Skip to main content
Top
Published in: Annals of Intensive Care 1/2019

Open Access 01-12-2019 | Research

Information conveyed by electrical diaphragmatic activity during unstressed, stressed and assisted spontaneous breathing: a physiological study

Authors: Lise Piquilloud, François Beloncle, Jean-Christophe M. Richard, Jordi Mancebo, Alain Mercat, Laurent Brochard

Published in: Annals of Intensive Care | Issue 1/2019

Login to get access

Abstract

Background

The electrical activity of the crural diaphragm (Eadi), a surrogate of respiratory drive, can now be measured at the bedside in mechanically ventilated patients with a specific catheter. The expected range of Eadi values under stressed or assisted spontaneous breathing is unknown. This study explored Eadi values in healthy subjects during unstressed (baseline), stressed (with a resistance) and assisted spontaneous breathing. The relation between Eadi and inspiratory effort was analyzed.

Methods

Thirteen healthy male volunteers were included in this randomized crossover study. Eadi and esophageal pressure (Peso) were recorded during unstressed and stressed spontaneous breathing and under assisted ventilation delivered in pressure support (PS) at low and high assist levels and in neurally adjusted ventilatory assist (NAVA). Overall eight different situations were assessed in each participant (randomized order). Peak, mean and integral of Eadi, breathing pattern, esophageal pressure–time product (PTPeso) and work of breathing (WOB) were calculated offline.

Results

Median [interquartile range] peak Eadi at baseline was 17 [13–22] μV and was above 10 μV in 92% of the cases. Eadimax defined as Eadi measured at maximal inspiratory capacity reached 90 [63 to 99] μV. Median peak Eadi/Eadimax ratio was 16.8 [15.6–27.9]%. Compared to baseline, respiratory rate and minute ventilation were decreased during stressed non-assisted breathing, whereas peak Eadi and PTPeso were increased. During unstressed assisted breathing, peak Eadi decreased during high-level PS compared to unstressed non-assisted breathing and to NAVA (p = 0.047). During stressed breathing, peak Eadi was lower during all assisted ventilation modalities compared to stressed non-assisted breathing. During assisted ventilation, across the different conditions, peak Eadi changed significantly, whereas PTPeso and WOB/min were not significantly modified. Finally, Eadi signal was still present even when Peso signal was suppressed due to high assist levels.

Conclusion

Eadi analysis provides complementary information compared to respiratory pattern and to Peso monitoring, particularly in the presence of high assist levels.
Trial registration The study was registered as NCT01818219 in clinicaltrial.gov. Registered 28 February 2013
Appendix
Available only for authorised users
Literature
1.
go back to reference Goligher EC, Dres M, Fan E, Rubenfeld GD, Scales DC, Herridge MS, Vorona S, Sklar MC, Rittayamai N, Lanys A, Murray A, Brace D, Urrea C, Reid WD, Tomlinson G, Slutsky AS, Kavanagh BP, Brochard LJ, Ferguson ND. Mechanical ventilation-induced diaphragm atrophy strongly impacts clinical outcomes. Am J Respir Crit Care Med. 2018;197:204–13.CrossRef Goligher EC, Dres M, Fan E, Rubenfeld GD, Scales DC, Herridge MS, Vorona S, Sklar MC, Rittayamai N, Lanys A, Murray A, Brace D, Urrea C, Reid WD, Tomlinson G, Slutsky AS, Kavanagh BP, Brochard LJ, Ferguson ND. Mechanical ventilation-induced diaphragm atrophy strongly impacts clinical outcomes. Am J Respir Crit Care Med. 2018;197:204–13.CrossRef
2.
go back to reference Brochard L, Slutsky A, Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am J Respir Crit Care Med. 2017;195:438–42.CrossRef Brochard L, Slutsky A, Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am J Respir Crit Care Med. 2017;195:438–42.CrossRef
3.
go back to reference Akoumianaki E, Maggiore SM, Valenza F, Bellani G, Jubran A, Loring SH, Pelosi P, Talmor D, Grasso S, Chiumello D, Guerin C, Patroniti N, Ranieri VM, Gattinoni L, Nava S, Terragni PP, Pesenti A, Tobin M, Mancebo J, Brochard L, Group PW. The application of esophageal pressure measurement in patients with respiratory failure. Am J Respir Crit Care Med. 2014;189:520–31.CrossRef Akoumianaki E, Maggiore SM, Valenza F, Bellani G, Jubran A, Loring SH, Pelosi P, Talmor D, Grasso S, Chiumello D, Guerin C, Patroniti N, Ranieri VM, Gattinoni L, Nava S, Terragni PP, Pesenti A, Tobin M, Mancebo J, Brochard L, Group PW. The application of esophageal pressure measurement in patients with respiratory failure. Am J Respir Crit Care Med. 2014;189:520–31.CrossRef
4.
go back to reference Sinderby C, Beck J, Spahija J, Weinberg J, Grassino A. Voluntary activation of the human diaphragm in health and disease. J Appl Physiol. 1998;85:2146–58.CrossRef Sinderby C, Beck J, Spahija J, Weinberg J, Grassino A. Voluntary activation of the human diaphragm in health and disease. J Appl Physiol. 1998;85:2146–58.CrossRef
5.
go back to reference Lopata M, Evanich MJ, Lourenco RV. Relationship between mouth occlusion pressure and electrical activity of the diaphragm: effects of flow-resistive loading. Am Rev Respir Dis. 1977;116:449–55.CrossRef Lopata M, Evanich MJ, Lourenco RV. Relationship between mouth occlusion pressure and electrical activity of the diaphragm: effects of flow-resistive loading. Am Rev Respir Dis. 1977;116:449–55.CrossRef
6.
go back to reference Oyer LM, Knuth SL, Ward DK, Bartlett D Jr. Patterns of neural and muscular electrical activity in costal and crural portions of the diaphragm. J Appl Physiol. 1989;66:2092–100.CrossRef Oyer LM, Knuth SL, Ward DK, Bartlett D Jr. Patterns of neural and muscular electrical activity in costal and crural portions of the diaphragm. J Appl Physiol. 1989;66:2092–100.CrossRef
7.
go back to reference Petit JM, Milic-Emili G. Delhez L [New technic for the study of functions of the diaphragmatic muscle by means of electromyography in man]. Boll Soc Ital Biol Sper. 1959;35:2013–4.PubMed Petit JM, Milic-Emili G. Delhez L [New technic for the study of functions of the diaphragmatic muscle by means of electromyography in man]. Boll Soc Ital Biol Sper. 1959;35:2013–4.PubMed
8.
go back to reference Sinderby C, Navalesi P, Beck J, Skrobik Y, Comtois N, Friberg S, Gottfried SB, Lindstrom L. Neural control of mechanical ventilation in respiratory failure. Nat Med. 1999;5:1433–6.CrossRef Sinderby C, Navalesi P, Beck J, Skrobik Y, Comtois N, Friberg S, Gottfried SB, Lindstrom L. Neural control of mechanical ventilation in respiratory failure. Nat Med. 1999;5:1433–6.CrossRef
9.
go back to reference Bellani G, Mauri T, Coppadoro A, Grasselli G, Patroniti N, Spadaro S, Sala V, Foti G, Pesenti A. Estimation of patient’s inspiratory effort from the electrical activity of the diaphragm. Crit Care Med. 2013;41:1483–91.CrossRef Bellani G, Mauri T, Coppadoro A, Grasselli G, Patroniti N, Spadaro S, Sala V, Foti G, Pesenti A. Estimation of patient’s inspiratory effort from the electrical activity of the diaphragm. Crit Care Med. 2013;41:1483–91.CrossRef
10.
go back to reference Beloncle F, Piquilloud L, Rittayamai N, Sinderby C, Roze H, Brochard L. A diaphragmatic electrical activity-based optimization strategy during pressure support ventilation improves synchronization but does not impact work of breathing. Crit Care. 2017;21:21.CrossRef Beloncle F, Piquilloud L, Rittayamai N, Sinderby C, Roze H, Brochard L. A diaphragmatic electrical activity-based optimization strategy during pressure support ventilation improves synchronization but does not impact work of breathing. Crit Care. 2017;21:21.CrossRef
11.
go back to reference Colombo D, Cammarota G, Alemani M, Carenzo L, Barra FL, Vaschetto R, Slutsky AS, Della Corte F, Navalesi P. Efficacy of ventilator waveforms observation in detecting patient-ventilator asynchrony. Crit Care Med. 2011;39:2452–7.CrossRef Colombo D, Cammarota G, Alemani M, Carenzo L, Barra FL, Vaschetto R, Slutsky AS, Della Corte F, Navalesi P. Efficacy of ventilator waveforms observation in detecting patient-ventilator asynchrony. Crit Care Med. 2011;39:2452–7.CrossRef
12.
go back to reference Piquilloud L, Tassaux D, Bialais E, Lambermont B, Sottiaux T, Roeseler J, Laterre PF, Jolliet P, Revelly JP. Neurally adjusted ventilatory assist (NAVA) improves patient-ventilator interaction during non-invasive ventilation delivered by face mask. Intensive Care Med. 2012;38:1624–31.CrossRef Piquilloud L, Tassaux D, Bialais E, Lambermont B, Sottiaux T, Roeseler J, Laterre PF, Jolliet P, Revelly JP. Neurally adjusted ventilatory assist (NAVA) improves patient-ventilator interaction during non-invasive ventilation delivered by face mask. Intensive Care Med. 2012;38:1624–31.CrossRef
13.
go back to reference Piquilloud L, Vignaux L, Bialais E, Roeseler J, Sottiaux T, Laterre PF, Jolliet P, Tassaux D. Neurally adjusted ventilatory assist improves patient-ventilator interaction. Intensive Care Med. 2011;37:263–71.CrossRef Piquilloud L, Vignaux L, Bialais E, Roeseler J, Sottiaux T, Laterre PF, Jolliet P, Tassaux D. Neurally adjusted ventilatory assist improves patient-ventilator interaction. Intensive Care Med. 2011;37:263–71.CrossRef
14.
go back to reference Beck J, Sinderby C, Lindstrom L, Grassino A. Effects of lung volume on diaphragm EMG signal strength during voluntary contractions. J Appl Physiol. 1985;1998(85):1123–34. Beck J, Sinderby C, Lindstrom L, Grassino A. Effects of lung volume on diaphragm EMG signal strength during voluntary contractions. J Appl Physiol. 1985;1998(85):1123–34.
15.
go back to reference Nava S, Ambrosino N, Crotti P, Fracchia C, Rampulla C. Recruitment of some respiratory muscles during three maximal inspiratory manoeuvres. Thorax. 1993;48:702–7.CrossRef Nava S, Ambrosino N, Crotti P, Fracchia C, Rampulla C. Recruitment of some respiratory muscles during three maximal inspiratory manoeuvres. Thorax. 1993;48:702–7.CrossRef
16.
go back to reference Lourenco RV, Cherniack NS, Malm JR, Fishman AP. Nervous output from the respiratory center during obstructed breathing. J Appl Physiol. 1966;21:527–33.CrossRef Lourenco RV, Cherniack NS, Malm JR, Fishman AP. Nervous output from the respiratory center during obstructed breathing. J Appl Physiol. 1966;21:527–33.CrossRef
17.
go back to reference Belman MJ, Sieck GC. The ventilatory muscles. Fatigue, endurance and training. Chest. 1982;82:761–6.CrossRef Belman MJ, Sieck GC. The ventilatory muscles. Fatigue, endurance and training. Chest. 1982;82:761–6.CrossRef
18.
go back to reference Jolley CJ, Luo YM, Steier J, Reilly C, Seymour J, Lunt A, Ward K, Rafferty GF, Polkey MI, Moxham J. Neural respiratory drive in healthy subjects and in COPD. Eur Respir J. 2009;33:289–97.CrossRef Jolley CJ, Luo YM, Steier J, Reilly C, Seymour J, Lunt A, Ward K, Rafferty GF, Polkey MI, Moxham J. Neural respiratory drive in healthy subjects and in COPD. Eur Respir J. 2009;33:289–97.CrossRef
19.
go back to reference Roze H, Lafrikh A, Perrier V, Germain A, Dewitte A, Gomez F, Janvier G, Ouattara A. Daily titration of neurally adjusted ventilatory assist using the diaphragm electrical activity. Intensive Care Med. 2011;37:1087–94.CrossRef Roze H, Lafrikh A, Perrier V, Germain A, Dewitte A, Gomez F, Janvier G, Ouattara A. Daily titration of neurally adjusted ventilatory assist using the diaphragm electrical activity. Intensive Care Med. 2011;37:1087–94.CrossRef
20.
go back to reference Carteaux G, Cordoba-Izquierdo A, Lyazidi A, Heunks L, Thille AW, Brochard L. Comparison between neurally adjusted ventilatory assist and pressure support ventilation levels in terms of respiratory effort. Crit Care Med. 2016;44:503–11.CrossRef Carteaux G, Cordoba-Izquierdo A, Lyazidi A, Heunks L, Thille AW, Brochard L. Comparison between neurally adjusted ventilatory assist and pressure support ventilation levels in terms of respiratory effort. Crit Care Med. 2016;44:503–11.CrossRef
21.
go back to reference Ferreira JC, Diniz-Silva F, Moriya HT, Alencar AM, Amato MBP, Carvalho CRR. Neurally adjusted ventilatory assist (NAVA) or pressure support ventilation (PSV) during spontaneous breathing trials in critically ill patients: a crossover trial. BMC Pulm Med. 2017;17:139.CrossRef Ferreira JC, Diniz-Silva F, Moriya HT, Alencar AM, Amato MBP, Carvalho CRR. Neurally adjusted ventilatory assist (NAVA) or pressure support ventilation (PSV) during spontaneous breathing trials in critically ill patients: a crossover trial. BMC Pulm Med. 2017;17:139.CrossRef
22.
go back to reference Meric H, Calabrese P, Pradon D, Lejaille M, Lofaso F, Terzi N. Physiological comparison of breathing patterns with neurally adjusted ventilatory assist (NAVA) and pressure-support ventilation to improve NAVA settings. Respir Physiol Neurobiol. 2014;195:11–8.CrossRef Meric H, Calabrese P, Pradon D, Lejaille M, Lofaso F, Terzi N. Physiological comparison of breathing patterns with neurally adjusted ventilatory assist (NAVA) and pressure-support ventilation to improve NAVA settings. Respir Physiol Neurobiol. 2014;195:11–8.CrossRef
23.
go back to reference Pletsch-Assuncao R, Caleffi Pereira M, Ferreira JG, Cardenas LZ, de Albuquerque ALP, de Carvalho CRR, Caruso P. Accuracy of invasive and noninvasive parameters for diagnosing ventilatory overassistance during pressure support ventilation. Crit Care Med. 2018;46:411–7.CrossRef Pletsch-Assuncao R, Caleffi Pereira M, Ferreira JG, Cardenas LZ, de Albuquerque ALP, de Carvalho CRR, Caruso P. Accuracy of invasive and noninvasive parameters for diagnosing ventilatory overassistance during pressure support ventilation. Crit Care Med. 2018;46:411–7.CrossRef
24.
go back to reference Brochard L, Telias I. Bedside detection of overassistance during pressure support ventilation. Crit Care Med. 2018;46:488–90.CrossRef Brochard L, Telias I. Bedside detection of overassistance during pressure support ventilation. Crit Care Med. 2018;46:488–90.CrossRef
25.
go back to reference Scheid P, Lofaso F, Isabey D, Harf A. Respiratory response to inhaled CO2 during positive inspiratory pressure in humans. J Appl Physiol. 1985;1994(77):876–82. Scheid P, Lofaso F, Isabey D, Harf A. Respiratory response to inhaled CO2 during positive inspiratory pressure in humans. J Appl Physiol. 1985;1994(77):876–82.
26.
go back to reference Thille AW, Rodriguez P, Cabello B, Lellouche F, Brochard L. Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med. 2006;32:1515–22.CrossRef Thille AW, Rodriguez P, Cabello B, Lellouche F, Brochard L. Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med. 2006;32:1515–22.CrossRef
27.
go back to reference L’Her E, Deye N, Lellouche F, Taille S, Demoule A, Fraticelli A, Mancebo J, Brochard L. Physiologic effects of noninvasive ventilation during acute lung injury. Am J Respir Crit Care Med. 2005;172:1112–8.CrossRef L’Her E, Deye N, Lellouche F, Taille S, Demoule A, Fraticelli A, Mancebo J, Brochard L. Physiologic effects of noninvasive ventilation during acute lung injury. Am J Respir Crit Care Med. 2005;172:1112–8.CrossRef
28.
go back to reference Aslanian P, El Atrous S, Isabey D, Valente E, Corsi D, Harf A, Lemaire F, Brochard L. Effects of flow triggering on breathing effort during partial ventilatory support. Am J Respir Crit Care Med. 1998;157:135–43.CrossRef Aslanian P, El Atrous S, Isabey D, Valente E, Corsi D, Harf A, Lemaire F, Brochard L. Effects of flow triggering on breathing effort during partial ventilatory support. Am J Respir Crit Care Med. 1998;157:135–43.CrossRef
29.
go back to reference Cabello B, Mancebo J. Work of breathing. Intensive Care Med. 2006;32:1311–4.CrossRef Cabello B, Mancebo J. Work of breathing. Intensive Care Med. 2006;32:1311–4.CrossRef
30.
go back to reference Beck J, Sinderby C, Weinberg J, Grassino A. Effects of muscle-to-electrode distance on the human diaphragm electromyogram. J Appl Physiol. 1995;79:975–85.CrossRef Beck J, Sinderby C, Weinberg J, Grassino A. Effects of muscle-to-electrode distance on the human diaphragm electromyogram. J Appl Physiol. 1995;79:975–85.CrossRef
31.
go back to reference Sinderby CA, Beck JC, Lindstrom LH, Grassino AE. Enhancement of signal quality in esophageal recordings of diaphragm EMG. J Appl Physiol. 1985;1997(82):1370–7. Sinderby CA, Beck JC, Lindstrom LH, Grassino AE. Enhancement of signal quality in esophageal recordings of diaphragm EMG. J Appl Physiol. 1985;1997(82):1370–7.
32.
go back to reference American Thoracic Society/European Respiratory S. ATS/ERS Statement on respiratory muscle testing. Am J Respir Crit Care Med. 2002;166:518–624.CrossRef American Thoracic Society/European Respiratory S. ATS/ERS Statement on respiratory muscle testing. Am J Respir Crit Care Med. 2002;166:518–624.CrossRef
33.
go back to reference Calabrese P, Dinh TP, Eberhard A, Bachy JP, Benchetrit G. Effects of resistive loading on the pattern of breathing. Respir Physiol. 1998;113:167–79.CrossRef Calabrese P, Dinh TP, Eberhard A, Bachy JP, Benchetrit G. Effects of resistive loading on the pattern of breathing. Respir Physiol. 1998;113:167–79.CrossRef
34.
go back to reference Muttini S, Villani PG, Trimarco R, Bellani G, Grasselli G, Patroniti N. Relation between peak and integral of the diaphragm electromyographic activity at different levels of support during weaning from mechanical ventilation: a physiologic study. J Crit Care. 2015;30:7–12.CrossRef Muttini S, Villani PG, Trimarco R, Bellani G, Grasselli G, Patroniti N. Relation between peak and integral of the diaphragm electromyographic activity at different levels of support during weaning from mechanical ventilation: a physiologic study. J Crit Care. 2015;30:7–12.CrossRef
35.
go back to reference Brander L, Leong-Poi H, Beck J, Brunet F, Hutchison SJ, Slutsky AS, Sinderby C. Titration and implementation of neurally adjusted ventilatory assist in critically ill patients. Chest. 2009;135:695–703.CrossRef Brander L, Leong-Poi H, Beck J, Brunet F, Hutchison SJ, Slutsky AS, Sinderby C. Titration and implementation of neurally adjusted ventilatory assist in critically ill patients. Chest. 2009;135:695–703.CrossRef
36.
go back to reference Sinderby C, Beck J, Spahija J, de Marchie M, Lacroix J, Navalesi P, Slutsky AS. Inspiratory muscle unloading by neurally adjusted ventilatory assist during maximal inspiratory efforts in healthy subjects. Chest. 2007;131:711–7.CrossRef Sinderby C, Beck J, Spahija J, de Marchie M, Lacroix J, Navalesi P, Slutsky AS. Inspiratory muscle unloading by neurally adjusted ventilatory assist during maximal inspiratory efforts in healthy subjects. Chest. 2007;131:711–7.CrossRef
37.
go back to reference Mauri T, Grasselli G, Suriano G, Eronia N, Spadaro S, Turrini C, Patroniti N, Bellani G, Pesenti A. Control of respiratory drive and effort in extracorporeal membrane oxygenation patients recovering from severe acute respiratory distress syndrome. Anesthesiology. 2016;125:159–67.CrossRef Mauri T, Grasselli G, Suriano G, Eronia N, Spadaro S, Turrini C, Patroniti N, Bellani G, Pesenti A. Control of respiratory drive and effort in extracorporeal membrane oxygenation patients recovering from severe acute respiratory distress syndrome. Anesthesiology. 2016;125:159–67.CrossRef
38.
go back to reference Beck J, Gottfried SB, Navalesi P, Skrobik Y, Comtois N, Rossini M, Sinderby C. Electrical activity of the diaphragm during pressure support ventilation in acute respiratory failure. Am J Respir Crit Care Med. 2001;164:419–24.CrossRef Beck J, Gottfried SB, Navalesi P, Skrobik Y, Comtois N, Rossini M, Sinderby C. Electrical activity of the diaphragm during pressure support ventilation in acute respiratory failure. Am J Respir Crit Care Med. 2001;164:419–24.CrossRef
39.
go back to reference Patroniti N, Bellani G, Saccavino E, Zanella A, Grasselli G, Isgro S, Milan M, Foti G, Pesenti A. Respiratory pattern during neurally adjusted ventilatory assist in acute respiratory failure patients. Intensive Care Med. 2012;38:230–9.CrossRef Patroniti N, Bellani G, Saccavino E, Zanella A, Grasselli G, Isgro S, Milan M, Foti G, Pesenti A. Respiratory pattern during neurally adjusted ventilatory assist in acute respiratory failure patients. Intensive Care Med. 2012;38:230–9.CrossRef
40.
go back to reference Moerer O, Beck J, Brander L, Costa R, Quintel M, Slutsky AS, Brunet F, Sinderby C. Subject-ventilator synchrony during neural versus pneumatically triggered non-invasive helmet ventilation. Intensive Care Med. 2008;34:1615–23.CrossRef Moerer O, Beck J, Brander L, Costa R, Quintel M, Slutsky AS, Brunet F, Sinderby C. Subject-ventilator synchrony during neural versus pneumatically triggered non-invasive helmet ventilation. Intensive Care Med. 2008;34:1615–23.CrossRef
41.
go back to reference Gandevia SC, McKenzie DK. Human diaphragmatic EMG: changes with lung volume and posture during supramaximal phrenic stimulation. J Appl Physiol. 1985;1986(60):1420–8. Gandevia SC, McKenzie DK. Human diaphragmatic EMG: changes with lung volume and posture during supramaximal phrenic stimulation. J Appl Physiol. 1985;1986(60):1420–8.
42.
go back to reference Gilbert R, Auchincloss JH Jr, Brodsky J, Boden W. Changes in tidal volume, frequency, and ventilation induced by their measurement. J Appl Physiol. 1972;33:252–4.CrossRef Gilbert R, Auchincloss JH Jr, Brodsky J, Boden W. Changes in tidal volume, frequency, and ventilation induced by their measurement. J Appl Physiol. 1972;33:252–4.CrossRef
43.
go back to reference Barwing J, Ambold M, Linden N, Quintel M, Moerer O. Evaluation of the catheter positioning for neurally adjusted ventilatory assist. Intensive Care Med. 2009;35:1809–14.CrossRef Barwing J, Ambold M, Linden N, Quintel M, Moerer O. Evaluation of the catheter positioning for neurally adjusted ventilatory assist. Intensive Care Med. 2009;35:1809–14.CrossRef
Metadata
Title
Information conveyed by electrical diaphragmatic activity during unstressed, stressed and assisted spontaneous breathing: a physiological study
Authors
Lise Piquilloud
François Beloncle
Jean-Christophe M. Richard
Jordi Mancebo
Alain Mercat
Laurent Brochard
Publication date
01-12-2019
Publisher
Springer International Publishing
Published in
Annals of Intensive Care / Issue 1/2019
Electronic ISSN: 2110-5820
DOI
https://doi.org/10.1186/s13613-019-0564-1

Other articles of this Issue 1/2019

Annals of Intensive Care 1/2019 Go to the issue