Skip to main content
Top
Published in: BMC Ophthalmology 1/2016

Open Access 01-12-2016 | Research article

Influence of upper and temporal transconjunctival sclerocorneal incision on marginal reflex distance after cataract surgery

Authors: Rikiya Tamaki, Masahiko Gosho, Kyoichi Mizumoto, Nahoko Kato, Masahiro Zako

Published in: BMC Ophthalmology | Issue 1/2016

Login to get access

Abstract

Background

Ptosis incidence following cataract surgery is reduced with a recently developed phacoemulsification technique using a small incision. However, it remains uncertain whether an upper transconjunctival sclerocorneal incision can cause minor blepharoptosis. In the present prospective study, patients underwent cataract surgery with either an upper or temporal 2.4-mm transconjunctival sclerocorneal incision. We measured the marginal reflex distance 1 (MRD1) preoperatively and postoperatively, and compared these measurements between the two different incision types. Further we explored the risk factors of the postoperative MRD1 reduction.

Methods

The study population included patients who underwent cataract surgery on both eyes at Aichi Medical University between October 2013 and September 2015. In each patient, one eye was operated using an upper 2.4-mm transconjunctival sclerocorneal incision, and the other with a temporal incision. We prespecified that an MRD1 difference of ≥0.5 mm between the pre- and post-surgical measurements indicated postoperative ptosis, which was a strict criterion. MRD1 was measured using digital photography, and we calculated the difference between the preoperative and postoperative MRD1 values. This change in MRD1 was compared between the groups with different incision locations. The change in MRD1 was analyzed by using the multivariate regression model including incision position (temporal or upper), preoperative MRD1, and preoperative distance between medial and lateral canthi.

Results

We assessed data from a total of 34 patients. The mean change in MRD1 from pre-operation to post-operation measurements was −0.26 ± 0.93 with the temporal incision and −0.24 ± 0.86 with the upper incision. The mean difference in the change in MRD1 between the different two incision types was −0.02, with a 95 % CI of −0.24 to 0.20, establishing equivalence between these incision types. The multivariate regression analysis showed that the preoperative MRD1 was significantly associated with the reduction of MRD1 after surgery (p = 0.034).

Conclusions

Cataract surgery using upper and temporal 2.4-mm transconjunctival sclerocorneal incisions are clinically equivalent with regards to change in MRD1, and neither incision type caused critical postoperative ptosis. The longer preoperative MRD1 was significantly associated with the reduction of MRD1 after surgery.

Trial registration

Current Controlled Trials UMIN000022310. Retrospectively registered 14 May 2016.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kaplan LJ, Jaffe NS, Clayman HM. Ptosis and cataract surgery. A multivariant computer analysis of a prospective study. Ophthalmol. 1985;92:237–42.CrossRef Kaplan LJ, Jaffe NS, Clayman HM. Ptosis and cataract surgery. A multivariant computer analysis of a prospective study. Ophthalmol. 1985;92:237–42.CrossRef
3.
go back to reference Loeffler M, Solomon LD, Renaud M. Postcataract extraction ptosis: effect of the bridle suture. J Cataract Refract Surg. 1990;16:501–4.CrossRefPubMed Loeffler M, Solomon LD, Renaud M. Postcataract extraction ptosis: effect of the bridle suture. J Cataract Refract Surg. 1990;16:501–4.CrossRefPubMed
4.
go back to reference Singh SK, Sekhar GC, Gupta S. Etiology of ptosis after cataract surgery. J Cataract Refract Surg. 1997;23:1409–13.CrossRefPubMed Singh SK, Sekhar GC, Gupta S. Etiology of ptosis after cataract surgery. J Cataract Refract Surg. 1997;23:1409–13.CrossRefPubMed
5.
go back to reference Feibel RM, Custer PL, Gordon MO. Postcataract ptosis. A randomized, double-masked comparison of peribulbar and retrobulbar anesthesia. Ophthalmol. 1993;100:660–5.CrossRef Feibel RM, Custer PL, Gordon MO. Postcataract ptosis. A randomized, double-masked comparison of peribulbar and retrobulbar anesthesia. Ophthalmol. 1993;100:660–5.CrossRef
6.
go back to reference Ropo A, Ruusuvaara P, Paloheimo M, Maunuksela EL, Nikki P. Periocular anaesthesia: technique, effectiveness and complications with special reference to postoperative ptosis. Acta Ophthalmol (Copenh). 1990;68:728–32.CrossRef Ropo A, Ruusuvaara P, Paloheimo M, Maunuksela EL, Nikki P. Periocular anaesthesia: technique, effectiveness and complications with special reference to postoperative ptosis. Acta Ophthalmol (Copenh). 1990;68:728–32.CrossRef
7.
go back to reference Alpar JJ. Acquired ptosis following cataract and glaucoma surgery. Glaucoma. 1982;4:66–8. Alpar JJ. Acquired ptosis following cataract and glaucoma surgery. Glaucoma. 1982;4:66–8.
8.
go back to reference Altieri M, Truscott E, Kingston AE, Bertagno R, Altieri G. Ptosis secondary to anterior segment surgery and its repair in a two-year follow-up study. Ophthalmologica. 2005;219:129–35.CrossRefPubMed Altieri M, Truscott E, Kingston AE, Bertagno R, Altieri G. Ptosis secondary to anterior segment surgery and its repair in a two-year follow-up study. Ophthalmologica. 2005;219:129–35.CrossRefPubMed
9.
go back to reference Puvanachandra N, Hustler A, Seah LL, Tyers AG. The incidence of ptosis following extracapsular and phacoemulsification surgery: comparison of two prospective studies and review of the literature. Orbit. 2010;29:321–3.CrossRefPubMed Puvanachandra N, Hustler A, Seah LL, Tyers AG. The incidence of ptosis following extracapsular and phacoemulsification surgery: comparison of two prospective studies and review of the literature. Orbit. 2010;29:321–3.CrossRefPubMed
10.
go back to reference Malhotra R, Salam A, Then SY, Grieve AP. Visible iris sign as a predictor of problems during and following anterior approach ptosis surgery. Eye (Lond). 2011;25:185–91.CrossRef Malhotra R, Salam A, Then SY, Grieve AP. Visible iris sign as a predictor of problems during and following anterior approach ptosis surgery. Eye (Lond). 2011;25:185–91.CrossRef
11.
go back to reference Ropo A, Ruusuvaara P, Nikki P. Ptosis following periocular or general anaesthesia in cataract surgery. Acta Ophthalmol (Copenh). 1992;70:262–5.CrossRef Ropo A, Ruusuvaara P, Nikki P. Ptosis following periocular or general anaesthesia in cataract surgery. Acta Ophthalmol (Copenh). 1992;70:262–5.CrossRef
12.
13.
go back to reference Kawa P, Siwek M, Mańkowska A, Zagórski Z. Postoperative ptosis after cataract extraction: own material. Klin Oczna. 2000;102:25–8.PubMed Kawa P, Siwek M, Mańkowska A, Zagórski Z. Postoperative ptosis after cataract extraction: own material. Klin Oczna. 2000;102:25–8.PubMed
14.
go back to reference Patel JI, Blount M, Jones C. Surgical blepharoptosis--the bridle suture factor? Eye (Lond). 2002;16:535–7.CrossRef Patel JI, Blount M, Jones C. Surgical blepharoptosis--the bridle suture factor? Eye (Lond). 2002;16:535–7.CrossRef
15.
16.
go back to reference Linberg JV, McDonald MB, Safir A, Googe JM. Ptosis following radial keratotomy. Performed using a rigid eyelid speculum. Ophthalmol. 1986;93:1509–12.CrossRef Linberg JV, McDonald MB, Safir A, Googe JM. Ptosis following radial keratotomy. Performed using a rigid eyelid speculum. Ophthalmol. 1986;93:1509–12.CrossRef
17.
go back to reference Cheng AC, Young AL, Law RW, Lam DS. Ptosis after laser in situ keratomileusis. J Cataract Refract Surg. 2004;30:1572–4.CrossRefPubMed Cheng AC, Young AL, Law RW, Lam DS. Ptosis after laser in situ keratomileusis. J Cataract Refract Surg. 2004;30:1572–4.CrossRefPubMed
Metadata
Title
Influence of upper and temporal transconjunctival sclerocorneal incision on marginal reflex distance after cataract surgery
Authors
Rikiya Tamaki
Masahiko Gosho
Kyoichi Mizumoto
Nahoko Kato
Masahiro Zako
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Ophthalmology / Issue 1/2016
Electronic ISSN: 1471-2415
DOI
https://doi.org/10.1186/s12886-016-0286-1

Other articles of this Issue 1/2016

BMC Ophthalmology 1/2016 Go to the issue