Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2015

Open Access 01-12-2015 | Research

Inhibition of autophagy by 3-MA enhances IL-24-induced apoptosis in human oral squamous cell carcinoma cells

Authors: Jichen Li, Dezhao Yang, Wei Wang, Songlin Piao, Jianyu Zhou, Wuliji Saiyin, Changyu Zheng, Hongchen Sun, Yu Li

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2015

Login to get access

Abstract

Background

Interleukin-24(IL-24), also referred to as melanoma differentiation-associated gene-7(mda-7), is a unique member of the IL-10 gene family, which displays nearly ubiquitous cancer-specific toxicity. The most notable feature of IL-24 is selectively induced growth suppression and apoptosis in various cancer cells, with no harmful effects toward normal cells. Autophagy is a self-protective mechanism in many kinds of tumor cells that respond to anticancer treatment. It is reported that autophagy inhibition could enhance the effects of many kinds of anticancer treatments, including gene therapy. However, whether IL-24 is effective to treat oral squamous cell carcinomas (OSCC) and if autophagy inhibition could improve the anticancer effect of IL-24 towards OSCC is has not been detected.

Methods

MTT assays were carried out to determine the cell proliferation; Transfection was used to gene transfer; Western Blot was performed to detect the protein level of LC3II, P62, Beclin 1, Cleaved caspase-3, β-Tubulin and β-actin; Apoptosis rates and cell cycle alteration were analyzed using flow cytometry; Autophagy induction was confirmed by MDC staining, GFP-LC3 staining and transmission electron microscopy. Amount of IL-24 in the culture medium was quantified by ELISA. Apoptosis in vivo was analyzed by TUNEL assay. HE staining was used to observe the morphology of the samples.

Results

In the present study, we proved that IL-24 have a novel anticancer effect towards KB cells and that autophagy inhibition could improve the anticancer effect of IL-24. IL-24 treated cells showed autophagy characteristics and autophagy inhibition by 3-methyladenine (3-MA) significantly enhanced IL-24-induced apoptosis. Similar results were obtained in the KB cells xenograft tumor model.

Conclusions

These results suggest that the combination of autophagy inhibitors and IL-24 based on the AdLTR2EF1α-mediated gene transfer could be a promising way to cure OSCC.
Literature
1.
2.
go back to reference Chada S, Sutton RB, Ekmekcioglu S, Ellerhorst J, Mumm JB, Leitner WW, et al. MDA-7/IL-24 is a unique cytokine–tumor suppressor in the IL-10 family. Int Immunopharmacol. 2004;4(5):649–67.CrossRefPubMed Chada S, Sutton RB, Ekmekcioglu S, Ellerhorst J, Mumm JB, Leitner WW, et al. MDA-7/IL-24 is a unique cytokine–tumor suppressor in the IL-10 family. Int Immunopharmacol. 2004;4(5):649–67.CrossRefPubMed
3.
go back to reference Zhu W, Wei L, Zhang H, Chen J, Qin X, et al. Oncolytic adenovirus armed with IL-24 inhibits the growth of breast cancer in vitro and in vivo. J Exp Clin Cancer Res. 2012;31(1):51.PubMedCentralCrossRefPubMed Zhu W, Wei L, Zhang H, Chen J, Qin X, et al. Oncolytic adenovirus armed with IL-24 inhibits the growth of breast cancer in vitro and in vivo. J Exp Clin Cancer Res. 2012;31(1):51.PubMedCentralCrossRefPubMed
4.
go back to reference Lebedeva IV, Emdad L, Su ZZ, Gupta P, Sauane M, Sarkar D, et al. mda-7/IL-24, novel anticancer cytokine: focus on bystander antitumor, radiosensitization and antiangiogenic properties and overview of the phase I clinical experience (Review). Int J Oncol. 2007;31(5):985–1007.PubMed Lebedeva IV, Emdad L, Su ZZ, Gupta P, Sauane M, Sarkar D, et al. mda-7/IL-24, novel anticancer cytokine: focus on bystander antitumor, radiosensitization and antiangiogenic properties and overview of the phase I clinical experience (Review). Int J Oncol. 2007;31(5):985–1007.PubMed
6.
go back to reference Kumar P, Zhang D-M, Degenhardt K, Chen Z-S. Autophagy and transporter-based multi-drug resistance. Cell. 2012;1:558–75.CrossRef Kumar P, Zhang D-M, Degenhardt K, Chen Z-S. Autophagy and transporter-based multi-drug resistance. Cell. 2012;1:558–75.CrossRef
7.
go back to reference Zhang Q, Si S, Schoen S, Chen J, Jin X-B, Guan W. Suppression of autophagy enhances preferential toxicity of paclitaxel to folliculin-deficient renal cancer cells. J Exp Clin Cancer Res. 2013;32(1):99.PubMedCentralCrossRefPubMed Zhang Q, Si S, Schoen S, Chen J, Jin X-B, Guan W. Suppression of autophagy enhances preferential toxicity of paclitaxel to folliculin-deficient renal cancer cells. J Exp Clin Cancer Res. 2013;32(1):99.PubMedCentralCrossRefPubMed
8.
go back to reference Xi G, Hu X, Wu B, Jiang H, Young CY, Pang Y, et al. Autophagy inhibition promotes paclitaxel-induced apoptosis in cancer cells. Cancer Lett. 2011;307:141–8.CrossRefPubMed Xi G, Hu X, Wu B, Jiang H, Young CY, Pang Y, et al. Autophagy inhibition promotes paclitaxel-induced apoptosis in cancer cells. Cancer Lett. 2011;307:141–8.CrossRefPubMed
9.
go back to reference Tu YJ, Fan X, Yang X, Zhang C, Liang HP. Evodiamine activates autophagy as a cytoprotective response in murine Lewis lung carcinoma cells. Oncol Rep. 2013;29:481–90.PubMed Tu YJ, Fan X, Yang X, Zhang C, Liang HP. Evodiamine activates autophagy as a cytoprotective response in murine Lewis lung carcinoma cells. Oncol Rep. 2013;29:481–90.PubMed
10.
go back to reference Sheen JH, Zoncu R, Kim D, Sabatini DM. Defective regulation of autophagy upon leucine deprivation reveals a targetable liability of human melanoma cells in vitro and in vivo. Cancer Cell. 2011;19:613–28.PubMedCentralCrossRefPubMed Sheen JH, Zoncu R, Kim D, Sabatini DM. Defective regulation of autophagy upon leucine deprivation reveals a targetable liability of human melanoma cells in vitro and in vivo. Cancer Cell. 2011;19:613–28.PubMedCentralCrossRefPubMed
11.
go back to reference Park MA, Yacoub A, Sarkar D, Emdad L, Rahmani M, Spiegel S, et al. PERK-dependent regulation of MDA-7/IL-24-induced autophagy in primary human gliomacells. Autophagy. 2008;4(4):513.PubMedCentralCrossRefPubMed Park MA, Yacoub A, Sarkar D, Emdad L, Rahmani M, Spiegel S, et al. PERK-dependent regulation of MDA-7/IL-24-induced autophagy in primary human gliomacells. Autophagy. 2008;4(4):513.PubMedCentralCrossRefPubMed
12.
go back to reference Zheng C, Vitolo JM, Zhang W, Mineshiba F, Chiorini JA, Baum BJ. Extended transgene expression from a nonintegrating adenoviral vector containing retroviral elements. Mol Ther. 2008;16(6):1089–97.CrossRefPubMed Zheng C, Vitolo JM, Zhang W, Mineshiba F, Chiorini JA, Baum BJ. Extended transgene expression from a nonintegrating adenoviral vector containing retroviral elements. Mol Ther. 2008;16(6):1089–97.CrossRefPubMed
13.
go back to reference Biederbick A, Kern HF, Elsässer HP. Monodansylcadaverine (MDC) is a specific in vivo marker for autophagicvacuoles. Eur J Cell Biol. 1995;66(1):3–14.PubMed Biederbick A, Kern HF, Elsässer HP. Monodansylcadaverine (MDC) is a specific in vivo marker for autophagicvacuoles. Eur J Cell Biol. 1995;66(1):3–14.PubMed
14.
go back to reference Mitrović T, Radulović S. Cancer gene therapy. Arch Oncol. 2005;13(1):23–6.CrossRef Mitrović T, Radulović S. Cancer gene therapy. Arch Oncol. 2005;13(1):23–6.CrossRef
15.
go back to reference Su Z, Emdad L, Sauane M, Lebedeva IV, Sarkar D, Gupta P, et al. Unique aspects of mda-7/IL-24 antitumor bystander activity: establishing a role for secretion of MDA-7/IL-24 protein by normal cells. Oncogene. 2005;24(51):7552–66.CrossRefPubMed Su Z, Emdad L, Sauane M, Lebedeva IV, Sarkar D, Gupta P, et al. Unique aspects of mda-7/IL-24 antitumor bystander activity: establishing a role for secretion of MDA-7/IL-24 protein by normal cells. Oncogene. 2005;24(51):7552–66.CrossRefPubMed
16.
go back to reference Greber UF, Webster P, Weber J, Helenius A. The role of the adenovirus protease on virus entry into cells. EMBO J. 1996;15(8):1766.PubMedCentralPubMed Greber UF, Webster P, Weber J, Helenius A. The role of the adenovirus protease on virus entry into cells. EMBO J. 1996;15(8):1766.PubMedCentralPubMed
17.
go back to reference Harui A, Suzuki S, Kochanek S, Mitani K. Frequency and stability of chromosomal integration of adenovirus vectors. J Virol. 1999;73(7):6141–6.PubMedCentralPubMed Harui A, Suzuki S, Kochanek S, Mitani K. Frequency and stability of chromosomal integration of adenovirus vectors. J Virol. 1999;73(7):6141–6.PubMedCentralPubMed
18.
go back to reference Jooss K, Chirmule N. Immunity to adenovirus and adeno-associated viral vectors: implications for gene therapy. Gene Ther. 2003;10(11):955–63.CrossRefPubMed Jooss K, Chirmule N. Immunity to adenovirus and adeno-associated viral vectors: implications for gene therapy. Gene Ther. 2003;10(11):955–63.CrossRefPubMed
19.
go back to reference Miller DG, Adam MA, Miller AD. Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol. 1990;10(8):4239–42.PubMedCentralPubMed Miller DG, Adam MA, Miller AD. Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol. 1990;10(8):4239–42.PubMedCentralPubMed
20.
go back to reference Baum C, Kustikova O, Modlich U, Li Z, Fehse B. Mutagenesis and oncogenesis by chromosomal insertion of gene transfer vectors. Hum Gene Ther. 2006;17(3):253–63.CrossRefPubMed Baum C, Kustikova O, Modlich U, Li Z, Fehse B. Mutagenesis and oncogenesis by chromosomal insertion of gene transfer vectors. Hum Gene Ther. 2006;17(3):253–63.CrossRefPubMed
22.
go back to reference Eisenberg-Lerner A, Bialik S, Simon HU, Kimchi A. Life and death partners: apoptosis, autophagy and the cross-talk between them. Cell Death Differentiation. 2009;16(7):966–75.CrossRefPubMed Eisenberg-Lerner A, Bialik S, Simon HU, Kimchi A. Life and death partners: apoptosis, autophagy and the cross-talk between them. Cell Death Differentiation. 2009;16(7):966–75.CrossRefPubMed
23.
go back to reference Rubinstein AD, Eisenstein M, Ber Y, Bialik S, Kimchi A. The autophagy protein Atg12 associates with antiapoptotic Bcl-2 family members to promote mitochondrial apoptosis. Mol Cell. 2011;44(5):698–709.CrossRefPubMed Rubinstein AD, Eisenstein M, Ber Y, Bialik S, Kimchi A. The autophagy protein Atg12 associates with antiapoptotic Bcl-2 family members to promote mitochondrial apoptosis. Mol Cell. 2011;44(5):698–709.CrossRefPubMed
24.
go back to reference Maiuri MC, Le Toumelin G, Criollo A, Rain JC, Gautier F, Juin P, et al. Functional and physical interaction between Bcl-XL and a BH3-like domain in Beclin-1. EMBO J. 2007;26(10):2527–39.PubMedCentralCrossRefPubMed Maiuri MC, Le Toumelin G, Criollo A, Rain JC, Gautier F, Juin P, et al. Functional and physical interaction between Bcl-XL and a BH3-like domain in Beclin-1. EMBO J. 2007;26(10):2527–39.PubMedCentralCrossRefPubMed
25.
go back to reference Young MM, Takahashi Y, Khan O, Park S, Hori T, Yun J, et al. Autophagosomal membrane serves as platform for intracellular death-inducing signaling complex (iDISC)-mediated caspase-8 activation and apoptosis. J Biol Chem. 2012;287(15):12455–68.PubMedCentralCrossRefPubMed Young MM, Takahashi Y, Khan O, Park S, Hori T, Yun J, et al. Autophagosomal membrane serves as platform for intracellular death-inducing signaling complex (iDISC)-mediated caspase-8 activation and apoptosis. J Biol Chem. 2012;287(15):12455–68.PubMedCentralCrossRefPubMed
26.
go back to reference Kumar S, Yedjou CG, Tchounwou PB. Arsenic trioxide induces oxidative stress, DNA damage, and mitochondrial pathway of apoptosis in human leukemia (HL-60) cells. J Exp Clin Cancer Res. 2014;33(1):42.PubMedCentralCrossRefPubMed Kumar S, Yedjou CG, Tchounwou PB. Arsenic trioxide induces oxidative stress, DNA damage, and mitochondrial pathway of apoptosis in human leukemia (HL-60) cells. J Exp Clin Cancer Res. 2014;33(1):42.PubMedCentralCrossRefPubMed
Metadata
Title
Inhibition of autophagy by 3-MA enhances IL-24-induced apoptosis in human oral squamous cell carcinoma cells
Authors
Jichen Li
Dezhao Yang
Wei Wang
Songlin Piao
Jianyu Zhou
Wuliji Saiyin
Changyu Zheng
Hongchen Sun
Yu Li
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2015
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-015-0211-0

Other articles of this Issue 1/2015

Journal of Experimental & Clinical Cancer Research 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine