Skip to main content
Top
Published in: Tumor Biology 4/2016

01-04-2016 | Original Article

Inhibition of cyclin D1 enhances sensitivity to radiotherapy and reverses epithelial to mesenchymal transition for esophageal cancer cells

Authors: Huafang Su, Xiance Jin, Lanxiao Shen, Ya Fang, Zhenghua Fei, Xuebang Zhang, Congying Xie, Xiaolei Chen

Published in: Tumor Biology | Issue 4/2016

Login to get access

Abstract

Acquired radioresistance during radiotherapy has significantly affected the treatment efficacy in esophageal cancer. Many of radioresistant cancer cells demonstrated epithelial-mesenchymal transition (EMT).We found in previous study that a radioresistant cell line (KYSE-150R) possessed EMT characteristic with cyclin D1 overexpression. Cyclin D1 has been demonstrated to affect the radiation sensitivity in cancer cells. To elucidate the molecular functions of cyclin D1 on EMT phenotypes and esophageal cancer radiosensitivity, we treated the radioresistant esophageal cancer cells (KYSE-150R) and parental cells (KYSE-150) with cyclin D1 small interfering RNA (siRNA). The cell proliferation rate of KYSE-150R and the radiation survival fraction were significantly decreased in cyclin D1 siRNA treatment group. Knocking down cyclin D1 resulted in G0/G1 arrest in KYSE-150R cells. The average number of irradiation-induced γ-H2AX foci increased in the cells treated with cyclin D1 siRNA, indicating impaired DNA double-strand break (DSB) repair in KYSE-150R cells. Cyclin D1 also reversed EMT phenotypes with significantly increased expression of E-cadherin in KYSE-150R cells. However, cyclin D1 siRNA have no radiosensitizing effects on KYSE-150 cells, with no obvious change in EMT marker expression .Our work showed that EMT phenotypes can be reduced and the radiosensitivity of esophageal cancer cells can be enhanced by inhibiting cyclin D1.
Literature
1.
go back to reference Conteduca V, Sansonno D, Ingravallo G, Marangi S, Russi S, Lauletta G, et al. Barrett’s esophagus and esophageal cancer: an overview. Int J Oncol. 2012;41:414–24.PubMed Conteduca V, Sansonno D, Ingravallo G, Marangi S, Russi S, Lauletta G, et al. Barrett’s esophagus and esophageal cancer: an overview. Int J Oncol. 2012;41:414–24.PubMed
3.
go back to reference Linkous AG, Yazlovitskaya EM. Novel radiosensitizing anticancer therapeutics. Anticancer Res. 2012;32:2487–99.PubMed Linkous AG, Yazlovitskaya EM. Novel radiosensitizing anticancer therapeutics. Anticancer Res. 2012;32:2487–99.PubMed
4.
go back to reference Josson S, Sharp S, Sung SY, Johnstone PA, Aneja R, Wang R, et al. Tumor-stromal interactions influence radiation sensitivity in epithelial- versus mesenchymal-like prostate cancer cells. J Oncol 2010;2010.232831 Josson S, Sharp S, Sung SY, Johnstone PA, Aneja R, Wang R, et al. Tumor-stromal interactions influence radiation sensitivity in epithelial- versus mesenchymal-like prostate cancer cells. J Oncol 2010;2010.232831
5.
go back to reference Tiwari N, Gheldof A, Tatari M, Christofori G. EMT as the ultimate survival mechanism of cancer cells. Semin Cancer Biol. 2012;22:194–207.CrossRefPubMed Tiwari N, Gheldof A, Tatari M, Christofori G. EMT as the ultimate survival mechanism of cancer cells. Semin Cancer Biol. 2012;22:194–207.CrossRefPubMed
7.
go back to reference Marie-Egyptienne DT, Lohse I, Hill RP. Cancer stem cells, the epithelial to mesenchymal transition (EMT) and radioresistance: potential role of hypoxia. Cancer Lett. 2013;341:63–7.CrossRefPubMed Marie-Egyptienne DT, Lohse I, Hill RP. Cancer stem cells, the epithelial to mesenchymal transition (EMT) and radioresistance: potential role of hypoxia. Cancer Lett. 2013;341:63–7.CrossRefPubMed
8.
go back to reference Chiba N, Comaills V, Shiotani B, Takahashi F, Shimada T, Tajima K, et al. Homeobox B9 induces epithelial-to-mesenchymal transition-associated radioresistance by accelerating DNA damage responses. Proc Natl Acad Sci U S A. 2012;109:2760–5.CrossRefPubMed Chiba N, Comaills V, Shiotani B, Takahashi F, Shimada T, Tajima K, et al. Homeobox B9 induces epithelial-to-mesenchymal transition-associated radioresistance by accelerating DNA damage responses. Proc Natl Acad Sci U S A. 2012;109:2760–5.CrossRefPubMed
9.
go back to reference Zhang P, Wei Y, Wang L, Debeb BG, Yuan Y, Zhang J, et al. ATM-mediated stabilization of ZEB1 promotes DNA damage response and radioresistance through CHK1. Nat Cell Biol. 2014;16:864–75.CrossRefPubMedPubMedCentral Zhang P, Wei Y, Wang L, Debeb BG, Yuan Y, Zhang J, et al. ATM-mediated stabilization of ZEB1 promotes DNA damage response and radioresistance through CHK1. Nat Cell Biol. 2014;16:864–75.CrossRefPubMedPubMedCentral
10.
go back to reference Derynck R, Muthusamy BP, Saeteurn KY. Signaling pathway cooperation in TGF-β-induced epithelial-mesenchymal transition. Curr Opin Cell Biol. 2014;31:56–66.CrossRefPubMedPubMedCentral Derynck R, Muthusamy BP, Saeteurn KY. Signaling pathway cooperation in TGF-β-induced epithelial-mesenchymal transition. Curr Opin Cell Biol. 2014;31:56–66.CrossRefPubMedPubMedCentral
11.
go back to reference Ghahhari NM, Babashah S. Interplay between microRNAs and WNT/β-catenin signalling pathway regulates epithelial-mesenchymal transition in cancer. Eur J Cancer. 2015;26:S0959–8049. Ghahhari NM, Babashah S. Interplay between microRNAs and WNT/β-catenin signalling pathway regulates epithelial-mesenchymal transition in cancer. Eur J Cancer. 2015;26:S0959–8049.
12.
go back to reference Kim E, Youn H, Kwon T, Son B, Kang J, Yang HJ, et al. PAK1 tyrosine phosphorylation is required to induce epithelial-mesenchymal transition and radioresistance in lung cancer cells. Cancer Res. 2014;74:5520–31.CrossRefPubMed Kim E, Youn H, Kwon T, Son B, Kang J, Yang HJ, et al. PAK1 tyrosine phosphorylation is required to induce epithelial-mesenchymal transition and radioresistance in lung cancer cells. Cancer Res. 2014;74:5520–31.CrossRefPubMed
13.
go back to reference Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL. Cyclin D as a therapeutic target in cancer. Nat Rev Cancer. 2011;11:558–72.CrossRefPubMed Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL. Cyclin D as a therapeutic target in cancer. Nat Rev Cancer. 2011;11:558–72.CrossRefPubMed
14.
go back to reference Kim JK, Diehl JA. Nuclear cyclin D1: an oncogenic driver in human cancer. Cell Physiol. 2009;220:292–6.CrossRef Kim JK, Diehl JA. Nuclear cyclin D1: an oncogenic driver in human cancer. Cell Physiol. 2009;220:292–6.CrossRef
16.
go back to reference Shimura T, Kakuda S, Ochiai Y, Nakagawa H, Kuwahara Y, Takai Y, et al. Acquired radioresistance of human tumor cells by DNA-Pk/Akt/Gsk3beta-mediated cyclin D1 overexpression. Oncogene. 2010;29:4826–37.CrossRefPubMed Shimura T, Kakuda S, Ochiai Y, Nakagawa H, Kuwahara Y, Takai Y, et al. Acquired radioresistance of human tumor cells by DNA-Pk/Akt/Gsk3beta-mediated cyclin D1 overexpression. Oncogene. 2010;29:4826–37.CrossRefPubMed
17.
go back to reference Peng G, Cao RB, Li YH, Zou ZW, Huang J, Ding Q. Alterations of cell cycle control proteins SHP1/2, p16, CDK4 and cyclin D1 in radioresistant nasopharyngeal carcinoma cells. Mol Med Rep. 2014;10:1709–16.PubMedPubMedCentral Peng G, Cao RB, Li YH, Zou ZW, Huang J, Ding Q. Alterations of cell cycle control proteins SHP1/2, p16, CDK4 and cyclin D1 in radioresistant nasopharyngeal carcinoma cells. Mol Med Rep. 2014;10:1709–16.PubMedPubMedCentral
18.
go back to reference Jiao J, Huang L, Ye F, Shi M, Cheng X, Wang X, et al. Cyclin D1 affects epithelial-mesenchymal transition in epithelial ovarian cancer stem cell-like cells. Onco Targets Ther. 2013;6:667–77.PubMedPubMedCentral Jiao J, Huang L, Ye F, Shi M, Cheng X, Wang X, et al. Cyclin D1 affects epithelial-mesenchymal transition in epithelial ovarian cancer stem cell-like cells. Onco Targets Ther. 2013;6:667–77.PubMedPubMedCentral
20.
go back to reference Mejlvang J, Kriajevska M, Vandewalle C, Chernova T, Sayan AE, Berx G, et al. Direct repression of cyclin D1 by SIP1 attenuates cell cycle progression in cells undergoing an epithelial mesenchymal transition. Mol Biol Cell. 2007;18:4615–24.CrossRefPubMedPubMedCentral Mejlvang J, Kriajevska M, Vandewalle C, Chernova T, Sayan AE, Berx G, et al. Direct repression of cyclin D1 by SIP1 attenuates cell cycle progression in cells undergoing an epithelial mesenchymal transition. Mol Biol Cell. 2007;18:4615–24.CrossRefPubMedPubMedCentral
21.
go back to reference Su H, Jin X, Zhang X, Xue S, Deng X, Shen L, et al. Identification of microRNAs involved in the radioresistance of esophageal cancer cells. Cell Biol Int. 2014;38:318–25.CrossRefPubMed Su H, Jin X, Zhang X, Xue S, Deng X, Shen L, et al. Identification of microRNAs involved in the radioresistance of esophageal cancer cells. Cell Biol Int. 2014;38:318–25.CrossRefPubMed
22.
go back to reference Su H, Jin X, Zhang X, Zhao L, Lin B, Li L, et al. FH535 increases the radiosensitivity and reverses epithelial-to-mesenchymal transition of radioresistant esophageal cancer cell line KYSE-150R. J Transl Med. 2015;13:104.CrossRefPubMedPubMedCentral Su H, Jin X, Zhang X, Zhao L, Lin B, Li L, et al. FH535 increases the radiosensitivity and reverses epithelial-to-mesenchymal transition of radioresistant esophageal cancer cell line KYSE-150R. J Transl Med. 2015;13:104.CrossRefPubMedPubMedCentral
23.
go back to reference Cheng G, Zhang L, Lv W, Dong C, Wang Y, Zhang J. Overexpression of cyclin D1 in meningioma is associated with malignancy grade and causes abnormalities in apoptosis, invasion and cell cycle progression. Med Oncol. 2015;32:439.CrossRefPubMed Cheng G, Zhang L, Lv W, Dong C, Wang Y, Zhang J. Overexpression of cyclin D1 in meningioma is associated with malignancy grade and causes abnormalities in apoptosis, invasion and cell cycle progression. Med Oncol. 2015;32:439.CrossRefPubMed
24.
go back to reference Williams JR, Zhang Y, Zhou H, Gridley DS, Koch CJ, Russell J, et al. A quantitative overview of radiosensitivity of human tumor cells across histological type and TP53 status. Int J Radiat Biol. 2008;84:253–64.CrossRefPubMed Williams JR, Zhang Y, Zhou H, Gridley DS, Koch CJ, Russell J, et al. A quantitative overview of radiosensitivity of human tumor cells across histological type and TP53 status. Int J Radiat Biol. 2008;84:253–64.CrossRefPubMed
25.
go back to reference Williams JR, Zhang Y, Zhou H, Russell J, Gridley DS, Koch CJ, et al. Genotype-dependent radiosensitivity: clonogenic survival, apoptosis and cell-cycle redistribution. Int J Radiat Biol. 2008;84:151–64.CrossRefPubMed Williams JR, Zhang Y, Zhou H, Russell J, Gridley DS, Koch CJ, et al. Genotype-dependent radiosensitivity: clonogenic survival, apoptosis and cell-cycle redistribution. Int J Radiat Biol. 2008;84:151–64.CrossRefPubMed
26.
go back to reference Belyaev IY. Radiation-induced DNA, repair foci: spatio-temporal aspects of formation, application for assessment of radiosensitivity and biological dosimetry. Mutat Res. 2010;704:132–41.CrossRefPubMed Belyaev IY. Radiation-induced DNA, repair foci: spatio-temporal aspects of formation, application for assessment of radiosensitivity and biological dosimetry. Mutat Res. 2010;704:132–41.CrossRefPubMed
27.
go back to reference Kothari V, Mulherkar R. Inhibition of cyclin D1 by shRNA is associated with enhanced sensitivity to conventional therapies for head and neck squamous cell carcinoma. Anticancer Res. 2012;32:121–8.PubMed Kothari V, Mulherkar R. Inhibition of cyclin D1 by shRNA is associated with enhanced sensitivity to conventional therapies for head and neck squamous cell carcinoma. Anticancer Res. 2012;32:121–8.PubMed
28.
go back to reference Frolov MV, Dyson NJ. Molecular mechanisms of E2F-dependent activation and pRB-mediated repression. J Cell Sci. 2004;117(Pt 11):2173–81.CrossRefPubMed Frolov MV, Dyson NJ. Molecular mechanisms of E2F-dependent activation and pRB-mediated repression. J Cell Sci. 2004;117(Pt 11):2173–81.CrossRefPubMed
29.
go back to reference Jirawatnotai S, Hu Y, Michowski W, Elias JE, Becks L, Bienvenu F, et al. A function for cyclin D1 in DNA repair uncovered by protein interactome analyses in human cancers. Nature. 2011;474:230–4.CrossRefPubMedPubMedCentral Jirawatnotai S, Hu Y, Michowski W, Elias JE, Becks L, Bienvenu F, et al. A function for cyclin D1 in DNA repair uncovered by protein interactome analyses in human cancers. Nature. 2011;474:230–4.CrossRefPubMedPubMedCentral
30.
go back to reference Li Z, Chen K, Jiao X, Wang C, Willmarth NE, Casimiro MC, et al. Cyclin D1 integrates estrogen-mediated DNA damage repair signaling. Cancer Res. 2014;74:3959–70.CrossRefPubMedPubMedCentral Li Z, Chen K, Jiao X, Wang C, Willmarth NE, Casimiro MC, et al. Cyclin D1 integrates estrogen-mediated DNA damage repair signaling. Cancer Res. 2014;74:3959–70.CrossRefPubMedPubMedCentral
31.
go back to reference Gan GN, Eagles J, Keysar SB, Wang G, Glogowska MJ, Altunbas C, et al. Hedgehog signaling drives radioresistance and stroma-driven tumor repopulation in head and neck squamous cancers. Cancer Res. 2014;74:7024–36.CrossRefPubMedPubMedCentral Gan GN, Eagles J, Keysar SB, Wang G, Glogowska MJ, Altunbas C, et al. Hedgehog signaling drives radioresistance and stroma-driven tumor repopulation in head and neck squamous cancers. Cancer Res. 2014;74:7024–36.CrossRefPubMedPubMedCentral
32.
go back to reference Theys J, Jutten B, Habets R, Paesmans K, Groot AJ, Lambin P, et al. E-Cadherin loss associated with EMT promotes radioresistance in human tumor cells. Radiother Oncol. 2011;9:392–7.CrossRef Theys J, Jutten B, Habets R, Paesmans K, Groot AJ, Lambin P, et al. E-Cadherin loss associated with EMT promotes radioresistance in human tumor cells. Radiother Oncol. 2011;9:392–7.CrossRef
33.
go back to reference Ju X, Casimiro MC, Gormley M, Meng H, Jiao X, Katiyar S, et al. Identification of a cyclin D1 network in prostate cancer that antagonizes epithelial-mesenchymal restraint. Cancer Res. 2014;74:508–19.CrossRefPubMed Ju X, Casimiro MC, Gormley M, Meng H, Jiao X, Katiyar S, et al. Identification of a cyclin D1 network in prostate cancer that antagonizes epithelial-mesenchymal restraint. Cancer Res. 2014;74:508–19.CrossRefPubMed
Metadata
Title
Inhibition of cyclin D1 enhances sensitivity to radiotherapy and reverses epithelial to mesenchymal transition for esophageal cancer cells
Authors
Huafang Su
Xiance Jin
Lanxiao Shen
Ya Fang
Zhenghua Fei
Xuebang Zhang
Congying Xie
Xiaolei Chen
Publication date
01-04-2016
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 4/2016
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-015-4393-z

Other articles of this Issue 4/2016

Tumor Biology 4/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine