E, Rothwell NJ, Boutin H. Neuroprotective actions of endogenous interleukin-1 receptor antagonist (IL-1RA) are mediated by glia. Glia. 2006;53(5):551–6.CrossRefPubMed Pinteaux E, Rothwell NJ, Boutin H. Neuroprotective actions of endogenous interleukin-1 receptor antagonist (IL-1RA) are mediated by glia. Glia. 2006;53(5):551–6.CrossRefPubMed
24.
go back to reference Vezzani A, Balosso S, Maroso M, Zardoni D, Noé F, Ravizza T. ICE/caspase 1 inhibitors and IL-1beta receptor antagonists as potential therapeutics in epilepsy. Curr Opin Investig Drugs. 2010;11(1):43–50.PubMed Vezzani A, Balosso S, Maroso M, Zardoni D, Noé F, Ravizza T. ICE/caspase 1 inhibitors and IL-1beta receptor antagonists as potential therapeutics in epilepsy. Curr Opin Investig Drugs. 2010;11(1):43–50.PubMed
25.
go back to reference Weinreich DM, Elaraj DM, Puhlmann M, Hewitt SM, Carroll NM, Feldman ED, et al. Effect of interleukin 1 receptor antagonist gene transduction on human melanoma xenografts in nude mice. Cancer Res. 2003;63(18):597–661. Weinreich DM, Elaraj DM, Puhlmann M, Hewitt SM, Carroll NM, Feldman ED, et al. Effect of interleukin 1 receptor antagonist gene transduction on human melanoma xenografts in nude mice. Cancer Res. 2003;63(18):597–661.
26.
go back to reference Helena KS. Proteomic techniques for characterization of mesenchymal stem cell secretome. Biochimie. 2013;95(12):2196–211.CrossRef Helena KS. Proteomic techniques for characterization of mesenchymal stem cell secretome. Biochimie. 2013;95(12):2196–211.CrossRef
27.
go back to reference Potian JA, Aviv H, Ponzio NM, Harrison JS, Rameshwar P. Veto-like activity of mesenchymal stem cells: functional discrimination between cellular responses to alloantigen and recall antigens. J Immunol. 2003;171(7):3426–34.CrossRefPubMed Potian JA, Aviv H, Ponzio NM, Harrison JS, Rameshwar P. Veto-like activity of mesenchymal stem cells: functional discrimination between cellular responses to alloantigen and recall antigens. J Immunol. 2003;171(7):3426–34.CrossRefPubMed
28.
go back to reference Baron F, Lechanteur C, Willems E, Bruck F, Baudoux E, Seidel L, et al. Co-transplantation of mesenchymal stem cells might prevent death from graft-versus-host disease (GVHD) without abrogating graft-versus-tumor effects after HLA-mismatched allogeneic transplantation following non-myeloablative conditioning. Biol Blood Marrow Transplant. 2010;16(6):838–47.CrossRefPubMed Baron F, Lechanteur C, Willems E, Bruck F, Baudoux E, Seidel L, et al. Co-transplantation of mesenchymal stem cells might prevent death from graft-versus-host disease (GVHD) without abrogating graft-versus-tumor effects after HLA-mismatched allogeneic transplantation following non-myeloablative conditioning. Biol Blood Marrow Transplant. 2010;16(6):838–47.CrossRefPubMed
29.
go back to reference Macmillan ML, Blazar BR, DeFor TE, Wagner JE. Transplantation of ex vivo culture-expanded parental haploidentical mesenchymal stem cells to promote engraftment in pediatric recipients of unrelated donor umbilical cord blood: results of a phase I-II clinical trial. Bone Marrow Transplant. 2009;43(6):447–54.CrossRefPubMed Macmillan ML, Blazar BR, DeFor TE, Wagner JE. Transplantation of ex vivo culture-expanded parental haploidentical mesenchymal stem cells to promote engraftment in pediatric recipients of unrelated donor umbilical cord blood: results of a phase I-II clinical trial. Bone Marrow Transplant. 2009;43(6):447–54.CrossRefPubMed
30.
go back to reference Niess H, von Einem JC, Thomas MN, Michl M, Angele MK, Huss R, et al. Treatment of advanced gastrointestinal tumors with genetically modified autologous mesenchymal stromal cells (TREAT-ME1): study protocol of a phase I/II clinical trial. BMC Cancer. 2015;15(1):237.CrossRefPubMedPubMedCentral Niess H, von Einem JC, Thomas MN, Michl M, Angele MK, Huss R, et al. Treatment of advanced gastrointestinal tumors with genetically modified autologous mesenchymal stromal cells (TREAT-ME1): study protocol of a phase I/II clinical trial. BMC Cancer. 2015;15(1):237.CrossRefPubMedPubMedCentral
31.
go back to reference Bian ZY, Fan QM, Li G, Xu WT, Tang TT. Human mesenchymal stem cells promote growth of osteosarcoma: involvement of interleukin-6 in the interaction between human mesenchymal stem cells and Saos-2. Cancer Sci. 2010;101(12):2554–60.CrossRefPubMed Bian ZY, Fan QM, Li G, Xu WT, Tang TT. Human mesenchymal stem cells promote growth of osteosarcoma: involvement of interleukin-6 in the interaction between human mesenchymal stem cells and Saos-2. Cancer Sci. 2010;101(12):2554–60.CrossRefPubMed
32.
go back to reference Sasser AK, Mundy BL, Smith KM, Studebaker AW, Axel AE, Haidet AM, et al. Human bone marrow stromal cells enhance breast cancer cell growth rates in a cell line-dependent manner when evaluated in 3D tumor environments. Cancer Lett. 2007;254(2):255–64.CrossRefPubMed Sasser AK, Mundy BL, Smith KM, Studebaker AW, Axel AE, Haidet AM, et al. Human bone marrow stromal cells enhance breast cancer cell growth rates in a cell line-dependent manner when evaluated in 3D tumor environments. Cancer Lett. 2007;254(2):255–64.CrossRefPubMed
33.
go back to reference Suzuki K, Sun R, Origuchi M, Kanehira M, Takahata T, Itoh J, et al. Mesenchymal stromal cells promote tumor growth through the enhancement of neovascularization. Mol Med. 2011;17(7–8):579–87.PubMedPubMedCentral Suzuki K, Sun R, Origuchi M, Kanehira M, Takahata T, Itoh J, et al. Mesenchymal stromal cells promote tumor growth through the enhancement of neovascularization. Mol Med. 2011;17(7–8):579–87.PubMedPubMedCentral
34.
go back to reference Santamaria-Martiínez A, Barguinero J, Barbosa-Desongles A, Hurtado A, Pinós T, Seoane J, et al. Identification of multipotent mesenchymal stromal cells in the reactive stroma of a prostate cancer xenograft by side population analysis. Exp Cell Res. 2009;315(7):3004–13.CrossRef Santamaria-Martiínez A, Barguinero J, Barbosa-Desongles A, Hurtado A, Pinós T, Seoane J, et al. Identification of multipotent mesenchymal stromal cells in the reactive stroma of a prostate cancer xenograft by side population analysis. Exp Cell Res. 2009;315(7):3004–13.CrossRef
35.
go back to reference Waterman RS, Tomchuck SL, Henkle SL, Betancourt AM. A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an immunosuppressive MSC2 phenotype. PLoS One. 2010;5(4):e10088.CrossRefPubMedPubMedCentral Waterman RS, Tomchuck SL, Henkle SL, Betancourt AM. A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an immunosuppressive MSC2 phenotype. PLoS One. 2010;5(4):e10088.CrossRefPubMedPubMedCentral
36.
go back to reference Tyciakova S, Matuskova M, Bohovic R, Kucerova L. Mesenchymal stromal cells producing TNFα lack inhibitory effect against A375 experimental lung metastases. Neoplasma. 2017;64(2):222–7.CrossRefPubMed Tyciakova S, Matuskova M, Bohovic R, Kucerova L. Mesenchymal stromal cells producing TNFα lack inhibitory effect against A375 experimental lung metastases. Neoplasma. 2017;64(2):222–7.CrossRefPubMed
37.
go back to reference Wang J, Ma D, Li Y, Yang Y, Hu X, Zhang W, et al. Targeted delivery of CYP2E1 recombinant adenovirus to malignant melanoma by bone marrow-derived mesenchymal stem cells as vehicles. Anticancer Drugs. 2014;25(3):303–14.CrossRefPubMed Wang J, Ma D, Li Y, Yang Y, Hu X, Zhang W, et al. Targeted delivery of CYP2E1 recombinant adenovirus to malignant melanoma by bone marrow-derived mesenchymal stem cells as vehicles. Anticancer Drugs. 2014;25(3):303–14.CrossRefPubMed
38.
go back to reference Keishi O, Shonit D, Sandra DH, Sadiga KQ, Sunita B, Jahar B. Concentration-dependent inhibition of angiogenesis by mesenchymal stem cells. Blood. 2009;113(18):4197–205.CrossRef Keishi O, Shonit D, Sandra DH, Sadiga KQ, Sunita B, Jahar B. Concentration-dependent inhibition of angiogenesis by mesenchymal stem cells. Blood. 2009;113(18):4197–205.CrossRef
39.
go back to reference Lacerda L, Debeb BG, Smith D, Larson R, Solley T, Xu W, et al. Mesenchymal stem cells mediate the clinical phenotype of inflammatory breast cancer in a preclinical model. Breast Cancer Res. 2015;17(1):42.CrossRefPubMedPubMedCentral Lacerda L, Debeb BG, Smith D, Larson R, Solley T, Xu W, et al. Mesenchymal stem cells mediate the clinical phenotype of inflammatory breast cancer in a preclinical model. Breast Cancer Res. 2015;17(1):42.CrossRefPubMedPubMedCentral
40.
go back to reference Khakoo AY, Pati S, Anderson SA, Reid W, Elshal MF, Rovira II, et al. Human mesenchymal stem cells exert potent anti-tumorigenic effects in model of Kaposi’s sarcoma. J Exp Med. 2006;203(5):1235–47.CrossRefPubMedPubMedCentral Khakoo AY, Pati S, Anderson SA, Reid W, Elshal MF, Rovira II, et al. Human mesenchymal stem cells exert potent anti-tumorigenic effects in model of Kaposi’s sarcoma. J Exp Med. 2006;203(5):1235–47.CrossRefPubMedPubMedCentral
41.
go back to reference Tian LL, Yue W, Zhu F, Li S, Li W. Human mesenchymal stem cells play a dual role on tumor cell growth in vitro and in vivo. J Cell Physiol. 2011;226(7):186–7. Tian LL, Yue W, Zhu F, Li S, Li W. Human mesenchymal stem cells play a dual role on tumor cell growth in vitro and in vivo. J Cell Physiol. 2011;226(7):186–7.
42.
go back to reference Gavriele M, Claudio DU, Giusy G, Giuseppe P, Paolo AA. NF-κB as potential target in the treatment of melanoma. J Transl Med. 2012;10:53.CrossRef Gavriele M, Claudio DU, Giusy G, Giuseppe P, Paolo AA. NF-κB as potential target in the treatment of melanoma. J Transl Med. 2012;10:53.CrossRef
43.
go back to reference Kashani-Sabet M, Shaikh L, Miller JR 3rd, Nosrati M, Ferreira CM, Debs RJ, et al. NF-kappa B in the vascular progression of melanoma. J Clin Oncol. 2004;22(4):617–23.CrossRefPubMed Kashani-Sabet M, Shaikh L, Miller JR 3rd, Nosrati M, Ferreira CM, Debs RJ, et al. NF-kappa B in the vascular progression of melanoma. J Clin Oncol. 2004;22(4):617–23.CrossRefPubMed
44.
go back to reference Hinz M, Krappmann D, Eichten A, Heder A, Scheidereit C, Strauss M. NF-kappa B function in growth control: regulation of cyclin D1 expression and G0/G1-to-S-phase transition. Mol Cell Biol. 1999;19(4):2690–8.CrossRefPubMedPubMedCentral Hinz M, Krappmann D, Eichten A, Heder A, Scheidereit C, Strauss M. NF-kappa B function in growth control: regulation of cyclin D1 expression and G0/G1-to-S-phase transition. Mol Cell Biol. 1999;19(4):2690–8.CrossRefPubMedPubMedCentral
45.
go back to reference Guttridge DC, Albanese C, Reuther JY, Pestell RG, Baldwin AS Jr. NF-kappa B controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol Cell Biol. 1999;19(8):5785–99.CrossRefPubMedPubMedCentral Guttridge DC, Albanese C, Reuther JY, Pestell RG, Baldwin AS Jr. NF-kappa B controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol Cell Biol. 1999;19(8):5785–99.CrossRefPubMedPubMedCentral
46.
go back to reference Bruserud O, Aasen I, Akselsen PE, Bergheim J, Rasmussen G, Nesthus I. Interleukin 1 receptor antagonist (IL-1Ra) in acute leukaemia: IL-1Ra is both secreted spontaneously by myelogenous leukemia blasts and is a part of the acute phase reaction in patients with chemotherapy-induced leucopenia. Eur J Haematol. 1996;57(1):87–95.CrossRefPubMed Bruserud O, Aasen I, Akselsen PE, Bergheim J, Rasmussen G, Nesthus I. Interleukin 1 receptor antagonist (IL-1Ra) in acute leukaemia: IL-1Ra is both secreted spontaneously by myelogenous leukemia blasts and is a part of the acute phase reaction in patients with chemotherapy-induced leucopenia. Eur J Haematol. 1996;57(1):87–95.CrossRefPubMed
47.
go back to reference Gherardi RK, Bélec L, Soubrier M, Malapert D, Zuber M, Viard JP, et al. Overproduction of pro-inflammatory cytokines imbalanced by their antagonists in POEMS syndrome. Blood. 1996;87(4):1458–65.PubMed Gherardi RK, Bélec L, Soubrier M, Malapert D, Zuber M, Viard JP, et al. Overproduction of pro-inflammatory cytokines imbalanced by their antagonists in POEMS syndrome. Blood. 1996;87(4):1458–65.PubMed
48.
go back to reference Iwagaki H, Hizuta A, Tanaka N. Inteleukin-1 receptor antagonists and other markers in colorectal cancer patients. Scand J Gastroenterol. 1997;32(6):577–81.CrossRefPubMed Iwagaki H, Hizuta A, Tanaka N. Inteleukin-1 receptor antagonists and other markers in colorectal cancer patients. Scand J Gastroenterol. 1997;32(6):577–81.CrossRefPubMed
49.
go back to reference Parekh DJ, Ankerst DP, Baillargeon J, Higgins B, Platz EA, Troyer D, et al. Assessment of 54 biomarkers for biopsy-detectable prostate cancer. Cancer Epidemiol Biomark Prev. 2007;16(10):1966–72.CrossRef Parekh DJ, Ankerst DP, Baillargeon J, Higgins B, Platz EA, Troyer D, et al. Assessment of 54 biomarkers for biopsy-detectable prostate cancer. Cancer Epidemiol Biomark Prev. 2007;16(10):1966–72.CrossRef
50.
go back to reference Xia Y, Yeddula N, Leblanc M, Ke E, Zhang Y, Oldfield E, et al. Reduced cell proliferation by IKK2 depletion in a mouse lung-cancer model. Nat Cell Biol. 2012;14(3):257–65.CrossRefPubMedPubMedCentral Xia Y, Yeddula N, Leblanc M, Ke E, Zhang Y, Oldfield E, et al. Reduced cell proliferation by IKK2 depletion in a mouse lung-cancer model. Nat Cell Biol. 2012;14(3):257–65.CrossRefPubMedPubMedCentral
51.
go back to reference Huang S, Pettaway CA, Uehara H, Bucana CD, Fidler IJ. Blockade of NF-kappaB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene. 2001;20(31):4188–97.CrossRefPubMed Huang S, Pettaway CA, Uehara H, Bucana CD, Fidler IJ. Blockade of NF-kappaB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene. 2001;20(31):4188–97.CrossRefPubMed
Metadata
Title
Inhibitory effect and mechanism of mesenchymal stem cells on melanoma cells
Authors
J. Zhang
L. Hou
D. Zhao
M. Pan
Z. Wang
H. Hu
J. He
Publication date
01-11-2017
Publisher
Springer International Publishing
Published in
Clinical and Translational Oncology / Issue 11/2017
Print ISSN: 1699-048X
Electronic ISSN: 1699-3055
DOI
https://doi.org/10.1007/s12094-017-1677-3

Other articles of this Issue 11/2017

Clinical and Translational Oncology 11/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine