Skip to main content
Top
Published in: Virology Journal 1/2013

Open Access 01-12-2013 | Research

Influenza A/Hong Kong/156/1997(H5N1) virus NS1 gene mutations F103L and M106I both increase IFN antagonism, virulence and cytoplasmic localization but differ in binding to RIG-I and CPSF30

Authors: Samar K Dankar, Elena Miranda, Nicole E Forbes, Martin Pelchat, Ali Tavassoli, Mohammed Selman, Jihui Ping, Jianjun Jia, Earl G Brown

Published in: Virology Journal | Issue 1/2013

Login to get access

Abstract

Background

The genetic basis for avian to mammalian host switching in influenza A virus is largely unknown. The human A/HK/156/1997 (H5N1) virus that transmitted from poultry possesses NS1 gene mutations F103L + M106I that are virulence determinants in the mouse model of pneumonia; however their individual roles have not been determined. The emergent A/Shanghai/patient1/2013(H7N9)-like viruses also possess these mutations which may contribute to their virulence and ability to switch species.

Methods

NS1 mutant viruses were constructed by reverse genetics and site directed mutagenesis on human and mouse-adapted backbones. Mouse infections assessed virulence, virus yield, tissue infection, and IFN induction. NS1 protein properties were assessed for subcellular distribution, IFN antagonism (mouse and human), CPSF30 and RIG-I domain binding, host transcription (microarray); and the natural prevalence of 103L and 106I mutants was assessed.

Results

Each of the F103L and M106I mutations contributes additively to virulence to reduce the lethal dose by >800 and >3,200 fold respectively by mediating alveolar tissue infection with >100 fold increased infectious yields. The 106I NS1 mutant lost CPSF binding but the 103L mutant maintained binding that correlated with an increased general decrease in host gene expression in human but not mouse cells. Each mutation positively modulated the inhibition of IFN induction in mouse cells and activation of the IFN-β promoter in human cells but not in combination in human cells indicating negative epistasis. Each of the F103L and M106I mutations restored a defect in cytoplasmic localization of H5N1 NS1 in mouse cells. Human H1N1 and H3N2 NS1 proteins bound to the CARD, helicase and RD RIG-I domains, whereas the H5N1 NS1 with the same consensus 103F and 106M mutations did not bind these domains, which was totally or partially restored by the M106I or F103L mutations respectively.

Conclusions

The F103L and M106I mutations in the H5N1 NS1 protein each increased IFN antagonism and mediated interstitial pneumonia in mice that was associated with increased cytoplasmic localization and altered host factor binding. These mutations may contribute to the ability of previous HPAI H5N1 and recent LPAI H7N9 and H6N1 (NS1-103L+106M) viruses to switch hosts and cause disease in humans.
Appendix
Available only for authorised users
Literature
1.
go back to reference Guan Y, Shortridge KF, Krauss S, Webster RG: Molecular characterization of H9N2 influenza viruses: were they the donors of the “internal” genes of H5N1 viruses in Hong Kong?. Proc Natl Acad Sci USA. 1999, 96: 9363-9367. 10.1073/pnas.96.16.9363.PubMedPubMedCentralCrossRef Guan Y, Shortridge KF, Krauss S, Webster RG: Molecular characterization of H9N2 influenza viruses: were they the donors of the “internal” genes of H5N1 viruses in Hong Kong?. Proc Natl Acad Sci USA. 1999, 96: 9363-9367. 10.1073/pnas.96.16.9363.PubMedPubMedCentralCrossRef
2.
go back to reference Kageyama T, Fujisaki S, Takashita E, Xu H, Yamada S, Uchida Y, et al: Genetic analysis of novel avian A(H7N9) influenza viruses isolated from patients in China, February to April 2013. Euro Surveill. 2013, 18 (15): 20453-PubMed Kageyama T, Fujisaki S, Takashita E, Xu H, Yamada S, Uchida Y, et al: Genetic analysis of novel avian A(H7N9) influenza viruses isolated from patients in China, February to April 2013. Euro Surveill. 2013, 18 (15): 20453-PubMed
3.
go back to reference Liu D, Shi W, Shi Y, Wang D, Xiao H, Li W, et al: Origin and diversity of novel avian influenza A H7N9 viruses causing human infection: phylogenetic, structural, and coalescent analyses. Lancet. 2013, 381 (9881): 1926-1932. 10.1016/S0140-6736(13)60938-1.PubMedCrossRef Liu D, Shi W, Shi Y, Wang D, Xiao H, Li W, et al: Origin and diversity of novel avian influenza A H7N9 viruses causing human infection: phylogenetic, structural, and coalescent analyses. Lancet. 2013, 381 (9881): 1926-1932. 10.1016/S0140-6736(13)60938-1.PubMedCrossRef
4.
go back to reference Claas EC, de Jong JC, van Beek R, Rimmelzwaan GF, Osterhaus AD: Human influenza virUSA/HongKong/156/97 (H5N1) infection. Vaccine. 1998, 16: 977-978. 10.1016/S0264-410X(98)00005-X.PubMedCrossRef Claas EC, de Jong JC, van Beek R, Rimmelzwaan GF, Osterhaus AD: Human influenza virUSA/HongKong/156/97 (H5N1) infection. Vaccine. 1998, 16: 977-978. 10.1016/S0264-410X(98)00005-X.PubMedCrossRef
5.
go back to reference Gao R, Cao B, Hu Y, Feng Z, Wang D, Hu W, et al: Human Infection with a Novel Avian-Origin Influenza A (H7N9) Virus. N Engl J Med. 2013, 368: 1888-1897. 10.1056/NEJMoa1304459.PubMedCrossRef Gao R, Cao B, Hu Y, Feng Z, Wang D, Hu W, et al: Human Infection with a Novel Avian-Origin Influenza A (H7N9) Virus. N Engl J Med. 2013, 368: 1888-1897. 10.1056/NEJMoa1304459.PubMedCrossRef
6.
go back to reference Yang F, Wang J, Jiang L, Jin J, Shao L, Zhang Y, et al: A fatal case caused by novel H7N9 avian influenza A virus in China. Emerg Microbes Infect. 2013, 2: e19-10.1038/emi.2013.22.PubMedPubMedCentralCrossRef Yang F, Wang J, Jiang L, Jin J, Shao L, Zhang Y, et al: A fatal case caused by novel H7N9 avian influenza A virus in China. Emerg Microbes Infect. 2013, 2: e19-10.1038/emi.2013.22.PubMedPubMedCentralCrossRef
7.
go back to reference Bi J, Deng G, Dong J, Kong F, Li X, Xu Q, et al: Phylogenetic and molecular characterization of H9N2 influenza isolates from chickens in Northern China from 2007–2009. PLoS One. 2010, 5 (9): e13063-10.1371/journal.pone.0013063.PubMedPubMedCentralCrossRef Bi J, Deng G, Dong J, Kong F, Li X, Xu Q, et al: Phylogenetic and molecular characterization of H9N2 influenza isolates from chickens in Northern China from 2007–2009. PLoS One. 2010, 5 (9): e13063-10.1371/journal.pone.0013063.PubMedPubMedCentralCrossRef
8.
go back to reference Deng G, Bi J, Kong F, Li X, Xu Q, Dong J, et al: Acute respiratory distress syndrome induced by H9N2 virus in mice. Arch Virol. 2010, 155: 187-195. 10.1007/s00705-009-0560-0.PubMedCrossRef Deng G, Bi J, Kong F, Li X, Xu Q, Dong J, et al: Acute respiratory distress syndrome induced by H9N2 virus in mice. Arch Virol. 2010, 155: 187-195. 10.1007/s00705-009-0560-0.PubMedCrossRef
9.
go back to reference Guo YJ, Krauss S, Senne DA, Mo IP, Lo KS, Xiong XP, et al: Characterization of the pathogenicity of members of the newly established H9N2 influenza virus lineages in Asia. Virology. 2000, 267: 279-288. 10.1006/viro.1999.0115.PubMedCrossRef Guo YJ, Krauss S, Senne DA, Mo IP, Lo KS, Xiong XP, et al: Characterization of the pathogenicity of members of the newly established H9N2 influenza virus lineages in Asia. Virology. 2000, 267: 279-288. 10.1006/viro.1999.0115.PubMedCrossRef
10.
go back to reference Selman M, Dankar SK, Forbes NE, Jia JJ, Brown EG: Adaptive mutation in influenza A virus non-structural gene is linked to host switching and induces a novel protein by alternative splicing. Emerg Microbes Infect. 2012, 1: e42-10.1038/emi.2012.38.PubMedPubMedCentralCrossRef Selman M, Dankar SK, Forbes NE, Jia JJ, Brown EG: Adaptive mutation in influenza A virus non-structural gene is linked to host switching and induces a novel protein by alternative splicing. Emerg Microbes Infect. 2012, 1: e42-10.1038/emi.2012.38.PubMedPubMedCentralCrossRef
12.
go back to reference Herfst S, Schrauwen EJ, Linster M, Chutinimitkul S, De WE, Munster VJ, et al: Airborne transmission of influenza A/H5N1 virus between ferrets. Science. 2012, 336: 1534-1541. 10.1126/science.1213362.PubMedCrossRef Herfst S, Schrauwen EJ, Linster M, Chutinimitkul S, De WE, Munster VJ, et al: Airborne transmission of influenza A/H5N1 virus between ferrets. Science. 2012, 336: 1534-1541. 10.1126/science.1213362.PubMedCrossRef
13.
go back to reference Dankar SK, Wang S, Ping J, Forbes NE, Keleta L, Li Y, et al: Influenza A virus NS1 gene mutations F103L and M106I increase replication and virulence. Virol J. 2011, 8: 13-10.1186/1743-422X-8-13.PubMedPubMedCentralCrossRef Dankar SK, Wang S, Ping J, Forbes NE, Keleta L, Li Y, et al: Influenza A virus NS1 gene mutations F103L and M106I increase replication and virulence. Virol J. 2011, 8: 13-10.1186/1743-422X-8-13.PubMedPubMedCentralCrossRef
14.
go back to reference Fukushi M, Ito T, Oka T, Kitazawa T, Miyoshi-Akiyama T, Kirikae T, et al: Serial histopathological examination of the lungs of mice infected with influenza A virus PR8 strain. PLoS One. 2011, 6: e21207-10.1371/journal.pone.0021207.PubMedPubMedCentralCrossRef Fukushi M, Ito T, Oka T, Kitazawa T, Miyoshi-Akiyama T, Kirikae T, et al: Serial histopathological examination of the lungs of mice infected with influenza A virus PR8 strain. PLoS One. 2011, 6: e21207-10.1371/journal.pone.0021207.PubMedPubMedCentralCrossRef
15.
go back to reference Forbes NE, Ping J, Dankar SK, Jia JJ, Selman M, Keleta L, et al: Multifunctional Adaptive NS1 Mutations Are Selected upon Human Influenza Virus Evolution in the Mouse. PLoS One. 2012, 7: e31839-10.1371/journal.pone.0031839.PubMedPubMedCentralCrossRef Forbes NE, Ping J, Dankar SK, Jia JJ, Selman M, Keleta L, et al: Multifunctional Adaptive NS1 Mutations Are Selected upon Human Influenza Virus Evolution in the Mouse. PLoS One. 2012, 7: e31839-10.1371/journal.pone.0031839.PubMedPubMedCentralCrossRef
16.
go back to reference Spesock A, Malur M, Hossain MJ, Chen LM, Njaa BL, Davis CT, et al: The virulence of 1997 H5N1 influenza viruses in the mouse model is increased by correcting a defect in their NS1 proteins. J Virol. 2011, 85: 7048-7058. 10.1128/JVI.00417-11.PubMedPubMedCentralCrossRef Spesock A, Malur M, Hossain MJ, Chen LM, Njaa BL, Davis CT, et al: The virulence of 1997 H5N1 influenza viruses in the mouse model is increased by correcting a defect in their NS1 proteins. J Virol. 2011, 85: 7048-7058. 10.1128/JVI.00417-11.PubMedPubMedCentralCrossRef
17.
go back to reference Bloom JD, Gong LI, Baltimore D: Permissive secondary mutations enable the evolution of influenza oseltamivir resistance. Science. 2010, 328: 1272-1275. 10.1126/science.1187816.PubMedPubMedCentralCrossRef Bloom JD, Gong LI, Baltimore D: Permissive secondary mutations enable the evolution of influenza oseltamivir resistance. Science. 2010, 328: 1272-1275. 10.1126/science.1187816.PubMedPubMedCentralCrossRef
18.
go back to reference Kryazhimskiy S, Dushoff J, Bazykin GA, Plotkin JB: Prevalence of epistasis in the evolution of influenza a surface proteins. PLoS Genet. 2011, 7: e1001301-10.1371/journal.pgen.1001301.PubMedPubMedCentralCrossRef Kryazhimskiy S, Dushoff J, Bazykin GA, Plotkin JB: Prevalence of epistasis in the evolution of influenza a surface proteins. PLoS Genet. 2011, 7: e1001301-10.1371/journal.pgen.1001301.PubMedPubMedCentralCrossRef
19.
go back to reference Rimmelzwaan GF, Berkhoff EG, Nieuwkoop NJ, Smith DJ, Fouchier RA, Osterhaus AD: Full restoration of viral fitness by multiple compensatory co-mutations in the nucleoprotein of influenza A virus cytotoxic T-lymphocyte escape mutants. J Gen Virol. 2005, 86: 1801-1805. 10.1099/vir.0.80867-0.PubMedCrossRef Rimmelzwaan GF, Berkhoff EG, Nieuwkoop NJ, Smith DJ, Fouchier RA, Osterhaus AD: Full restoration of viral fitness by multiple compensatory co-mutations in the nucleoprotein of influenza A virus cytotoxic T-lymphocyte escape mutants. J Gen Virol. 2005, 86: 1801-1805. 10.1099/vir.0.80867-0.PubMedCrossRef
20.
go back to reference Elena SF, Sole RV, Sardanyes J: Simple genomes, complex interactions: epistasis in RNA virus. Chaos. 2010, 20: 026106-10.1063/1.3449300.PubMedCrossRef Elena SF, Sole RV, Sardanyes J: Simple genomes, complex interactions: epistasis in RNA virus. Chaos. 2010, 20: 026106-10.1063/1.3449300.PubMedCrossRef
21.
go back to reference Handel A, Regoes RR, Antia R: The role of compensatory mutations in the emergence of drug resistance. PLoS Comput Biol. 2006, 2: e137-10.1371/journal.pcbi.0020137.PubMedPubMedCentralCrossRef Handel A, Regoes RR, Antia R: The role of compensatory mutations in the emergence of drug resistance. PLoS Comput Biol. 2006, 2: e137-10.1371/journal.pcbi.0020137.PubMedPubMedCentralCrossRef
22.
go back to reference Hale BG, Randall RE, Ortin J, Jackson D: The multifunctional NS1 protein of influenza A viruses. J Gen Virol. 2008, 89: 2359-2376. 10.1099/vir.0.2008/004606-0.PubMedCrossRef Hale BG, Randall RE, Ortin J, Jackson D: The multifunctional NS1 protein of influenza A viruses. J Gen Virol. 2008, 89: 2359-2376. 10.1099/vir.0.2008/004606-0.PubMedCrossRef
23.
go back to reference Hatada E, Fukuda R: Binding of influenza A virus NS1 protein to dsRNA in vitro. J Gen Virol. 1992, 73 (Pt 12): 3325-3329.PubMedCrossRef Hatada E, Fukuda R: Binding of influenza A virus NS1 protein to dsRNA in vitro. J Gen Virol. 1992, 73 (Pt 12): 3325-3329.PubMedCrossRef
24.
go back to reference Qian XY, Chien CY, Lu Y, Montelione GT, Krug RM: An amino-terminal polypeptide fragment of the influenza virus NS1 protein possesses specific RNA-binding activity and largely helical backbone structure. RNA. 1995, 1: 948-956.PubMedPubMedCentral Qian XY, Chien CY, Lu Y, Montelione GT, Krug RM: An amino-terminal polypeptide fragment of the influenza virus NS1 protein possesses specific RNA-binding activity and largely helical backbone structure. RNA. 1995, 1: 948-956.PubMedPubMedCentral
25.
go back to reference Pichlmair A, Schulz O, Tan CP, Naslund TI, Liljestrom P, Weber F, et al: RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science. 2006, 314: 997-1001. 10.1126/science.1132998.PubMedCrossRef Pichlmair A, Schulz O, Tan CP, Naslund TI, Liljestrom P, Weber F, et al: RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science. 2006, 314: 997-1001. 10.1126/science.1132998.PubMedCrossRef
26.
go back to reference Akira S: TLR signaling. Curr Top Microbiol Immunol. 2006, 311: 1-16. 10.1007/3-540-32636-7_1.PubMed Akira S: TLR signaling. Curr Top Microbiol Immunol. 2006, 311: 1-16. 10.1007/3-540-32636-7_1.PubMed
27.
go back to reference Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, et al: The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol. 2004, 5: 730-737. 10.1038/ni1087.PubMedCrossRef Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, et al: The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol. 2004, 5: 730-737. 10.1038/ni1087.PubMedCrossRef
28.
go back to reference Talon J, Horvath CM, Polley R, Basler CF, Muster T, Palese P, et al: Activation of interferon regulatory factor 3 is inhibited by the influenza A virus NS1 protein. J Virol. 2000, 74: 7989-7996. 10.1128/JVI.74.17.7989-7996.2000.PubMedPubMedCentralCrossRef Talon J, Horvath CM, Polley R, Basler CF, Muster T, Palese P, et al: Activation of interferon regulatory factor 3 is inhibited by the influenza A virus NS1 protein. J Virol. 2000, 74: 7989-7996. 10.1128/JVI.74.17.7989-7996.2000.PubMedPubMedCentralCrossRef
29.
go back to reference Wang X, Li M, Zheng H, Muster T, Palese P, Beg AA, et al: Influenza A virus NS1 protein prevents activation of NF-kappaB and induction of alpha/beta interferon. J Virol. 2000, 74: 11566-11573. 10.1128/JVI.74.24.11566-11573.2000.PubMedPubMedCentralCrossRef Wang X, Li M, Zheng H, Muster T, Palese P, Beg AA, et al: Influenza A virus NS1 protein prevents activation of NF-kappaB and induction of alpha/beta interferon. J Virol. 2000, 74: 11566-11573. 10.1128/JVI.74.24.11566-11573.2000.PubMedPubMedCentralCrossRef
30.
go back to reference Ludwig S, Wang X, Ehrhardt C, Zheng H, Donelan N, Planz O, et al: The influenza A virus NS1 protein inhibits activation of Jun N-terminal kinase and AP-1 transcription factors. J Virol. 2002, 76: 11166-11171. 10.1128/JVI.76.21.11166-11171.2002.PubMedPubMedCentralCrossRef Ludwig S, Wang X, Ehrhardt C, Zheng H, Donelan N, Planz O, et al: The influenza A virus NS1 protein inhibits activation of Jun N-terminal kinase and AP-1 transcription factors. J Virol. 2002, 76: 11166-11171. 10.1128/JVI.76.21.11166-11171.2002.PubMedPubMedCentralCrossRef
31.
go back to reference Mibayashi M, Martinez-Sobrido L, Loo YM, Cardenas WB, Gale M, Garcia-Sastre A: Inhibition of retinoic acid-inducible gene I-mediated induction of beta interferon by the NS1 protein of influenza A virus. J Virol. 2007, 81: 514-524. 10.1128/JVI.01265-06.PubMedPubMedCentralCrossRef Mibayashi M, Martinez-Sobrido L, Loo YM, Cardenas WB, Gale M, Garcia-Sastre A: Inhibition of retinoic acid-inducible gene I-mediated induction of beta interferon by the NS1 protein of influenza A virus. J Virol. 2007, 81: 514-524. 10.1128/JVI.01265-06.PubMedPubMedCentralCrossRef
32.
go back to reference Gack MU, Albrecht RA, Urano T, Inn KS, Huang IC, Carnero E, et al: Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell Host Microbe. 2009, 5: 439-449. 10.1016/j.chom.2009.04.006.PubMedPubMedCentralCrossRef Gack MU, Albrecht RA, Urano T, Inn KS, Huang IC, Carnero E, et al: Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell Host Microbe. 2009, 5: 439-449. 10.1016/j.chom.2009.04.006.PubMedPubMedCentralCrossRef
33.
go back to reference Kato H: Cell type-specific involvement of RIG-I in antiviral response. Immunity. 2005, 23: 19-28. 10.1016/j.immuni.2005.04.010.PubMedCrossRef Kato H: Cell type-specific involvement of RIG-I in antiviral response. Immunity. 2005, 23: 19-28. 10.1016/j.immuni.2005.04.010.PubMedCrossRef
34.
go back to reference Rajsbaum R, Albrecht RA, Wang MK, Maharaj NP, Versteeg GA, Nistal-Villan E, et al: Species-specific inhibition of RIG-I ubiquitination and IFN induction by the influenza A virus NS1 protein. PLoS Pathog. 2012, 8: e1003059-10.1371/journal.ppat.1003059.PubMedPubMedCentralCrossRef Rajsbaum R, Albrecht RA, Wang MK, Maharaj NP, Versteeg GA, Nistal-Villan E, et al: Species-specific inhibition of RIG-I ubiquitination and IFN induction by the influenza A virus NS1 protein. PLoS Pathog. 2012, 8: e1003059-10.1371/journal.ppat.1003059.PubMedPubMedCentralCrossRef
35.
go back to reference Miranda E, Forafonov F, Tavassoli A: Deciphering interactions used by the influenza virus NS1 protein to silence the host antiviral sensor protein RIG-I using a bacterial reverse two-hybrid system. Mol Biosyst. 2011, 7: 1042-1045. 10.1039/c0mb00318b.PubMedCrossRef Miranda E, Forafonov F, Tavassoli A: Deciphering interactions used by the influenza virus NS1 protein to silence the host antiviral sensor protein RIG-I using a bacterial reverse two-hybrid system. Mol Biosyst. 2011, 7: 1042-1045. 10.1039/c0mb00318b.PubMedCrossRef
36.
go back to reference Nemeroff ME, Barabino SM, Li Y, Keller W, Krug RM: Influenza virus NS1 protein interacts with the cellular 30 kDa subunit of CPSF and inhibits 3′end formation of cellular pre-mRNAs. Mol Cell. 1998, 1: 991-1000. 10.1016/S1097-2765(00)80099-4.PubMedCrossRef Nemeroff ME, Barabino SM, Li Y, Keller W, Krug RM: Influenza virus NS1 protein interacts with the cellular 30 kDa subunit of CPSF and inhibits 3′end formation of cellular pre-mRNAs. Mol Cell. 1998, 1: 991-1000. 10.1016/S1097-2765(00)80099-4.PubMedCrossRef
37.
go back to reference Twu KY, Noah DL, Rao P, Kuo RL, Krug RM: The CPSF30 binding site on the NS1A protein of influenza A virus is a potential antiviral target. J Virol. 2006, 80: 3957-3965. 10.1128/JVI.80.8.3957-3965.2006.PubMedPubMedCentralCrossRef Twu KY, Noah DL, Rao P, Kuo RL, Krug RM: The CPSF30 binding site on the NS1A protein of influenza A virus is a potential antiviral target. J Virol. 2006, 80: 3957-3965. 10.1128/JVI.80.8.3957-3965.2006.PubMedPubMedCentralCrossRef
38.
go back to reference Chen Z, Li Y, Krug RM: Influenza A virus NS1 protein targets poly(A)-binding protein II of the cellular 3′-end processing machinery. EMBO J. 1999, 18: 2273-2283. 10.1093/emboj/18.8.2273.PubMedPubMedCentralCrossRef Chen Z, Li Y, Krug RM: Influenza A virus NS1 protein targets poly(A)-binding protein II of the cellular 3′-end processing machinery. EMBO J. 1999, 18: 2273-2283. 10.1093/emboj/18.8.2273.PubMedPubMedCentralCrossRef
39.
go back to reference Wang W, Krug RM: U6atac snRNA, the highly divergent counterpart of U6 snRNA, is the specific target that mediates inhibition of AT-AC splicing by the influenza virus NS1 protein. RNA. 1998, 4: 55-64.PubMedPubMedCentralCrossRef Wang W, Krug RM: U6atac snRNA, the highly divergent counterpart of U6 snRNA, is the specific target that mediates inhibition of AT-AC splicing by the influenza virus NS1 protein. RNA. 1998, 4: 55-64.PubMedPubMedCentralCrossRef
40.
go back to reference Fortes P, Beloso A, Ortin J: Influenza virus NS1 protein inhibits pre-mRNA splicing and blocks mRNA nucleocytoplasmic transport. EMBO J. 1994, 13: 704-712.PubMedPubMedCentral Fortes P, Beloso A, Ortin J: Influenza virus NS1 protein inhibits pre-mRNA splicing and blocks mRNA nucleocytoplasmic transport. EMBO J. 1994, 13: 704-712.PubMedPubMedCentral
41.
go back to reference Qiu Y, Krug RM: The influenza virus NS1 protein is a poly(A)-binding protein that inhibits nuclear export of mRNAs containing poly(A). J Virol. 1994, 68: 2425-2432.PubMedPubMedCentral Qiu Y, Krug RM: The influenza virus NS1 protein is a poly(A)-binding protein that inhibits nuclear export of mRNAs containing poly(A). J Virol. 1994, 68: 2425-2432.PubMedPubMedCentral
42.
go back to reference Satterly N, Tsai PL, Van DJ, Nussenzveig DR, Wang Y, Faria PA, et al: Influenza virus targets the mRNA export machinery and the nuclear pore complex. Proc Natl Acad Sci USA. 2007, 104: 1853-1858. 10.1073/pnas.0610977104.PubMedPubMedCentralCrossRef Satterly N, Tsai PL, Van DJ, Nussenzveig DR, Wang Y, Faria PA, et al: Influenza virus targets the mRNA export machinery and the nuclear pore complex. Proc Natl Acad Sci USA. 2007, 104: 1853-1858. 10.1073/pnas.0610977104.PubMedPubMedCentralCrossRef
43.
go back to reference Jia D, Rahbar R, Chan RW, Lee SM, Chan MC, Wang BX, et al: Influenza virus non-structural protein 1 (NS1) disrupts interferon signaling. PLoS One. 2010, 5: e13927-10.1371/journal.pone.0013927.PubMedPubMedCentralCrossRef Jia D, Rahbar R, Chan RW, Lee SM, Chan MC, Wang BX, et al: Influenza virus non-structural protein 1 (NS1) disrupts interferon signaling. PLoS One. 2010, 5: e13927-10.1371/journal.pone.0013927.PubMedPubMedCentralCrossRef
44.
go back to reference Li S, Min JY, Krug RM, Sen GC: Binding of the influenza A virus NS1 protein to PKR mediates the inhibition of its activation by either PACT or double-stranded RNA. Virology. 2006, 349: 13-21. 10.1016/j.virol.2006.01.005.PubMedCrossRef Li S, Min JY, Krug RM, Sen GC: Binding of the influenza A virus NS1 protein to PKR mediates the inhibition of its activation by either PACT or double-stranded RNA. Virology. 2006, 349: 13-21. 10.1016/j.virol.2006.01.005.PubMedCrossRef
45.
go back to reference Min JY, Krug RM: The primary function of RNA binding by the influenza A virus NS1 protein in infected cells: Inhibiting the 2′-5′ oligo (A) synthetase/RNase L pathway. Proc Natl Acad Sci USA. 2006, 103: 7100-7105. 10.1073/pnas.0602184103.PubMedPubMedCentralCrossRef Min JY, Krug RM: The primary function of RNA binding by the influenza A virus NS1 protein in infected cells: Inhibiting the 2′-5′ oligo (A) synthetase/RNase L pathway. Proc Natl Acad Sci USA. 2006, 103: 7100-7105. 10.1073/pnas.0602184103.PubMedPubMedCentralCrossRef
46.
go back to reference Min JY, Li S, Sen GC, Krug RM: A site on the influenza A virus NS1 protein mediates both inhibition of PKR activation and temporal regulation of viral RNA synthesis. Virology. 2007, %20;363: 236-243.CrossRef Min JY, Li S, Sen GC, Krug RM: A site on the influenza A virus NS1 protein mediates both inhibition of PKR activation and temporal regulation of viral RNA synthesis. Virology. 2007, %20;363: 236-243.CrossRef
47.
go back to reference Han H, Cui ZQ, Wang W, Zhang ZP, Wei HP, Zhou YF, et al: New regulatory mechanisms for the intracellular localization and trafficking of influenza A virus NS1 protein revealed by comparative analysis of A/PR/8/34 and A/Sydney/5/97. J Gen Virol. 2010, 91: 2907-2917. 10.1099/vir.0.024943-0.PubMedCrossRef Han H, Cui ZQ, Wang W, Zhang ZP, Wei HP, Zhou YF, et al: New regulatory mechanisms for the intracellular localization and trafficking of influenza A virus NS1 protein revealed by comparative analysis of A/PR/8/34 and A/Sydney/5/97. J Gen Virol. 2010, 91: 2907-2917. 10.1099/vir.0.024943-0.PubMedCrossRef
48.
go back to reference la LS D, Fortes P, Beloso A, Ortin J: Influenza virus NS1 protein enhances the rate of translation initiation of viral mRNAs. J Virol. 1995, 69: 2427-2433. la LS D, Fortes P, Beloso A, Ortin J: Influenza virus NS1 protein enhances the rate of translation initiation of viral mRNAs. J Virol. 1995, 69: 2427-2433.
49.
go back to reference Burgui I, Aragon T, Ortin J, Nieto A: PABP1 and eIF4GI associate with influenza virus NS1 protein in viral mRNA translation initiation complexes. J Gen Virol. 2003, 84: 3263-3274. 10.1099/vir.0.19487-0.PubMedCrossRef Burgui I, Aragon T, Ortin J, Nieto A: PABP1 and eIF4GI associate with influenza virus NS1 protein in viral mRNA translation initiation complexes. J Gen Virol. 2003, 84: 3263-3274. 10.1099/vir.0.19487-0.PubMedCrossRef
50.
go back to reference Shapira SD, Gat-Viks I, Shum BO, Dricot A, de Grace MM, Wu L, et al: A physical and regulatory map of host-influenza interactions reveals pathways in H1N1 infection. Cell. 2009, 139: 1255-1267. 10.1016/j.cell.2009.12.018.PubMedPubMedCentralCrossRef Shapira SD, Gat-Viks I, Shum BO, Dricot A, de Grace MM, Wu L, et al: A physical and regulatory map of host-influenza interactions reveals pathways in H1N1 infection. Cell. 2009, 139: 1255-1267. 10.1016/j.cell.2009.12.018.PubMedPubMedCentralCrossRef
51.
go back to reference Lin L, Li Y, Pyo HM, Lu X, Thulasi Raman SN, Liu Q, et al: Identification of RNA helicase A as a cellular factor that interacts with influenza A NS1 protein and its role in virus life cycle. J Virol. 2011, 86 (4): 1942-1954.PubMedCrossRef Lin L, Li Y, Pyo HM, Lu X, Thulasi Raman SN, Liu Q, et al: Identification of RNA helicase A as a cellular factor that interacts with influenza A NS1 protein and its role in virus life cycle. J Virol. 2011, 86 (4): 1942-1954.PubMedCrossRef
52.
go back to reference Ping J, Dankar SK, Forbes NE, Keleta L, Zhou Y, Tyler S, et al: PB2 and HA Mutations are Major Determinants of Host Range and Virulence in Mouse-Adapted Influenza A Virus. J Virol. 2010, 84: 10606-10618. 10.1128/JVI.01187-10.PubMedPubMedCentralCrossRef Ping J, Dankar SK, Forbes NE, Keleta L, Zhou Y, Tyler S, et al: PB2 and HA Mutations are Major Determinants of Host Range and Virulence in Mouse-Adapted Influenza A Virus. J Virol. 2010, 84: 10606-10618. 10.1128/JVI.01187-10.PubMedPubMedCentralCrossRef
53.
go back to reference Ping J, Keleta L, Forbes NE, Dankar S, Stecho W, Tyler S, et al: Genomic and protein structural maps of adaptive evolution of human influenza A virus to increased virulence in the mouse. PLoS One. 2011, 6: e21740-10.1371/journal.pone.0021740.PubMedPubMedCentralCrossRef Ping J, Keleta L, Forbes NE, Dankar S, Stecho W, Tyler S, et al: Genomic and protein structural maps of adaptive evolution of human influenza A virus to increased virulence in the mouse. PLoS One. 2011, 6: e21740-10.1371/journal.pone.0021740.PubMedPubMedCentralCrossRef
54.
go back to reference Lipatov AS, Andreansky S, Webby RJ, Hulse DJ, Rehg JE, Krauss S, et al: Pathogenesis of Hong Kong H5N1 influenza virus NS gene reassortants in mice: the role of cytokines and B- and T-cell responses. J Gen Virol. 2005, 86: 1121-1130. 10.1099/vir.0.80663-0.PubMedCrossRef Lipatov AS, Andreansky S, Webby RJ, Hulse DJ, Rehg JE, Krauss S, et al: Pathogenesis of Hong Kong H5N1 influenza virus NS gene reassortants in mice: the role of cytokines and B- and T-cell responses. J Gen Virol. 2005, 86: 1121-1130. 10.1099/vir.0.80663-0.PubMedCrossRef
55.
go back to reference Seo SH, Hoffmann E, Webster RG: Lethal H5N1 influenza viruses escape host anti-viral cytokine responses. Nat Med. 2002, 8: 950-954. 10.1038/nm757.PubMedCrossRef Seo SH, Hoffmann E, Webster RG: Lethal H5N1 influenza viruses escape host anti-viral cytokine responses. Nat Med. 2002, 8: 950-954. 10.1038/nm757.PubMedCrossRef
56.
go back to reference Jackson D, Hossain MJ, Hickman D, Perez DR, Lamb RA: A new influenza virus virulence determinant: the NS1 protein four C-terminal residues modulate pathogenicity. Proc Natl Acad Sci USA. 2008, 105: 4381-4386. 10.1073/pnas.0800482105.PubMedPubMedCentralCrossRef Jackson D, Hossain MJ, Hickman D, Perez DR, Lamb RA: A new influenza virus virulence determinant: the NS1 protein four C-terminal residues modulate pathogenicity. Proc Natl Acad Sci USA. 2008, 105: 4381-4386. 10.1073/pnas.0800482105.PubMedPubMedCentralCrossRef
57.
go back to reference Jiao P, Tian G, Li Y, Deng G, Jiang Y, Liu C, et al: A single-amino-acid substitution in the NS1 protein changes the pathogenicity of H5N1 avian influenza viruses in mice. J Virol. 2008, 82: 1146-1154. 10.1128/JVI.01698-07.PubMedPubMedCentralCrossRef Jiao P, Tian G, Li Y, Deng G, Jiang Y, Liu C, et al: A single-amino-acid substitution in the NS1 protein changes the pathogenicity of H5N1 avian influenza viruses in mice. J Virol. 2008, 82: 1146-1154. 10.1128/JVI.01698-07.PubMedPubMedCentralCrossRef
58.
go back to reference Li Z, Jiang Y, Jiao P, Wang A, Zhao F, Tian G, et al: The NS1 gene contributes to the virulence of H5N1 avian influenza viruses. J Virol. 2006, 80: 11115-11123. 10.1128/JVI.00993-06.PubMedPubMedCentralCrossRef Li Z, Jiang Y, Jiao P, Wang A, Zhao F, Tian G, et al: The NS1 gene contributes to the virulence of H5N1 avian influenza viruses. J Virol. 2006, 80: 11115-11123. 10.1128/JVI.00993-06.PubMedPubMedCentralCrossRef
59.
go back to reference Zhu Q, Yang H, Chen W, Cao W, Zhong G, Jiao P, et al: A naturally occurring deletion in its NS gene contributes to the attenuation of an H5N1 swine influenza virus in chickens. J Virol. 2008, 82: 220-228. 10.1128/JVI.00978-07.PubMedPubMedCentralCrossRef Zhu Q, Yang H, Chen W, Cao W, Zhong G, Jiao P, et al: A naturally occurring deletion in its NS gene contributes to the attenuation of an H5N1 swine influenza virus in chickens. J Virol. 2008, 82: 220-228. 10.1128/JVI.00978-07.PubMedPubMedCentralCrossRef
60.
go back to reference Liu Q, Wang S, Ma G, Pu J, Forbes NE, Brown EG, et al: Improved and simplified recombineering approach for influenza virus reverse genetics. J Mol Genet Med. 2009, 3: 225-231.PubMedPubMedCentral Liu Q, Wang S, Ma G, Pu J, Forbes NE, Brown EG, et al: Improved and simplified recombineering approach for influenza virus reverse genetics. J Mol Genet Med. 2009, 3: 225-231.PubMedPubMedCentral
61.
go back to reference Wang S, Liu Q, Pu J, Li Y, Keleta L, Hu YW, et al: Simplified recombinational approach for influenza A virus reverse genetics. J Virol Methods. 2008, 151: 74-78. 10.1016/j.jviromet.2008.03.020.PubMedCrossRef Wang S, Liu Q, Pu J, Li Y, Keleta L, Hu YW, et al: Simplified recombinational approach for influenza A virus reverse genetics. J Virol Methods. 2008, 151: 74-78. 10.1016/j.jviromet.2008.03.020.PubMedCrossRef
62.
go back to reference Brown EG, Liu H, Kit LC, Baird S, Nesrallah M: Pattern of mutation in the genome of influenza A virus on adaptation to increased virulence in the mouse lung: identification of functional themes. Proc Natl Acad Sci USA. 2001, 98: 6883-6888. 10.1073/pnas.111165798.PubMedPubMedCentralCrossRef Brown EG, Liu H, Kit LC, Baird S, Nesrallah M: Pattern of mutation in the genome of influenza A virus on adaptation to increased virulence in the mouse lung: identification of functional themes. Proc Natl Acad Sci USA. 2001, 98: 6883-6888. 10.1073/pnas.111165798.PubMedPubMedCentralCrossRef
63.
go back to reference Hamilton MA: Trimmed Spearman-Karber Method for Estimating Median Lethal Concentrations in Toxicity Bioassays. Environ Sci Technol. 1977, 11: 714-719. 10.1021/es60130a004.CrossRef Hamilton MA: Trimmed Spearman-Karber Method for Estimating Median Lethal Concentrations in Toxicity Bioassays. Environ Sci Technol. 1977, 11: 714-719. 10.1021/es60130a004.CrossRef
64.
go back to reference Suzuki K, Bose P, Leong-Quong RY, Fujita DJ, Riabowol K: REAP: A two minute cell fractionation method. BMC Res Notes. 2010, 3: 294-10.1186/1756-0500-3-294.PubMedPubMedCentralCrossRef Suzuki K, Bose P, Leong-Quong RY, Fujita DJ, Riabowol K: REAP: A two minute cell fractionation method. BMC Res Notes. 2010, 3: 294-10.1186/1756-0500-3-294.PubMedPubMedCentralCrossRef
65.
go back to reference Edgar R, Domrachev M, Lash AE: Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002, 30: 207-210. 10.1093/nar/30.1.207.PubMedPubMedCentralCrossRef Edgar R, Domrachev M, Lash AE: Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002, 30: 207-210. 10.1093/nar/30.1.207.PubMedPubMedCentralCrossRef
66.
go back to reference Murakami S, Horimoto T, Ito M, Takano R, Katsura H, Shimojima M, et al: Enhanced growth of influenza vaccine seed viruses in vero cells mediated by broadening the optimal pH range for virus membrane fusion. J Virol. 2012, 86: 1405-1410. 10.1128/JVI.06009-11.PubMedPubMedCentralCrossRef Murakami S, Horimoto T, Ito M, Takano R, Katsura H, Shimojima M, et al: Enhanced growth of influenza vaccine seed viruses in vero cells mediated by broadening the optimal pH range for virus membrane fusion. J Virol. 2012, 86: 1405-1410. 10.1128/JVI.06009-11.PubMedPubMedCentralCrossRef
67.
go back to reference Twu KY, Kuo RL, Marklund J, Krug RM: The H5N1 influenza virus NS genes selected after 1998 enhance virus replication in mammalian cells. J Virol. 2007, 81: 8112-8121. 10.1128/JVI.00006-07.PubMedPubMedCentralCrossRef Twu KY, Kuo RL, Marklund J, Krug RM: The H5N1 influenza virus NS genes selected after 1998 enhance virus replication in mammalian cells. J Virol. 2007, 81: 8112-8121. 10.1128/JVI.00006-07.PubMedPubMedCentralCrossRef
68.
go back to reference Li Y, Yamakita Y, Krug RM: Regulation of a nuclear export signal by an adjacent inhibitory sequence: the effector domain of the influenza virus NS1 protein. Proc Natl Acad Sci USA. 1998, 95: 4864-4869. 10.1073/pnas.95.9.4864.PubMedPubMedCentralCrossRef Li Y, Yamakita Y, Krug RM: Regulation of a nuclear export signal by an adjacent inhibitory sequence: the effector domain of the influenza virus NS1 protein. Proc Natl Acad Sci USA. 1998, 95: 4864-4869. 10.1073/pnas.95.9.4864.PubMedPubMedCentralCrossRef
69.
go back to reference Fulcher AJ, Jans DA: Regulation of nucleocytoplasmic trafficking of viral proteins: an integral role in pathogenesis?. Biochim Biophys Acta. 1813, 2011: 2176-2190. Fulcher AJ, Jans DA: Regulation of nucleocytoplasmic trafficking of viral proteins: an integral role in pathogenesis?. Biochim Biophys Acta. 1813, 2011: 2176-2190.
70.
go back to reference Kosugi S, Hasebe M, Tomita M, Yanagawa H: Nuclear export signal consensus sequences defined using a localization-based yeast selection system. Traffic. 2008, 9: 2053-2062. 10.1111/j.1600-0854.2008.00825.x.PubMedCrossRef Kosugi S, Hasebe M, Tomita M, Yanagawa H: Nuclear export signal consensus sequences defined using a localization-based yeast selection system. Traffic. 2008, 9: 2053-2062. 10.1111/j.1600-0854.2008.00825.x.PubMedCrossRef
71.
go back to reference Meng J, Zhang Z, Zheng Z, Liu Y, Wang H: Methionine-101 from one strain of H5N1 NS1 protein determines its IFN-antagonizing ability and subcellular distribution pattern. Sci China Life Sci. 2012, 55: 933-939. 10.1007/s11427-012-4393-9.PubMedCrossRef Meng J, Zhang Z, Zheng Z, Liu Y, Wang H: Methionine-101 from one strain of H5N1 NS1 protein determines its IFN-antagonizing ability and subcellular distribution pattern. Sci China Life Sci. 2012, 55: 933-939. 10.1007/s11427-012-4393-9.PubMedCrossRef
72.
go back to reference McLane LM, Corbett AH: Nuclear localization signals and human disease. IUBMB Life. 2009, 61: 697-706. 10.1002/iub.194.PubMedCrossRef McLane LM, Corbett AH: Nuclear localization signals and human disease. IUBMB Life. 2009, 61: 697-706. 10.1002/iub.194.PubMedCrossRef
73.
go back to reference Ivan FX, Rajapakse JC, Welsch RE, Rozen SG, Narasaraju T, Xiong GM, et al: Differential pulmonary transcriptomic profiles in murine lungs infected with low and highly virulent influenza H3N2 viruses reveal dysregulation of TREM1 signaling, cytokines, and chemokines. Funct Integr Genomics. 2012, 12: 105-117. 10.1007/s10142-011-0247-y.PubMedCrossRef Ivan FX, Rajapakse JC, Welsch RE, Rozen SG, Narasaraju T, Xiong GM, et al: Differential pulmonary transcriptomic profiles in murine lungs infected with low and highly virulent influenza H3N2 viruses reveal dysregulation of TREM1 signaling, cytokines, and chemokines. Funct Integr Genomics. 2012, 12: 105-117. 10.1007/s10142-011-0247-y.PubMedCrossRef
74.
go back to reference Mukherjee S, Vipat VC, Mishra AC, Pawar SD, Chakrabarti AK: Pandemic (H1N1) 2009 influenza virus induces weaker host immune responses in vitro: a possible mechanism of high transmissibility. Virol J. 2011, 8: 140-10.1186/1743-422X-8-140.PubMedPubMedCentralCrossRef Mukherjee S, Vipat VC, Mishra AC, Pawar SD, Chakrabarti AK: Pandemic (H1N1) 2009 influenza virus induces weaker host immune responses in vitro: a possible mechanism of high transmissibility. Virol J. 2011, 8: 140-10.1186/1743-422X-8-140.PubMedPubMedCentralCrossRef
75.
go back to reference Cheng X, Xu Q, Song E, Yang CF, Kemble G, Jin H: The hemagglutinin protein of influenza A/Vietnam/1203/2004 (H5N1) contributes to hyperinduction of proinflammatory cytokines in human epithelial cells. Virology. 2010, 406: 28-36. 10.1016/j.virol.2010.06.048.PubMedCrossRef Cheng X, Xu Q, Song E, Yang CF, Kemble G, Jin H: The hemagglutinin protein of influenza A/Vietnam/1203/2004 (H5N1) contributes to hyperinduction of proinflammatory cytokines in human epithelial cells. Virology. 2010, 406: 28-36. 10.1016/j.virol.2010.06.048.PubMedCrossRef
76.
go back to reference Kochs G, Garcia-Sastre A, Martinez-Sobrido L: Multiple anti-interferon actions of the Influenza A virus NS1 protein. J Virol. 2007, 81 (13): 7011-7021. 10.1128/JVI.02581-06.PubMedPubMedCentralCrossRef Kochs G, Garcia-Sastre A, Martinez-Sobrido L: Multiple anti-interferon actions of the Influenza A virus NS1 protein. J Virol. 2007, 81 (13): 7011-7021. 10.1128/JVI.02581-06.PubMedPubMedCentralCrossRef
77.
go back to reference Iyekdh IK: Nippon Koteisho Kyokai, 12–15, 2-chome. Study of Medical Supplies. 1988, publisher: Shibuya, Shibuya-ku, Tokyo 150, Japan: , 164-19 Iyekdh IK: Nippon Koteisho Kyokai, 12–15, 2-chome. Study of Medical Supplies. 1988, publisher: Shibuya, Shibuya-ku, Tokyo 150, Japan: , 164-19
78.
go back to reference Matthaei M, Budt M, Wolff T: Highly Pathogenic H5N1 Influenza A Virus Strains Provoke Heterogeneous IFN-+¦/+¦ Responses That Distinctively Affect Viral Propagation in Human Cells. PLoS One. 2013, 8: e56659-10.1371/journal.pone.0056659.PubMedPubMedCentralCrossRef Matthaei M, Budt M, Wolff T: Highly Pathogenic H5N1 Influenza A Virus Strains Provoke Heterogeneous IFN-+¦/+¦ Responses That Distinctively Affect Viral Propagation in Human Cells. PLoS One. 2013, 8: e56659-10.1371/journal.pone.0056659.PubMedPubMedCentralCrossRef
79.
go back to reference To KF, Chan PK, Chan KF, Lee WK, Lam WY, Wong KF, et al: Pathology of fatal human infection associated with avian influenza A H5N1 virus. J Med Virol. 2001, 63: 242-246. 10.1002/1096-9071(200103)63:3<242::AID-JMV1007>3.0.CO;2-N.PubMedCrossRef To KF, Chan PK, Chan KF, Lee WK, Lam WY, Wong KF, et al: Pathology of fatal human infection associated with avian influenza A H5N1 virus. J Med Virol. 2001, 63: 242-246. 10.1002/1096-9071(200103)63:3<242::AID-JMV1007>3.0.CO;2-N.PubMedCrossRef
80.
go back to reference Cheung CY, Poon LLM, Lau AS, Luk W, Lau YL, Shortridge KF, et al: Induction of proinflammatory cytokines in human macrophages by influenza A (H5N1) viruses: a mechanism for the unusual severity of human disease?. Lancet. 2002, 360: 1831-1837. 10.1016/S0140-6736(02)11772-7.PubMedCrossRef Cheung CY, Poon LLM, Lau AS, Luk W, Lau YL, Shortridge KF, et al: Induction of proinflammatory cytokines in human macrophages by influenza A (H5N1) viruses: a mechanism for the unusual severity of human disease?. Lancet. 2002, 360: 1831-1837. 10.1016/S0140-6736(02)11772-7.PubMedCrossRef
81.
go back to reference Steidle S, Martinez-Sobrido L, Mordstein M, Lienenklaus S, Garcia-Sastre A, Staheli P, et al: Glycine 184 in nonstructural protein NS1 determines the virulence of influenza A virus strain PR8 without affecting the host interferon response. J Virol. 2010, 84: 12761-12770. 10.1128/JVI.00701-10.PubMedPubMedCentralCrossRef Steidle S, Martinez-Sobrido L, Mordstein M, Lienenklaus S, Garcia-Sastre A, Staheli P, et al: Glycine 184 in nonstructural protein NS1 determines the virulence of influenza A virus strain PR8 without affecting the host interferon response. J Virol. 2010, 84: 12761-12770. 10.1128/JVI.00701-10.PubMedPubMedCentralCrossRef
82.
go back to reference De J, Simmons CP, Thanh TT, Hien VM, Smith GJ, Chau TN, et al: Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat Med. 2006, 12: 1203-1207. 10.1038/nm1477.CrossRef De J, Simmons CP, Thanh TT, Hien VM, Smith GJ, Chau TN, et al: Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat Med. 2006, 12: 1203-1207. 10.1038/nm1477.CrossRef
Metadata
Title
Influenza A/Hong Kong/156/1997(H5N1) virus NS1 gene mutations F103L and M106I both increase IFN antagonism, virulence and cytoplasmic localization but differ in binding to RIG-I and CPSF30
Authors
Samar K Dankar
Elena Miranda
Nicole E Forbes
Martin Pelchat
Ali Tavassoli
Mohammed Selman
Jihui Ping
Jianjun Jia
Earl G Brown
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2013
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/1743-422X-10-243

Other articles of this Issue 1/2013

Virology Journal 1/2013 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine