Skip to main content
Top
Published in: Cellular Oncology 3/2017

01-06-2017 | Original Paper

Inhibition of CDK4 sensitizes multidrug resistant ovarian cancer cells to paclitaxel by increasing apoptosiss

Authors: Yan Gao, Jacson Shen, Edwin Choy, Henry Mankin, Francis Hornicek, Zhenfeng Duan

Published in: Cellular Oncology | Issue 3/2017

Login to get access

Abstract

Purpose

Overexpression of cyclin-dependent kinase (CDK) 4 has been observed in a variety of cancers and has been found to contribute to tumor cell growth and proliferation. However, the effect of inhibition of CDK4 in ovarian cancer is unknown. We investigated the therapeutic effect of the CDK4 inhibitor palbociclib in combination with paclitaxel in ovarian cancer cells.

Methods

Cell viabilities were determined by MTT assay after exposure to different dosages of palbociclib and/or paclitaxel. Western blot, immunofluorescence, and Calcein AM assays were conducted to determine the mechanisms underlying the cytotoxic effects of palbociclib in combination with paclitaxel. CDK4 siRNA was used to validate the outcome of targeting CDK4 by palbociclib in ovarian cancer cells.

Results

We found that combinations of palbociclib and paclitaxel significantly enhanced drug sensitivity in both Rb-positive (SKOV3TR) and Rb-negative (OVCAR8TR) ovarian cancer-derived cells. When combined with paclitaxel, palbociclib induced apoptosis in both SKOV3TR and OVCAR8TR cells. We also found that palbociclib inhibited the activity of P-glycoprotein (Pgp), and that siRNA-mediated CDK4 knockdown sensitized multidrug resistant (MDR) SKOV3TR and OVCAR8TR cells to paclitaxel.

Conclusions

Inhibition of CDK4 by palbociclib can enhance paclitaxel sensitivity in both Rb-positive and Rb-negative MDR ovarian cancer cells by increasing apoptosis. CDK4 may serve as a promising target in the treatment of ovarian cancer.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference M. Zou, X. Zhang, C. Xu, IL6-induced metastasis modulators p-STAT3, MMP-2 and MMP-9 are targets of 3,3-diindolylmethane in ovarian cancer cells. Cell. Oncol. 39, 47–57 (2016)CrossRef M. Zou, X. Zhang, C. Xu, IL6-induced metastasis modulators p-STAT3, MMP-2 and MMP-9 are targets of 3,3-diindolylmethane in ovarian cancer cells. Cell. Oncol. 39, 47–57 (2016)CrossRef
3.
go back to reference M.A. Bookman, M.F. Brady, W.P. McGuire, P.G. Harper, D.S. Alberts, M. Friedlander, N. Colombo, J.M. Fowler, P.A. Argenta, K. De Geest, D.G. Mutch, R.A. Burger, A.M. Swart, E.L. Trimble, C. Accario-Winslow, L.M. Roth, Evaluation of new platinum-based treatment regimens in advanced-stage ovarian cancer: a phase III trial of the gynecologic cancer intergroup. J. Clin. Oncol. 27, 1419–1425 (2009)CrossRefPubMedPubMedCentral M.A. Bookman, M.F. Brady, W.P. McGuire, P.G. Harper, D.S. Alberts, M. Friedlander, N. Colombo, J.M. Fowler, P.A. Argenta, K. De Geest, D.G. Mutch, R.A. Burger, A.M. Swart, E.L. Trimble, C. Accario-Winslow, L.M. Roth, Evaluation of new platinum-based treatment regimens in advanced-stage ovarian cancer: a phase III trial of the gynecologic cancer intergroup. J. Clin. Oncol. 27, 1419–1425 (2009)CrossRefPubMedPubMedCentral
4.
go back to reference S. Vaughan, J.I. Coward, R.C. Bast Jr., A. Berchuck, J.S. Berek, J.D. Brenton, G. Coukos, C.C. Crum, R. Drapkin, D. Etemadmoghadam, M. Friedlander, H. Gabra, S.B. Kaye, C.J. Lord, E. Lengyel, D.A. Levine, I.A. McNeish, U. Menon, G.B. Mills, K.P. Nephew, A.M. Oza, A.K. Sood, E.A. Stronach, H. Walczak, D.D. Bowtell, F.R. Balkwill, Rethinking ovarian cancer: recommendations for improving outcomes. Nat. Rev. Cancer 11, 719–725 (2011)CrossRefPubMedPubMedCentral S. Vaughan, J.I. Coward, R.C. Bast Jr., A. Berchuck, J.S. Berek, J.D. Brenton, G. Coukos, C.C. Crum, R. Drapkin, D. Etemadmoghadam, M. Friedlander, H. Gabra, S.B. Kaye, C.J. Lord, E. Lengyel, D.A. Levine, I.A. McNeish, U. Menon, G.B. Mills, K.P. Nephew, A.M. Oza, A.K. Sood, E.A. Stronach, H. Walczak, D.D. Bowtell, F.R. Balkwill, Rethinking ovarian cancer: recommendations for improving outcomes. Nat. Rev. Cancer 11, 719–725 (2011)CrossRefPubMedPubMedCentral
5.
go back to reference B.Y. Karlan, A.M. Oza, G.E. Richardson, D.M. Provencher, V.L. Hansen, M. Buck, S.K. Chambers, P. Ghatage, C.H. Pippitt Jr., J.V. Brown 3rd, A. Covens, R.V. Nagarkar, M. Davy, C.A. Leath 3rd, H. Nguyen, D.E. Stepan, D.M. Weinreich, M. Tassoudji, Y.N. Sun, I.B. Vergote, Randomized, double-blind, placebo-controlled phase II study of AMG 386 combined with weekly paclitaxel in patients with recurrent ovarian cancer. J. Clin. Oncol. 30, 362–371 (2012)CrossRefPubMed B.Y. Karlan, A.M. Oza, G.E. Richardson, D.M. Provencher, V.L. Hansen, M. Buck, S.K. Chambers, P. Ghatage, C.H. Pippitt Jr., J.V. Brown 3rd, A. Covens, R.V. Nagarkar, M. Davy, C.A. Leath 3rd, H. Nguyen, D.E. Stepan, D.M. Weinreich, M. Tassoudji, Y.N. Sun, I.B. Vergote, Randomized, double-blind, placebo-controlled phase II study of AMG 386 combined with weekly paclitaxel in patients with recurrent ovarian cancer. J. Clin. Oncol. 30, 362–371 (2012)CrossRefPubMed
6.
go back to reference M. Strauss, J. Lukas, J. Bartek, Unrestricted cell cycling and cancer. Nat. Med. 1, 1245–1246 (1995)CrossRefPubMed M. Strauss, J. Lukas, J. Bartek, Unrestricted cell cycling and cancer. Nat. Med. 1, 1245–1246 (1995)CrossRefPubMed
7.
go back to reference G. D'Andrilli, C. Kumar, G. Scambia, A. Giordano, Cell cycle genes in ovarian cancer: steps toward earlier diagnosis and novel therapies. Clin. Cancer Res. 10, 8132–8141 (2004)CrossRefPubMed G. D'Andrilli, C. Kumar, G. Scambia, A. Giordano, Cell cycle genes in ovarian cancer: steps toward earlier diagnosis and novel therapies. Clin. Cancer Res. 10, 8132–8141 (2004)CrossRefPubMed
8.
go back to reference M. Malumbres, M. Barbacid, Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer 9, 153–166 (2009)CrossRefPubMed M. Malumbres, M. Barbacid, Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer 9, 153–166 (2009)CrossRefPubMed
9.
go back to reference E.A. Musgrove, C.E. Caldon, J. Barraclough, A. Stone, R.L. Sutherland, Cyclin D as a therapeutic target in cancer. Nat. Rev. Cancer 11, 558–572 (2011)CrossRefPubMed E.A. Musgrove, C.E. Caldon, J. Barraclough, A. Stone, R.L. Sutherland, Cyclin D as a therapeutic target in cancer. Nat. Rev. Cancer 11, 558–572 (2011)CrossRefPubMed
10.
go back to reference Y. Liao, Y. Feng, J. Shen, F.J. Hornicek and Z. Duan, The roles and therapeutic potential of cyclin-dependent kinases (CDKs) in sarcoma. Cancer Metastasis Rev. 35, 151–163 (2015) Y. Liao, Y. Feng, J. Shen, F.J. Hornicek and Z. Duan, The roles and therapeutic potential of cyclin-dependent kinases (CDKs) in sarcoma. Cancer Metastasis Rev. 35, 151–163 (2015)
11.
go back to reference T. Zhang, L.B. Nanney, C. Luongo, L. Lamps, K.J. Heppner, R.N. DuBois, R.D. Beauchamp, Concurrent overexpression of cyclin D1 and cyclin-dependent kinase 4 (Cdk4) in intestinal adenomas from multiple intestinal neoplasia (Min) mice and human familial adenomatous polyposis patients. Cancer Res. 57, 169–175 (1997)PubMed T. Zhang, L.B. Nanney, C. Luongo, L. Lamps, K.J. Heppner, R.N. DuBois, R.D. Beauchamp, Concurrent overexpression of cyclin D1 and cyclin-dependent kinase 4 (Cdk4) in intestinal adenomas from multiple intestinal neoplasia (Min) mice and human familial adenomatous polyposis patients. Cancer Res. 57, 169–175 (1997)PubMed
12.
go back to reference Y. Hashiguchi, H. Tsuda, T. Inoue, S. Nishimura, T. Suzuki, N. Kawamura, Alteration of cell cycle regulators correlates with survival in epithelial ovarian cancer patients. Hum. Pathol. 35, 165–175 (2004)CrossRefPubMed Y. Hashiguchi, H. Tsuda, T. Inoue, S. Nishimura, T. Suzuki, N. Kawamura, Alteration of cell cycle regulators correlates with survival in epithelial ovarian cancer patients. Hum. Pathol. 35, 165–175 (2004)CrossRefPubMed
13.
go back to reference Y. Yang, B. Ma, L. Li, Y. Jin, W. Ben, D. Zhang, K. Jiang, S. Feng, L. Huang, J. Zheng, CDK2 and CDK4 play important roles in promoting the proliferation of SKOV3 ovarian carcinoma cells induced by tumor-associated macrophages. Oncol. Rep. 31, 2759–2768 (2014)PubMed Y. Yang, B. Ma, L. Li, Y. Jin, W. Ben, D. Zhang, K. Jiang, S. Feng, L. Huang, J. Zheng, CDK2 and CDK4 play important roles in promoting the proliferation of SKOV3 ovarian carcinoma cells induced by tumor-associated macrophages. Oncol. Rep. 31, 2759–2768 (2014)PubMed
14.
go back to reference H. Shinozaki, S. Ozawa, N. Ando, H. Tsuruta, M. Terada, M. Ueda, M. Kitajima, Cyclin D1 amplification as a new predictive classification for squamous cell carcinoma of the esophagus, adding gene information. Clin. Cancer Res. 2, 1155–1161 (1996)PubMed H. Shinozaki, S. Ozawa, N. Ando, H. Tsuruta, M. Terada, M. Ueda, M. Kitajima, Cyclin D1 amplification as a new predictive classification for squamous cell carcinoma of the esophagus, adding gene information. Clin. Cancer Res. 2, 1155–1161 (1996)PubMed
15.
go back to reference A. DeMichele, A.S. Clark, K.S. Tan, D.F. Heitjan, K. Gramlich, M. Gallagher, P. Lal, M. Feldman, P. Zhang, C. Colameco, D. Lewis, M. Langer, N. Goodman, S. Domchek, K. Gogineni, M. Rosen, K. Fox, P. O'Dwyer, CDK 4/6 inhibitor palbociclib (PD0332991) in Rb + advanced breast cancer: phase II activity, safety, and predictive biomarker assessment. Clin. Cancer Res. 21, 995–1001 (2015)CrossRefPubMed A. DeMichele, A.S. Clark, K.S. Tan, D.F. Heitjan, K. Gramlich, M. Gallagher, P. Lal, M. Feldman, P. Zhang, C. Colameco, D. Lewis, M. Langer, N. Goodman, S. Domchek, K. Gogineni, M. Rosen, K. Fox, P. O'Dwyer, CDK 4/6 inhibitor palbociclib (PD0332991) in Rb + advanced breast cancer: phase II activity, safety, and predictive biomarker assessment. Clin. Cancer Res. 21, 995–1001 (2015)CrossRefPubMed
16.
go back to reference M.A. Dickson, W.D. Tap, M.L. Keohan, S.P. D'Angelo, M.M. Gounder, C.R. Antonescu, J. Landa, L.X. Qin, D.D. Rathbone, M.M. Condy, Y. Ustoyev, A.M. Crago, S. Singer, G.K. Schwartz, Phase II trial of the CDK4 inhibitor PD0332991 in patients with advanced CDK4-amplified well-differentiated or dedifferentiated liposarcoma. J. Clin. Oncol. 31, 2024–2028 (2013)CrossRefPubMedPubMedCentral M.A. Dickson, W.D. Tap, M.L. Keohan, S.P. D'Angelo, M.M. Gounder, C.R. Antonescu, J. Landa, L.X. Qin, D.D. Rathbone, M.M. Condy, Y. Ustoyev, A.M. Crago, S. Singer, G.K. Schwartz, Phase II trial of the CDK4 inhibitor PD0332991 in patients with advanced CDK4-amplified well-differentiated or dedifferentiated liposarcoma. J. Clin. Oncol. 31, 2024–2028 (2013)CrossRefPubMedPubMedCentral
17.
go back to reference F. Morschhauser, K. Bouabdallah, S. Stilgenbauer, C. Thieblemont, M. Wolf, S. de Guibert, F. Zettl, M. Hahka-Kemppinen, D.X. Wang, P. Brueck, Clinical activity of abemaciclib (LY2835219), a cell cycle inhibitor selective for CDK4 and CDK6, in patients with relapsed or refractory mantle cell lymphoma. Blood 124, 3067–3067 (2014) F. Morschhauser, K. Bouabdallah, S. Stilgenbauer, C. Thieblemont, M. Wolf, S. de Guibert, F. Zettl, M. Hahka-Kemppinen, D.X. Wang, P. Brueck, Clinical activity of abemaciclib (LY2835219), a cell cycle inhibitor selective for CDK4 and CDK6, in patients with relapsed or refractory mantle cell lymphoma. Blood 124, 3067–3067 (2014)
18.
go back to reference J.R. Infante, G. Shapiro, P. Witteveen, J.F. Gerecitano, V. Ribrag, R. Chugh, I. Issa, A. Chakraborty, A. Matano and X. Zhao, In ASCO Annual Meeting Proceedings, p. 2528 (2014) J.R. Infante, G. Shapiro, P. Witteveen, J.F. Gerecitano, V. Ribrag, R. Chugh, I. Issa, A. Chakraborty, A. Matano and X. Zhao, In ASCO Annual Meeting Proceedings, p. 2528 (2014)
19.
go back to reference R.S. Finn, J.P. Crown, I. Lang, K. Boer, I.M. Bondarenko, S.O. Kulyk, J. Ettl, R. Patel, T. Pinter, M. Schmidt, Y. Shparyk, A.R. Thummala, N.L. Voytko, C. Fowst, X. Huang, S.T. Kim, S. Randolph, D.J. Slamon, The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study. Lancet Oncol. 16, 25–35 (2015)CrossRefPubMed R.S. Finn, J.P. Crown, I. Lang, K. Boer, I.M. Bondarenko, S.O. Kulyk, J. Ettl, R. Patel, T. Pinter, M. Schmidt, Y. Shparyk, A.R. Thummala, N.L. Voytko, C. Fowst, X. Huang, S.T. Kim, S. Randolph, D.J. Slamon, The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study. Lancet Oncol. 16, 25–35 (2015)CrossRefPubMed
20.
go back to reference D.W. Fry, P.J. Harvey, P.R. Keller, W.L. Elliott, M. Meade, E. Trachet, M. Albassam, X. Zheng, W.R. Leopold, N.K. Pryer, P.L. Toogood, Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol. Cancer Ther. 3, 1427–1438 (2004)PubMed D.W. Fry, P.J. Harvey, P.R. Keller, W.L. Elliott, M. Meade, E. Trachet, M. Albassam, X. Zheng, W.R. Leopold, N.K. Pryer, P.L. Toogood, Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol. Cancer Ther. 3, 1427–1438 (2004)PubMed
21.
go back to reference J. Halder, C.N. Landen Jr., S.K. Lutgendorf, Y. Li, N.B. Jennings, D. Fan, G.M. Nelkin, R. Schmandt, M.D. Schaller, A.K. Sood, Focal adhesion kinase silencing augments docetaxel-mediated apoptosis in ovarian cancer cells. Clin. Cancer Res. 11, 8829–8836 (2005)CrossRefPubMedPubMedCentral J. Halder, C.N. Landen Jr., S.K. Lutgendorf, Y. Li, N.B. Jennings, D. Fan, G.M. Nelkin, R. Schmandt, M.D. Schaller, A.K. Sood, Focal adhesion kinase silencing augments docetaxel-mediated apoptosis in ovarian cancer cells. Clin. Cancer Res. 11, 8829–8836 (2005)CrossRefPubMedPubMedCentral
22.
go back to reference X. Yang, J. Shen, Y. Gao, Y. Feng, Y. Guan, Z. Zhang, H. Mankin, F.J. Hornicek, Z. Duan, Nsc23925 prevents the development of paclitaxel resistance by inhibiting the introduction of P-glycoprotein and enhancing apoptosis. Int. J. Cancer 137, 2029–2039 (2015)CrossRefPubMedPubMedCentral X. Yang, J. Shen, Y. Gao, Y. Feng, Y. Guan, Z. Zhang, H. Mankin, F.J. Hornicek, Z. Duan, Nsc23925 prevents the development of paclitaxel resistance by inhibiting the introduction of P-glycoprotein and enhancing apoptosis. Int. J. Cancer 137, 2029–2039 (2015)CrossRefPubMedPubMedCentral
23.
go back to reference X. Yang, A.K. Iyer, A. Singh, L. Milane, E. Choy, F.J. Hornicek, M.M. Amiji, Z. Duan, Cluster of differentiation 44 targeted hyaluronic acid based nanoparticles for MDR1 siRNA delivery to overcome drug resistance in ovarian cancer. Pharm. Res. 32, 2097–2109 (2015)CrossRefPubMed X. Yang, A.K. Iyer, A. Singh, L. Milane, E. Choy, F.J. Hornicek, M.M. Amiji, Z. Duan, Cluster of differentiation 44 targeted hyaluronic acid based nanoparticles for MDR1 siRNA delivery to overcome drug resistance in ovarian cancer. Pharm. Res. 32, 2097–2109 (2015)CrossRefPubMed
24.
go back to reference H. Devalapally, Z. Duan, M.V. Seiden, M.M. Amiji, Modulation of drug resistance in ovarian adenocarcinoma by enhancing intracellular ceramide using tamoxifen-loaded biodegradable polymeric nanoparticles. Clin. Cancer Res. 14, 3193–3203 (2008)CrossRefPubMed H. Devalapally, Z. Duan, M.V. Seiden, M.M. Amiji, Modulation of drug resistance in ovarian adenocarcinoma by enhancing intracellular ceramide using tamoxifen-loaded biodegradable polymeric nanoparticles. Clin. Cancer Res. 14, 3193–3203 (2008)CrossRefPubMed
25.
go back to reference Z. Duan, K.A. Brakora, M.V. Seiden, Inhibition of ABCB1 (MDR1) and ABCB4 (MDR3) expression by small interfering RNA and reversal of paclitaxel resistance in human ovarian cancer cells. Mol. Cancer Ther. 3, 833–838 (2004)PubMed Z. Duan, K.A. Brakora, M.V. Seiden, Inhibition of ABCB1 (MDR1) and ABCB4 (MDR3) expression by small interfering RNA and reversal of paclitaxel resistance in human ovarian cancer cells. Mol. Cancer Ther. 3, 833–838 (2004)PubMed
26.
go back to reference Z. Duan, A.J. Feller, R.T. Penson, B.A. Chabner, M.V. Seiden, Discovery of differentially expressed genes associated with paclitaxel resistance using cDNA array technology: analysis of interleukin (IL) 6, IL-8, and monocyte chemotactic protein 1 in the paclitaxel-resistant phenotype. Clin. Cancer Res. 5, 3445–3453 (1999)PubMed Z. Duan, A.J. Feller, R.T. Penson, B.A. Chabner, M.V. Seiden, Discovery of differentially expressed genes associated with paclitaxel resistance using cDNA array technology: analysis of interleukin (IL) 6, IL-8, and monocyte chemotactic protein 1 in the paclitaxel-resistant phenotype. Clin. Cancer Res. 5, 3445–3453 (1999)PubMed
27.
go back to reference W.R. Sellers, W.G. Kaelin Jr., Role of the retinoblastoma protein in the pathogenesis of human cancer. J. Clin. Oncol. 15, 3301–3312 (1997)CrossRefPubMed W.R. Sellers, W.G. Kaelin Jr., Role of the retinoblastoma protein in the pathogenesis of human cancer. J. Clin. Oncol. 15, 3301–3312 (1997)CrossRefPubMed
28.
go back to reference T.U. Barbie, D.A. Barbie, D.T. MacLaughlin, S. Maheswaran, P.K. Donahoe, Mullerian inhibiting substance inhibits cervical cancer cell growth via a pathway involving p130 and p107. Proc. Natl. Acad. Sci. U. S. A. 100, 15601–15606 (2003)CrossRefPubMedPubMedCentral T.U. Barbie, D.A. Barbie, D.T. MacLaughlin, S. Maheswaran, P.K. Donahoe, Mullerian inhibiting substance inhibits cervical cancer cell growth via a pathway involving p130 and p107. Proc. Natl. Acad. Sci. U. S. A. 100, 15601–15606 (2003)CrossRefPubMedPubMedCentral
29.
go back to reference T.U. Ha, D.L. Segev, D. Barbie, P.T. Masiakos, T.T. Tran, D. Dombkowski, M. Glander, T.R. Clarke, H.K. Lorenzo, P.K. Donahoe, S. Maheswaran, Mullerian inhibiting substance inhibits ovarian cell growth through an Rb-independent mechanism. J. Biol. Chem. 275, 37101–37109 (2000)CrossRefPubMed T.U. Ha, D.L. Segev, D. Barbie, P.T. Masiakos, T.T. Tran, D. Dombkowski, M. Glander, T.R. Clarke, H.K. Lorenzo, P.K. Donahoe, S. Maheswaran, Mullerian inhibiting substance inhibits ovarian cell growth through an Rb-independent mechanism. J. Biol. Chem. 275, 37101–37109 (2000)CrossRefPubMed
30.
go back to reference K. Milde-Langosch, M. Hagen, A.M. Bamberger, T. Loning, Expression and prognostic value of the cell-cycle regulatory proteins, Rb, p16MTS1, p21WAF1, p27KIP1, cyclin E, and cyclin D2, in ovarian cancer. Int. J. Gynecol. Pathol. 22, 168–174 (2003)CrossRefPubMed K. Milde-Langosch, M. Hagen, A.M. Bamberger, T. Loning, Expression and prognostic value of the cell-cycle regulatory proteins, Rb, p16MTS1, p21WAF1, p27KIP1, cyclin E, and cyclin D2, in ovarian cancer. Int. J. Gynecol. Pathol. 22, 168–174 (2003)CrossRefPubMed
31.
go back to reference J.P. Leonard, A.S. LaCasce, M.R. Smith, A. Noy, L.R. Chirieac, S.J. Rodig, J.Q. Yu, S. Vallabhajosula, H. Schoder, P. English, D.S. Neuberg, P. Martin, M.M. Millenson, S.A. Ely, R. Courtney, N. Shaik, K.D. Wilner, S. Randolph, A.D. Van den Abbeele, S.Y. Chen-Kiang, J.T. Yap, G.I. Shapiro, Selective CDK4/6 inhibition with tumor responses by PD0332991 in patients with mantle cell lymphoma. Blood 119, 4597–4607 (2012)CrossRefPubMed J.P. Leonard, A.S. LaCasce, M.R. Smith, A. Noy, L.R. Chirieac, S.J. Rodig, J.Q. Yu, S. Vallabhajosula, H. Schoder, P. English, D.S. Neuberg, P. Martin, M.M. Millenson, S.A. Ely, R. Courtney, N. Shaik, K.D. Wilner, S. Randolph, A.D. Van den Abbeele, S.Y. Chen-Kiang, J.T. Yap, G.I. Shapiro, Selective CDK4/6 inhibition with tumor responses by PD0332991 in patients with mantle cell lymphoma. Blood 119, 4597–4607 (2012)CrossRefPubMed
32.
go back to reference C.K. Ingemarsdotter, L.A. Tookman, A. Browne, K. Pirlo, R. Cutts, C. Chelela, K.F. Khurrum, E.Y. Leung, S. Dowson, L. Webber, I. Khan, D. Ennis, N. Syed, T.R. Crook, J.D. Brenton, M. Lockley, I.A. McNeish, Paclitaxel resistance increases oncolytic adenovirus efficacy via upregulated CAR expression and dysfunctional cell cycle control. Mol. Oncol. 9, 791–805 (2015)CrossRefPubMed C.K. Ingemarsdotter, L.A. Tookman, A. Browne, K. Pirlo, R. Cutts, C. Chelela, K.F. Khurrum, E.Y. Leung, S. Dowson, L. Webber, I. Khan, D. Ennis, N. Syed, T.R. Crook, J.D. Brenton, M. Lockley, I.A. McNeish, Paclitaxel resistance increases oncolytic adenovirus efficacy via upregulated CAR expression and dysfunctional cell cycle control. Mol. Oncol. 9, 791–805 (2015)CrossRefPubMed
33.
go back to reference A.S. Clark, P.J. O'Dwyer, D. Heitjan, P. Lal, M.D. Feldman, M. Gallagher, C. Redlinger, C. Colameco, D. Lewis, K. Zafman, M. Langer, M.A. Rosen, K. Gogineni, A.R. Bradbury, S.M. Domchek, K.R. Fox, A. DeMichele, A phase I trial of palbociclib and paclitaxel in metastatic breast cancer. J. Clin. Oncol. 32, 5 (2014) A.S. Clark, P.J. O'Dwyer, D. Heitjan, P. Lal, M.D. Feldman, M. Gallagher, C. Redlinger, C. Colameco, D. Lewis, K. Zafman, M. Langer, M.A. Rosen, K. Gogineni, A.R. Bradbury, S.M. Domchek, K.R. Fox, A. DeMichele, A phase I trial of palbociclib and paclitaxel in metastatic breast cancer. J. Clin. Oncol. 32, 5 (2014)
34.
go back to reference S. Patel, L. Kumar, N. Singh, Metformin and epithelial ovarian cancer therapeutics. Cell. Oncol. 38, 365–375 (2015)CrossRef S. Patel, L. Kumar, N. Singh, Metformin and epithelial ovarian cancer therapeutics. Cell. Oncol. 38, 365–375 (2015)CrossRef
35.
go back to reference K. Goetze, C.G. Fabian, A. Siebers, L. Binz, D. Faber, S. Indraccolo, G. Nardo, U.G. Sattler, W. Mueller-Klieser, Manipulation of tumor metabolism for therapeutic approaches: ovarian cancer-derived cell lines as a model system. Cell. Oncol. 38, 377–385 (2015)CrossRef K. Goetze, C.G. Fabian, A. Siebers, L. Binz, D. Faber, S. Indraccolo, G. Nardo, U.G. Sattler, W. Mueller-Klieser, Manipulation of tumor metabolism for therapeutic approaches: ovarian cancer-derived cell lines as a model system. Cell. Oncol. 38, 377–385 (2015)CrossRef
36.
go back to reference R.I. Sanchez, S. Mesia-Vela, F.C. Kauffman, Challenges of cancer drug design: a drug metabolism perspective. Curr. Cancer Drug Targets 1, 1–32 (2001)CrossRefPubMed R.I. Sanchez, S. Mesia-Vela, F.C. Kauffman, Challenges of cancer drug design: a drug metabolism perspective. Curr. Cancer Drug Targets 1, 1–32 (2001)CrossRefPubMed
37.
go back to reference A.M. Reed, M.L. Fishel, M.R. Kelley, Small-molecule inhibitors of proteins involved in base excision repair potentiate the anti-tumorigenic effect of existing chemotherapeutics and irradiation. Future Oncol. 5, 713–726 (2009)CrossRefPubMedPubMedCentral A.M. Reed, M.L. Fishel, M.R. Kelley, Small-molecule inhibitors of proteins involved in base excision repair potentiate the anti-tumorigenic effect of existing chemotherapeutics and irradiation. Future Oncol. 5, 713–726 (2009)CrossRefPubMedPubMedCentral
38.
go back to reference D.C. Altieri, The case for survivin as a regulator of microtubule dynamics and cell-death decisions. Curr. Opin. Cell Biol. 18, 609–615 (2006)CrossRefPubMed D.C. Altieri, The case for survivin as a regulator of microtubule dynamics and cell-death decisions. Curr. Opin. Cell Biol. 18, 609–615 (2006)CrossRefPubMed
39.
go back to reference N. Bah, L. Maillet, J. Ryan, S. Dubreil, F. Gautier, A. Letai, P. Juin, S. Barille-Nion, Bcl-xL controls a switch between cell death modes during mitotic arrest. Cell Death Dis. 5, e1291 (2014)CrossRefPubMedPubMedCentral N. Bah, L. Maillet, J. Ryan, S. Dubreil, F. Gautier, A. Letai, P. Juin, S. Barille-Nion, Bcl-xL controls a switch between cell death modes during mitotic arrest. Cell Death Dis. 5, e1291 (2014)CrossRefPubMedPubMedCentral
40.
go back to reference S.N. Kolomeichuk, D.T. Terrano, C.S. Lyle, K. Sabapathy, T.C. Chambers, Distinct signaling pathways of microtubule inhibitors--vinblastine and Taxol induce JNK-dependent cell death but through AP-1-dependent and AP-1-independent mechanisms, respectively. FEBS J. 275, 1889–1899 (2008)CrossRefPubMed S.N. Kolomeichuk, D.T. Terrano, C.S. Lyle, K. Sabapathy, T.C. Chambers, Distinct signaling pathways of microtubule inhibitors--vinblastine and Taxol induce JNK-dependent cell death but through AP-1-dependent and AP-1-independent mechanisms, respectively. FEBS J. 275, 1889–1899 (2008)CrossRefPubMed
41.
go back to reference S.J. Lim, M.K. Choi, M.J. Kim, J.K. Kim, Alpha-tocopheryl succinate potentiates the paclitaxel-induced apoptosis through enforced caspase 8 activation in human H460 lung cancer cells. Exp. Mol. Med. 41, 737–745 (2009)CrossRefPubMedPubMedCentral S.J. Lim, M.K. Choi, M.J. Kim, J.K. Kim, Alpha-tocopheryl succinate potentiates the paclitaxel-induced apoptosis through enforced caspase 8 activation in human H460 lung cancer cells. Exp. Mol. Med. 41, 737–745 (2009)CrossRefPubMedPubMedCentral
42.
go back to reference X.H. Zhang, Y. Cheng, J.Y. Shin, J.O. Kim, J.E. Oh, J.H. Kang, A CDK4/6 inhibitor enhances cytotoxicity of paclitaxel in lung adenocarcinoma cells harboring mutant KRAS as well as wild-type KRAS. Cancer Biol. Ther. 14, 597–605 (2013)CrossRefPubMedPubMedCentral X.H. Zhang, Y. Cheng, J.Y. Shin, J.O. Kim, J.E. Oh, J.H. Kang, A CDK4/6 inhibitor enhances cytotoxicity of paclitaxel in lung adenocarcinoma cells harboring mutant KRAS as well as wild-type KRAS. Cancer Biol. Ther. 14, 597–605 (2013)CrossRefPubMedPubMedCentral
43.
go back to reference D.W. Fry, D.C. Bedford, P.H. Harvey, A. Fritsch, P.R. Keller, Z. Wu, E. Dobrusin, W.R. Leopold, A. Fattaey, M.D. Garrett, Cell cycle and biochemical effects of PD 0183812. A potent inhibitor of the cyclin D-dependent kinases CDK4 and CDK6. J. Biol. Chem. 276, 16617–16623 (2001)CrossRefPubMed D.W. Fry, D.C. Bedford, P.H. Harvey, A. Fritsch, P.R. Keller, Z. Wu, E. Dobrusin, W.R. Leopold, A. Fattaey, M.D. Garrett, Cell cycle and biochemical effects of PD 0183812. A potent inhibitor of the cyclin D-dependent kinases CDK4 and CDK6. J. Biol. Chem. 276, 16617–16623 (2001)CrossRefPubMed
44.
go back to reference B. Taylor-Harding, P.J. Aspuria, H. Agadjanian, D.J. Cheon, T. Mizuno, D. Greenberg, J.R. Allen, L. Spurka, V. Funari, E. Spiteri, Q. Wang, S. Orsulic, C. Walsh, B.Y. Karlan, W.R. Wiedemeyer, Cyclin E1 and RTK/RAS signaling drive CDK inhibitor resistance via activation of E2F and ETS. Oncotarget 6, 696–714 (2015)CrossRefPubMed B. Taylor-Harding, P.J. Aspuria, H. Agadjanian, D.J. Cheon, T. Mizuno, D. Greenberg, J.R. Allen, L. Spurka, V. Funari, E. Spiteri, Q. Wang, S. Orsulic, C. Walsh, B.Y. Karlan, W.R. Wiedemeyer, Cyclin E1 and RTK/RAS signaling drive CDK inhibitor resistance via activation of E2F and ETS. Oncotarget 6, 696–714 (2015)CrossRefPubMed
45.
go back to reference G.E. Konecny, B. Winterhoff, T. Kolarova, J. Qi, K. Manivong, J. Dering, G. Yang, M. Chalukya, H.J. Wang, L. Anderson, K.R. Kalli, R.S. Finn, C. Ginther, S. Jones, V.E. Velculescu, D. Riehle, W.A. Cliby, S. Randolph, M. Koehler, L.C. Hartmann, D.J. Slamon, Expression of p16 and retinoblastoma determines response to CDK4/6 inhibition in ovarian cancer. Clin. Cancer Res. 17, 1591–1602 (2011)CrossRefPubMedPubMedCentral G.E. Konecny, B. Winterhoff, T. Kolarova, J. Qi, K. Manivong, J. Dering, G. Yang, M. Chalukya, H.J. Wang, L. Anderson, K.R. Kalli, R.S. Finn, C. Ginther, S. Jones, V.E. Velculescu, D. Riehle, W.A. Cliby, S. Randolph, M. Koehler, L.C. Hartmann, D.J. Slamon, Expression of p16 and retinoblastoma determines response to CDK4/6 inhibition in ovarian cancer. Clin. Cancer Res. 17, 1591–1602 (2011)CrossRefPubMedPubMedCentral
46.
go back to reference G. Szakacs, J.K. Paterson, J.A. Ludwig, C. Booth-Genthe, M.M. Gottesman, Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov. 5, 219–234 (2006)CrossRefPubMed G. Szakacs, J.K. Paterson, J.A. Ludwig, C. Booth-Genthe, M.M. Gottesman, Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov. 5, 219–234 (2006)CrossRefPubMed
47.
go back to reference Z. Wang, Y. Chen, H. Liang, A. Bender, R.C. Glen, A. Yan, P-glycoprotein substrate models using support vector machines based on a comprehensive data set. J. Chem. Inf. Model. 51, 1447–1456 (2011)CrossRefPubMed Z. Wang, Y. Chen, H. Liang, A. Bender, R.C. Glen, A. Yan, P-glycoprotein substrate models using support vector machines based on a comprehensive data set. J. Chem. Inf. Model. 51, 1447–1456 (2011)CrossRefPubMed
48.
go back to reference T. Hegedus, L. Orfi, A. Seprodi, A. Varadi, B. Sarkadi, G. Keri, Interaction of tyrosine kinase inhibitors with the human multidrug transporter proteins, MDR1 and MRP1. Biochim. Biophys. Acta 1587, 318–325 (2002)CrossRefPubMed T. Hegedus, L. Orfi, A. Seprodi, A. Varadi, B. Sarkadi, G. Keri, Interaction of tyrosine kinase inhibitors with the human multidrug transporter proteins, MDR1 and MRP1. Biochim. Biophys. Acta 1587, 318–325 (2002)CrossRefPubMed
49.
go back to reference X.K. Wang, L.W. Fu, Interaction of tyrosine kinase inhibitors with the MDR-related ABC transporter proteins. Curr. Drug Metab. 11, 618–628 (2010)CrossRefPubMed X.K. Wang, L.W. Fu, Interaction of tyrosine kinase inhibitors with the MDR-related ABC transporter proteins. Curr. Drug Metab. 11, 618–628 (2010)CrossRefPubMed
50.
go back to reference Z. Duan, A.J. Feller, H.C. Toh, T. Makastorsis, M.V. Seiden, TRAG-3, a novel gene, isolated from a taxol-resistant ovarian carcinoma cell line. Gene 229, 75–81 (1999)CrossRefPubMed Z. Duan, A.J. Feller, H.C. Toh, T. Makastorsis, M.V. Seiden, TRAG-3, a novel gene, isolated from a taxol-resistant ovarian carcinoma cell line. Gene 229, 75–81 (1999)CrossRefPubMed
Metadata
Title
Inhibition of CDK4 sensitizes multidrug resistant ovarian cancer cells to paclitaxel by increasing apoptosiss
Authors
Yan Gao
Jacson Shen
Edwin Choy
Henry Mankin
Francis Hornicek
Zhenfeng Duan
Publication date
01-06-2017
Publisher
Springer Netherlands
Published in
Cellular Oncology / Issue 3/2017
Print ISSN: 2211-3428
Electronic ISSN: 2211-3436
DOI
https://doi.org/10.1007/s13402-017-0316-x

Other articles of this Issue 3/2017

Cellular Oncology 3/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine