Skip to main content
Top
Published in: BMC Infectious Diseases 1/2023

Open Access 01-12-2023 | Influenza | Research

Association between ozone and influenza transmissibility in China

Authors: Jiao Yang, Ting Zhang, Liuyang Yang, Xuan Han, Xingxing Zhang, Qing Wang, Luzhao Feng, Weizhong Yang

Published in: BMC Infectious Diseases | Issue 1/2023

Login to get access

Abstract

Background

Common air pollutants such as ozone (O3), sulfur dioxide (SO2), nitrogen dioxide (NO2), and particulate matter play significant roles as influential factors in influenza-like illness (ILI). However, evidence regarding the impact of O3 on influenza transmissibility in multi-subtropical regions is limited, and our understanding of the effects of O3 on influenza transmissibility in temperate regions remain unknown.

Methods

We studied the transmissibility of influenza in eight provinces across both temperate and subtropical regions in China based on 2013 to 2018 provincial-level surveillance data on influenza-like illness (ILI) incidence and viral activity. We estimated influenza transmissibility by using the instantaneous reproduction number (\({R}_{t}\)) and examined the relationships between transmissibility and daily O3 concentrations, air temperature, humidity, and school holidays. We developed a multivariable regression model for \({R}_{t}\) to quantify the contribution of O3 to variations in transmissibility.

Results

Our findings revealed a significant association between O3 and influenza transmissibility. In Beijing, Tianjin, Shanghai and Jiangsu, the association exhibited a U-shaped trend. In Liaoning, Gansu, Hunan, and Guangdong, the association was L-shaped. When aggregating data across all eight provinces, a U-shaped association was emerged. O3 was able to accounted for up to 13% of the variance in \({R}_{t}\). O3 plus other environmental drivers including mean daily temperature, relative humidity, absolute humidity, and school holidays explained up to 20% of the variance in \({R}_{t}\).

Conclusions

O3 was a significant driver of influenza transmissibility, and the association between O3 and influenza transmissibility tended to display a U-shaped pattern.
Appendix
Available only for authorised users
Literature
1.
go back to reference Tamerius J, Nelson MI, Zhou SZ, Viboud C, Miller MA, Alonso WJ. Global influenza seasonality: reconciling patterns across temperate and tropical regions. Environ Health Perspect. 2011;119(4):439–45.PubMedCrossRef Tamerius J, Nelson MI, Zhou SZ, Viboud C, Miller MA, Alonso WJ. Global influenza seasonality: reconciling patterns across temperate and tropical regions. Environ Health Perspect. 2011;119(4):439–45.PubMedCrossRef
2.
go back to reference Azziz Baumgartner E, Dao CN, Nasreen S, Bhuiyan MU, Mah EMS, Al Mamun A, Sharker MA, Zaman RU, Cheng PY, Klimov AI, et al. Seasonality, timing, and climate drivers of influenza activity worldwide. J Infect Dis. 2012;206(6):838–46.PubMedCrossRef Azziz Baumgartner E, Dao CN, Nasreen S, Bhuiyan MU, Mah EMS, Al Mamun A, Sharker MA, Zaman RU, Cheng PY, Klimov AI, et al. Seasonality, timing, and climate drivers of influenza activity worldwide. J Infect Dis. 2012;206(6):838–46.PubMedCrossRef
3.
go back to reference Yu H, Alonso WJ, Feng L, Tan Y, Shu Y, Yang W, Viboud C. Characterization of regional influenza seasonality patterns in China and implications for vaccination strategies: spatio-temporal modeling of surveillance data. PLoS Med. 2013;10(11):e1001552.PubMedPubMedCentralCrossRef Yu H, Alonso WJ, Feng L, Tan Y, Shu Y, Yang W, Viboud C. Characterization of regional influenza seasonality patterns in China and implications for vaccination strategies: spatio-temporal modeling of surveillance data. PLoS Med. 2013;10(11):e1001552.PubMedPubMedCentralCrossRef
4.
go back to reference Yang J, Guo X, Zhang T, Wang Q, Zhang X, Yang J, Lai S, Feng L, Yang W. The impact of urbanization and human mobility on seasonal influenza in Northern China. Viruses. 2022;14(11):2563.PubMedPubMedCentralCrossRef Yang J, Guo X, Zhang T, Wang Q, Zhang X, Yang J, Lai S, Feng L, Yang W. The impact of urbanization and human mobility on seasonal influenza in Northern China. Viruses. 2022;14(11):2563.PubMedPubMedCentralCrossRef
5.
6.
go back to reference Ravelli E, Gonzales Martinez R. Environmental risk factors of airborne viral transmission: humidity, Influenza and SARS-CoV-2 in the Netherlands. Spat Spatiotemporal Epidemiol. 2022;41:100432.PubMedCrossRef Ravelli E, Gonzales Martinez R. Environmental risk factors of airborne viral transmission: humidity, Influenza and SARS-CoV-2 in the Netherlands. Spat Spatiotemporal Epidemiol. 2022;41:100432.PubMedCrossRef
7.
go back to reference Feng L, Zhang T, Wang Q, Xie Y, Peng Z, Zheng J, Qin Y, Zhang M, Lai S, Wang D, et al. Impact of COVID-19 outbreaks and interventions on influenza in China and the United States. Nat Commun. 2021;12(1):3249.PubMedPubMedCentralCrossRef Feng L, Zhang T, Wang Q, Xie Y, Peng Z, Zheng J, Qin Y, Zhang M, Lai S, Wang D, et al. Impact of COVID-19 outbreaks and interventions on influenza in China and the United States. Nat Commun. 2021;12(1):3249.PubMedPubMedCentralCrossRef
8.
go back to reference Xu Z, Hu W, Williams G, Clements AC, Kan H, Tong S. Air pollution, temperature and pediatric influenza in Brisbane. Australia Environ Intern. 2013;59:384–8.CrossRef Xu Z, Hu W, Williams G, Clements AC, Kan H, Tong S. Air pollution, temperature and pediatric influenza in Brisbane. Australia Environ Intern. 2013;59:384–8.CrossRef
9.
go back to reference Earn DJD, Dushoff J, Levin SA. Levin SAJTiE, Evolution: Ecology and evolution of the flu. Trends Ecol Evol. 2002;17:334–40.CrossRef Earn DJD, Dushoff J, Levin SA. Levin SAJTiE, Evolution: Ecology and evolution of the flu. Trends Ecol Evol. 2002;17:334–40.CrossRef
10.
go back to reference Feng C, Li J, Sun W, Zhang Y, Wang Q. Impact of ambient fine particulate matter (PM2.5) exposure on the risk of influenza-like-illness: a time-series analysis in Beijing, China. China Environ Health. 2016;15:17.PubMedCrossRef Feng C, Li J, Sun W, Zhang Y, Wang Q. Impact of ambient fine particulate matter (PM2.5) exposure on the risk of influenza-like-illness: a time-series analysis in Beijing, China. China Environ Health. 2016;15:17.PubMedCrossRef
11.
go back to reference Ali ST, Wu P, Cauchemez S, He D, Fang VJ, Cowling BJ, Tian L. Ambient ozone and influenza transmissibility in Hong Kong. Eur Respir J. 2018;51(5):1800369.PubMedPubMedCentralCrossRef Ali ST, Wu P, Cauchemez S, He D, Fang VJ, Cowling BJ, Tian L. Ambient ozone and influenza transmissibility in Hong Kong. Eur Respir J. 2018;51(5):1800369.PubMedPubMedCentralCrossRef
13.
go back to reference Wei J, Li Z, Li K, Dickerson RR, Pinker RT, Wang J, Liu X, Sun L, Xue W, Cribb M. Full-coverage mapping and spatiotemporal variations of ground-level ozone (O3) pollution from 2013 to 2020 across China. Remote Sensing Environ. 2022;270:112775.CrossRef Wei J, Li Z, Li K, Dickerson RR, Pinker RT, Wang J, Liu X, Sun L, Xue W, Cribb M. Full-coverage mapping and spatiotemporal variations of ground-level ozone (O3) pollution from 2013 to 2020 across China. Remote Sensing Environ. 2022;270:112775.CrossRef
14.
go back to reference He L, Wei J, Wang Y, Shang Q, Liu J, Yin Y, Frankenberg C, Jiang JH, Li Z, Yung YL. Marked impacts of pollution mitigation on crop yields in China. Earth’s Future. 2022;10(11):e2022EF002936.CrossRef He L, Wei J, Wang Y, Shang Q, Liu J, Yin Y, Frankenberg C, Jiang JH, Li Z, Yung YL. Marked impacts of pollution mitigation on crop yields in China. Earth’s Future. 2022;10(11):e2022EF002936.CrossRef
15.
go back to reference Lei H, Xu M, Wang X, Xie Y, Du X, Chen T, Yang L, Wang D, Shu Y. nonpharmaceutical interventions used to control COVID-19 reduced seasonal influenza transmission in China. J Infect Dis. 2020;222(11):1780–3.PubMedCrossRef Lei H, Xu M, Wang X, Xie Y, Du X, Chen T, Yang L, Wang D, Shu Y. nonpharmaceutical interventions used to control COVID-19 reduced seasonal influenza transmission in China. J Infect Dis. 2020;222(11):1780–3.PubMedCrossRef
16.
go back to reference Goldstein E, Cobey S, Takahashi S, Miller JC, Lipsitch M. Predicting the epidemic sizes of influenza A/H1N1, A/H3N2, and B: a statistical method. PLoS Med. 2011;8(7):e1001051.PubMedPubMedCentralCrossRef Goldstein E, Cobey S, Takahashi S, Miller JC, Lipsitch M. Predicting the epidemic sizes of influenza A/H1N1, A/H3N2, and B: a statistical method. PLoS Med. 2011;8(7):e1001051.PubMedPubMedCentralCrossRef
17.
go back to reference Fowlkes A, Dasgupta S, Chao E, Lemmings J, Goodin K, Harris M, Martin K, Feist M, Wu W, Boulton RJI, et al. Estimating influenza incidence and rates of influenza-like illness in the outpatient setting. Influenza Respir Viruses. 2013;7(5):694–700.CrossRef Fowlkes A, Dasgupta S, Chao E, Lemmings J, Goodin K, Harris M, Martin K, Feist M, Wu W, Boulton RJI, et al. Estimating influenza incidence and rates of influenza-like illness in the outpatient setting. Influenza Respir Viruses. 2013;7(5):694–700.CrossRef
18.
go back to reference Goldstein E, Cobey S, Takahashi S, Miller JC, Lipsitch MJPm. Predicting the epidemic sizes of influenza A/H1N1, A/H3N2, and B: a statistical method. PLoS Med. 2011;8(7):e1001051.PubMedPubMedCentralCrossRef Goldstein E, Cobey S, Takahashi S, Miller JC, Lipsitch MJPm. Predicting the epidemic sizes of influenza A/H1N1, A/H3N2, and B: a statistical method. PLoS Med. 2011;8(7):e1001051.PubMedPubMedCentralCrossRef
19.
go back to reference Rosano A, Bella A, Gesualdo F, Acampora A, Pezzotti P, Marchetti S, Ricciardi W. Rizzo CJIJoID: Investigating the impact of influenza on excess mortality in all ages in Italy during recent seasons (2013/14–2016/17 seasons). Intern J Infect Dis. 2019;88:127–34.CrossRef Rosano A, Bella A, Gesualdo F, Acampora A, Pezzotti P, Marchetti S, Ricciardi W. Rizzo CJIJoID: Investigating the impact of influenza on excess mortality in all ages in Italy during recent seasons (2013/14–2016/17 seasons). Intern J Infect Dis. 2019;88:127–34.CrossRef
20.
go back to reference Lei H, Jiang H, Zhang N, Duan X, Chen T, Yang L, Wang D, Shu Y. Increased urbanization reduced the effectiveness of school closures on seasonal influenza epidemics in China. Infect Dis Poverty. 2021;10(1):127.PubMedPubMedCentralCrossRef Lei H, Jiang H, Zhang N, Duan X, Chen T, Yang L, Wang D, Shu Y. Increased urbanization reduced the effectiveness of school closures on seasonal influenza epidemics in China. Infect Dis Poverty. 2021;10(1):127.PubMedPubMedCentralCrossRef
21.
go back to reference Wong JY, Wu P, Nishiura H, Goldstein E, Lau EH, Yang L, Chuang SK, Tsang T, Peiris JS, Wu JT, et al. Infection fatality risk of the pandemic A(H1N1)2009 virus in Hong Kong. Am J Epidemiol. 2013;177(8):834–40.PubMedPubMedCentralCrossRef Wong JY, Wu P, Nishiura H, Goldstein E, Lau EH, Yang L, Chuang SK, Tsang T, Peiris JS, Wu JT, et al. Infection fatality risk of the pandemic A(H1N1)2009 virus in Hong Kong. Am J Epidemiol. 2013;177(8):834–40.PubMedPubMedCentralCrossRef
22.
go back to reference Ali ST, Cowling BJ, Lau EHY, Fang VJ, Leung GM. Mitigation of Influenza B epidemic with school closures, Hong Kong, 2018. Emerg Infect Dis. 2018;24(11):2071–3.PubMedPubMedCentralCrossRef Ali ST, Cowling BJ, Lau EHY, Fang VJ, Leung GM. Mitigation of Influenza B epidemic with school closures, Hong Kong, 2018. Emerg Infect Dis. 2018;24(11):2071–3.PubMedPubMedCentralCrossRef
23.
go back to reference Ali ST, Cowling BJ, Wong JY, Chen D, Shan S, Lau EHY, He D, Tian L, Li Z, Wu P. Influenza seasonality and its environmental driving factors in mainland China and Hong Kong. Sci Total Environ. 2022;818:151724.PubMedCrossRef Ali ST, Cowling BJ, Wong JY, Chen D, Shan S, Lau EHY, He D, Tian L, Li Z, Wu P. Influenza seasonality and its environmental driving factors in mainland China and Hong Kong. Sci Total Environ. 2022;818:151724.PubMedCrossRef
24.
go back to reference Liu XX, Li Y, Zhu Y, Zhang J, Li X, Zhang J, Zhao K, Hu M, Qin G, Wang XL. Seasonal pattern of influenza activity in a subtropical city, China, 2010–2015. Sci Rep. 2017;7(1):17534.PubMedPubMedCentralCrossRef Liu XX, Li Y, Zhu Y, Zhang J, Li X, Zhang J, Zhao K, Hu M, Qin G, Wang XL. Seasonal pattern of influenza activity in a subtropical city, China, 2010–2015. Sci Rep. 2017;7(1):17534.PubMedPubMedCentralCrossRef
25.
go back to reference Cori A, Ferguson NM, Fraser C, Cauchemez S. A new framework and software to estimate time-varying reproduction numbers during epidemics. Am J Epidemiol. 2013;178(9):1505–12.PubMedCrossRef Cori A, Ferguson NM, Fraser C, Cauchemez S. A new framework and software to estimate time-varying reproduction numbers during epidemics. Am J Epidemiol. 2013;178(9):1505–12.PubMedCrossRef
26.
go back to reference Cauchemez S, Donnelly CA, Reed C, Ghani AC, Fraser C, Kent CK, Finelli L, Ferguson NM. Household transmission of 2009 pandemic influenza A (H1N1) virus in the United States. N Engl J Med. 2009;361(27):2619–27.PubMedCrossRef Cauchemez S, Donnelly CA, Reed C, Ghani AC, Fraser C, Kent CK, Finelli L, Ferguson NM. Household transmission of 2009 pandemic influenza A (H1N1) virus in the United States. N Engl J Med. 2009;361(27):2619–27.PubMedCrossRef
27.
go back to reference Wang X, Cai J, Liu X, Wang B, Yan L, Liu R, Nie Y, Wang Y, Zhang X, Zhang X. Impact of PM(2.5) and ozone on incidence of influenza in Shijiazhuang, China: a time-series study. Environ Sci Pollut Res Int. 2022;30:1–18. Wang X, Cai J, Liu X, Wang B, Yan L, Liu R, Nie Y, Wang Y, Zhang X, Zhang X. Impact of PM(2.5) and ozone on incidence of influenza in Shijiazhuang, China: a time-series study. Environ Sci Pollut Res Int. 2022;30:1–18.
28.
go back to reference Tseng CC, Li CSJAS. Technology: Ozone for inactivation of aerosolized bacteriophages. Aerosol Sci Technol. 2006;40(9):683–9.CrossRef Tseng CC, Li CSJAS. Technology: Ozone for inactivation of aerosolized bacteriophages. Aerosol Sci Technol. 2006;40(9):683–9.CrossRef
29.
go back to reference USEPA: Integrated Science Assessment for Ozone and Related Photochemical Oxidants; 2020. USEPA: Integrated Science Assessment for Ozone and Related Photochemical Oxidants; 2020.
30.
go back to reference Jakab GJ, Hmieleski RR. Reduction of influenza virus pathogenesis by exposure to 0.5 ppm ozone. J Toxicol Environ Health. 1988;23(4):455–72.PubMedCrossRef Jakab GJ, Hmieleski RR. Reduction of influenza virus pathogenesis by exposure to 0.5 ppm ozone. J Toxicol Environ Health. 1988;23(4):455–72.PubMedCrossRef
31.
go back to reference Brown J. Bowman CJUEPAW, DC. USA: Integrated science assessment for ozone and related photochemical oxidants; 2013. Brown J. Bowman CJUEPAW, DC. USA: Integrated science assessment for ozone and related photochemical oxidants; 2013.
32.
go back to reference Durrani F, Phelps DS, Weisz J, Silveyra P, Hu S, Mikerov AN, Floros JJElr. Gonadal hormones and oxidative stress interaction differentially affects survival of male and female mice after lung Klebsiella pneumoniae infection. Experiment Lung Res. 2012;38(4):165–72.CrossRef Durrani F, Phelps DS, Weisz J, Silveyra P, Hu S, Mikerov AN, Floros JJElr. Gonadal hormones and oxidative stress interaction differentially affects survival of male and female mice after lung Klebsiella pneumoniae infection. Experiment Lung Res. 2012;38(4):165–72.CrossRef
33.
go back to reference Hansen JS, Nørgaard AW, Koponen IK, Sørli JB, Paidi MD, Hansen SW, Clausen PA, Nielsen GD, Wolkoff P, Larsen ST. Limonene and its ozone-initiated reaction products attenuate allergic lung inflammation in mice. J Immunotoxicol. 2016;13(6):793–803.PubMedCrossRef Hansen JS, Nørgaard AW, Koponen IK, Sørli JB, Paidi MD, Hansen SW, Clausen PA, Nielsen GD, Wolkoff P, Larsen ST. Limonene and its ozone-initiated reaction products attenuate allergic lung inflammation in mice. J Immunotoxicol. 2016;13(6):793–803.PubMedCrossRef
34.
go back to reference Bao A, Liang L, Li F, Zhang M, Zhou X. Effects of acute ozone exposure on lung peak allergic inflammation of mice. Front Biosci (Landmark Ed). 2013;18(3):838–51.PubMed Bao A, Liang L, Li F, Zhang M, Zhou X. Effects of acute ozone exposure on lung peak allergic inflammation of mice. Front Biosci (Landmark Ed). 2013;18(3):838–51.PubMed
Metadata
Title
Association between ozone and influenza transmissibility in China
Authors
Jiao Yang
Ting Zhang
Liuyang Yang
Xuan Han
Xingxing Zhang
Qing Wang
Luzhao Feng
Weizhong Yang
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2023
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-023-08769-w

Other articles of this Issue 1/2023

BMC Infectious Diseases 1/2023 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine