Skip to main content
Top
Published in: Virology Journal 1/2009

Open Access 01-12-2009 | Research

Influence of the RNase H domain of retroviral reverse transcriptases on the metal specificity and substrate selection of their polymerase domains

Authors: Tanaji T Talele, Alok Upadhyay, Virendra N Pandey

Published in: Virology Journal | Issue 1/2009

Login to get access

Abstract

Reverse transcriptases from HIV-1 and MuLV respectively prefer Mg2+ and Mn2+ for their polymerase activity, with variable fidelity, on both RNA and DNA templates. The function of the RNase H domain with respect to these parameters is not yet understood. To evaluate this function, two chimeric enzymes were constructed by swapping the RNase H domains between HIV-1 RT and MuLV RT. Chimeric HIV-1 RT, having the RNase H domain of MuLV RT, inherited the divalent cation preference characteristic of MuLV RT on the DNA template with no significant change on the RNA template. Chimeric MuLV RT, likewise partially inherited the metal ion preference of HIV-1 RT. Unlike the wild-type MuLV RT, chimeric MuLV RT is able to use both Mn.dNTP and Mg.dNTP on the RNA template with similar efficiency, while a 30-fold higher preference for Mn.dNTP was seen on the DNA template. The metal preferences for the RNase H activity of chimeric HIV-1 RT and chimeric MuLV RT were, respectively, Mn2+ and Mg2+, a property acquired through their swapped RNase H domains. Chimeric HIV-1 RT displayed higher fidelity and discrimination against rNTPs than against dNTPs substrates, a property inherited from MuLV RT. The overall fidelity of the chimeric MuLV RT was decreased in comparison to the parental MuLV RT, suggesting that the RNase H domain profoundly influences the function of the polymerase domain.
Appendix
Available only for authorised users
Literature
1.
go back to reference Gilboa E, Mitra SW, Goff S, Baltimore D: A detailed model of reverse transcription and tests of crucial aspects. Cell. 1979, 18: 93-100. 10.1016/0092-8674(79)90357-X.CrossRefPubMed Gilboa E, Mitra SW, Goff S, Baltimore D: A detailed model of reverse transcription and tests of crucial aspects. Cell. 1979, 18: 93-100. 10.1016/0092-8674(79)90357-X.CrossRefPubMed
2.
go back to reference Levine JG, Hatfield D, Oroszlan S, Rein A, Ed: Mechanisms of Translational Suppression Used in the Biosynthesis of Reverse Transcriptase. In Reverse Transcriptase. Edited by: Skalka AM, Goff SP. 1993, Cold Spring Harbor Laboratory Press, Plainview, NY Levine JG, Hatfield D, Oroszlan S, Rein A, Ed: Mechanisms of Translational Suppression Used in the Biosynthesis of Reverse Transcriptase. In Reverse Transcriptase. Edited by: Skalka AM, Goff SP. 1993, Cold Spring Harbor Laboratory Press, Plainview, NY
3.
go back to reference Taube R, Loya S, Avidan O, Perach M, Hizi A: Reverse transcriptase of mouse mammary tumour virus: expression in bacteria, purification and biochemical characterization. Biochem J. 1998, 329 (Pt 3): 579-587.PubMedCentralCrossRefPubMed Taube R, Loya S, Avidan O, Perach M, Hizi A: Reverse transcriptase of mouse mammary tumour virus: expression in bacteria, purification and biochemical characterization. Biochem J. 1998, 329 (Pt 3): 579-587.PubMedCentralCrossRefPubMed
4.
go back to reference Tanese N, Goff SP: Domain structure of the Moloney murine leukemia virus reverse transcriptase: mutational analysis and separate expression of the DNA polymerase and RNase H activities. Proc Natl Acad Sci USA. 1988, 85: 1777-1781. 10.1073/pnas.85.6.1777.PubMedCentralCrossRefPubMed Tanese N, Goff SP: Domain structure of the Moloney murine leukemia virus reverse transcriptase: mutational analysis and separate expression of the DNA polymerase and RNase H activities. Proc Natl Acad Sci USA. 1988, 85: 1777-1781. 10.1073/pnas.85.6.1777.PubMedCentralCrossRefPubMed
5.
go back to reference Collett MS, Dierks P, Parsons JT, Faras AJ: RNase H hydrolysis of the 5' terminus of the avian sarcoma virus genome during reverse transcription. Nature. 1978, 272: 181-184. 10.1038/272181a0.CrossRefPubMed Collett MS, Dierks P, Parsons JT, Faras AJ: RNase H hydrolysis of the 5' terminus of the avian sarcoma virus genome during reverse transcription. Nature. 1978, 272: 181-184. 10.1038/272181a0.CrossRefPubMed
6.
go back to reference Smith JK, Cywinski A, Taylor JM: Initiation of plus-strand DNA synthesis during reverse transcription of an avian retrovirus genome. J Virol. 1984, 49: 200-204.PubMedCentralPubMed Smith JK, Cywinski A, Taylor JM: Initiation of plus-strand DNA synthesis during reverse transcription of an avian retrovirus genome. J Virol. 1984, 49: 200-204.PubMedCentralPubMed
7.
go back to reference Smith JK, Cywinski A, Taylor JM: Specificity of initiation of plus-strand DNA by Rous sarcoma virus. J Virol. 1984, 52: 314-319.PubMedCentralPubMed Smith JK, Cywinski A, Taylor JM: Specificity of initiation of plus-strand DNA by Rous sarcoma virus. J Virol. 1984, 52: 314-319.PubMedCentralPubMed
8.
go back to reference Varmus HFaSR, Ed: Replication of Retroviruses. 1984, Cold Spring Harbor, Second Varmus HFaSR, Ed: Replication of Retroviruses. 1984, Cold Spring Harbor, Second
9.
go back to reference Johnson MS, McClure MA, Feng DF, Gray J, Doolittle RF: Computer analysis of retroviral pol genes: assignment of enzymatic functions to specific sequences and homologies with nonviral enzymes. Proc Natl Acad Sci USA. 1986, 83: 7648-7652. 10.1073/pnas.83.20.7648.PubMedCentralCrossRefPubMed Johnson MS, McClure MA, Feng DF, Gray J, Doolittle RF: Computer analysis of retroviral pol genes: assignment of enzymatic functions to specific sequences and homologies with nonviral enzymes. Proc Natl Acad Sci USA. 1986, 83: 7648-7652. 10.1073/pnas.83.20.7648.PubMedCentralCrossRefPubMed
10.
go back to reference Delarue M, Poch O, Tordo N, Moras D, Argos P: An attempt to unify the structure of polymerases. Protein Eng. 1990, 3: 461-467. 10.1093/protein/3.6.461.CrossRefPubMed Delarue M, Poch O, Tordo N, Moras D, Argos P: An attempt to unify the structure of polymerases. Protein Eng. 1990, 3: 461-467. 10.1093/protein/3.6.461.CrossRefPubMed
11.
go back to reference Kohlstaedt LA, Wang J, Friedman JM, Rice PA, Steitz TA: Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science. 1992, 256: 1783-1790. 10.1126/science.1377403.CrossRefPubMed Kohlstaedt LA, Wang J, Friedman JM, Rice PA, Steitz TA: Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science. 1992, 256: 1783-1790. 10.1126/science.1377403.CrossRefPubMed
12.
go back to reference Jacobo-Molina A, Ding J, Nanni RG, Clark AD, Lu X, Tantillo C, Williams RL, Kamer G, Ferris AL, Clark P, et al: Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 A resolution shows bent DNA. Proc Natl Acad Sci USA. 1993, 90: 6320-6324. 10.1073/pnas.90.13.6320.PubMedCentralCrossRefPubMed Jacobo-Molina A, Ding J, Nanni RG, Clark AD, Lu X, Tantillo C, Williams RL, Kamer G, Ferris AL, Clark P, et al: Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 A resolution shows bent DNA. Proc Natl Acad Sci USA. 1993, 90: 6320-6324. 10.1073/pnas.90.13.6320.PubMedCentralCrossRefPubMed
13.
go back to reference Nakamura H, Katayanagi K, Morikawa K, Ikehara M: Structural models of ribonuclease H domains in reverse transcriptases from retroviruses. Nucleic Acids Res. 1991, 19: 1817-1823. 10.1093/nar/19.8.1817.PubMedCentralCrossRefPubMed Nakamura H, Katayanagi K, Morikawa K, Ikehara M: Structural models of ribonuclease H domains in reverse transcriptases from retroviruses. Nucleic Acids Res. 1991, 19: 1817-1823. 10.1093/nar/19.8.1817.PubMedCentralCrossRefPubMed
14.
go back to reference Davies JF, Hostomska Z, Hostomsky Z, Jordan SR, Matthews DA: Crystal structure of the ribonuclease H domain of HIV-1 reverse transcriptase. Science. 1991, 252: 88-95. 10.1126/science.1707186.CrossRefPubMed Davies JF, Hostomska Z, Hostomsky Z, Jordan SR, Matthews DA: Crystal structure of the ribonuclease H domain of HIV-1 reverse transcriptase. Science. 1991, 252: 88-95. 10.1126/science.1707186.CrossRefPubMed
15.
go back to reference Yang W, Hendrickson WA, Crouch RJ, Satow Y: Structure of ribonuclease H phased at 2 A resolution by MAD analysis of the selenomethionyl protein. Science. 1990, 249: 1398-1405. 10.1126/science.2169648.CrossRefPubMed Yang W, Hendrickson WA, Crouch RJ, Satow Y: Structure of ribonuclease H phased at 2 A resolution by MAD analysis of the selenomethionyl protein. Science. 1990, 249: 1398-1405. 10.1126/science.2169648.CrossRefPubMed
16.
go back to reference Katayanagi K, Miyagawa M, Matsushima M, Ishikawa M, Kanaya S, Ikehara M, Matsuzaki T, Morikawa K: Three-dimensional structure of ribonuclease H from E. coli. Nature. 1990, 347: 306-309. 10.1038/347306a0.CrossRefPubMed Katayanagi K, Miyagawa M, Matsushima M, Ishikawa M, Kanaya S, Ikehara M, Matsuzaki T, Morikawa K: Three-dimensional structure of ribonuclease H from E. coli. Nature. 1990, 347: 306-309. 10.1038/347306a0.CrossRefPubMed
17.
go back to reference Goedken ER, Marqusee S: Co-crystal of Escherichia coli RNase HI with Mn2+ ions reveals two divalent metals bound in the active site. J Biol Chem. 2001, 276: 7266-7271. 10.1074/jbc.M009626200.CrossRefPubMed Goedken ER, Marqusee S: Co-crystal of Escherichia coli RNase HI with Mn2+ ions reveals two divalent metals bound in the active site. J Biol Chem. 2001, 276: 7266-7271. 10.1074/jbc.M009626200.CrossRefPubMed
18.
go back to reference Ben-Artzi H, Zeelon E, Le-Grice SF, Gorecki M, Panet A: Characterization of the double stranded RNA dependent RNase activity associated with recombinant reverse transcriptases. Nucleic Acids Res. 1992, 20: 5115-5118. 10.1093/nar/20.19.5115.PubMedCentralCrossRefPubMed Ben-Artzi H, Zeelon E, Le-Grice SF, Gorecki M, Panet A: Characterization of the double stranded RNA dependent RNase activity associated with recombinant reverse transcriptases. Nucleic Acids Res. 1992, 20: 5115-5118. 10.1093/nar/20.19.5115.PubMedCentralCrossRefPubMed
19.
go back to reference Cirino NM, Cameron CE, Smith JS, Rausch JW, Roth MJ, Benkovic SJ, Le Grice SF: Divalent cation modulation of the ribonuclease functions of human immunodeficiency virus reverse transcriptase. Biochemistry. 1995, 34: 9936-9943. 10.1021/bi00031a016.CrossRefPubMed Cirino NM, Cameron CE, Smith JS, Rausch JW, Roth MJ, Benkovic SJ, Le Grice SF: Divalent cation modulation of the ribonuclease functions of human immunodeficiency virus reverse transcriptase. Biochemistry. 1995, 34: 9936-9943. 10.1021/bi00031a016.CrossRefPubMed
20.
go back to reference Blain SW, Goff SP: Nuclease activities of Moloney murine leukemia virus reverse transcriptase. Mutants with altered substrate specificities. J Biol Chem. 1993, 268: 23585-23592.PubMed Blain SW, Goff SP: Nuclease activities of Moloney murine leukemia virus reverse transcriptase. Mutants with altered substrate specificities. J Biol Chem. 1993, 268: 23585-23592.PubMed
21.
go back to reference Modak MJ, Marcus SL: Purification and properties of Rauscher leukemia virus DNA polymerase and selective inhibition of mammalian viral reverse transcriptase by inorganic phosphate. J Biol Chem. 1977, 252: 11-19.PubMed Modak MJ, Marcus SL: Purification and properties of Rauscher leukemia virus DNA polymerase and selective inhibition of mammalian viral reverse transcriptase by inorganic phosphate. J Biol Chem. 1977, 252: 11-19.PubMed
22.
go back to reference Gerard GF, Grandgenett DP: Purification and characterization of the DNA polymerase and RNase H activities in Moloney murine sarcoma-leukemia virus. J Virol. 1975, 15: 785-797.PubMedCentralPubMed Gerard GF, Grandgenett DP: Purification and characterization of the DNA polymerase and RNase H activities in Moloney murine sarcoma-leukemia virus. J Virol. 1975, 15: 785-797.PubMedCentralPubMed
23.
go back to reference Cases-Gonzalez CE, Gutierrez-Rivas M, Menendez-Arias L: Coupling ribose selection to fidelity of DNA synthesis. The role of Tyr-115 of human immunodeficiency virus type 1 reverse transcriptase. J Biol Chem. 2000, 275: 19759-19767. 10.1074/jbc.M910361199.CrossRefPubMed Cases-Gonzalez CE, Gutierrez-Rivas M, Menendez-Arias L: Coupling ribose selection to fidelity of DNA synthesis. The role of Tyr-115 of human immunodeficiency virus type 1 reverse transcriptase. J Biol Chem. 2000, 275: 19759-19767. 10.1074/jbc.M910361199.CrossRefPubMed
24.
go back to reference Schatz O, Cromme FV, Gruninger-Leitch F, Le Grice SF: Point mutations in conserved amino acid residues within the C-terminal domain of HIV-1 reverse transcriptase specifically repress RNase H function. FEBS Lett. 1989, 257: 311-314. 10.1016/0014-5793(89)81559-5.CrossRefPubMed Schatz O, Cromme FV, Gruninger-Leitch F, Le Grice SF: Point mutations in conserved amino acid residues within the C-terminal domain of HIV-1 reverse transcriptase specifically repress RNase H function. FEBS Lett. 1989, 257: 311-314. 10.1016/0014-5793(89)81559-5.CrossRefPubMed
25.
go back to reference Schatz O, Mous J, Le Grice SF: HIV-1 RT-associated ribonuclease H displays both endonuclease and 3'----5' exonuclease activity. Embo J. 1990, 9: 1171-1176.PubMedCentralPubMed Schatz O, Mous J, Le Grice SF: HIV-1 RT-associated ribonuclease H displays both endonuclease and 3'----5' exonuclease activity. Embo J. 1990, 9: 1171-1176.PubMedCentralPubMed
26.
go back to reference Rausch JW, Le Grice SF: Substituting a conserved residue of the ribonuclease H domain alters substrate hydrolysis by retroviral reverse transcriptase. J Biol Chem. 1997, 272: 8602-8610. 10.1074/jbc.272.13.8602.CrossRefPubMed Rausch JW, Le Grice SF: Substituting a conserved residue of the ribonuclease H domain alters substrate hydrolysis by retroviral reverse transcriptase. J Biol Chem. 1997, 272: 8602-8610. 10.1074/jbc.272.13.8602.CrossRefPubMed
27.
go back to reference Le Grice SF, Naas T, Wohlgensinger B, Schatz O: Subunit-selective mutagenesis indicates minimal polymerase activity in heterodimer-associated p51 HIV-1 reverse transcriptase. Embo J. 1991, 10: 3905-3911.PubMedCentralPubMed Le Grice SF, Naas T, Wohlgensinger B, Schatz O: Subunit-selective mutagenesis indicates minimal polymerase activity in heterodimer-associated p51 HIV-1 reverse transcriptase. Embo J. 1991, 10: 3905-3911.PubMedCentralPubMed
28.
go back to reference Kaushik N, Harris D, Rege N, Modak MJ, Yadav PN, Pandey VN: Role of glutamine-151 of human immunodeficiency virus type-1 reverse transcriptase in RNA-directed DNA synthesis. Biochemistry. 1997, 36: 14430-14438. 10.1021/bi970645k.CrossRefPubMed Kaushik N, Harris D, Rege N, Modak MJ, Yadav PN, Pandey VN: Role of glutamine-151 of human immunodeficiency virus type-1 reverse transcriptase in RNA-directed DNA synthesis. Biochemistry. 1997, 36: 14430-14438. 10.1021/bi970645k.CrossRefPubMed
29.
go back to reference Huang H, Chopra R, Verdine GL, Harrison SC: Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. Science. 1998, 282: 1669-1675. 10.1126/science.282.5394.1669.CrossRefPubMed Huang H, Chopra R, Verdine GL, Harrison SC: Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. Science. 1998, 282: 1669-1675. 10.1126/science.282.5394.1669.CrossRefPubMed
30.
go back to reference Georgiadis MM, Jessen SM, Ogata CM, Telesnitsky A, Goff SP, Hendrickson WA: Mechanistic implications from the structure of a catalytic fragment of Moloney murine leukemia virus reverse transcriptase. Structure. 1995, 3: 879-892. 10.1016/S0969-2126(01)00223-4.CrossRefPubMed Georgiadis MM, Jessen SM, Ogata CM, Telesnitsky A, Goff SP, Hendrickson WA: Mechanistic implications from the structure of a catalytic fragment of Moloney murine leukemia virus reverse transcriptase. Structure. 1995, 3: 879-892. 10.1016/S0969-2126(01)00223-4.CrossRefPubMed
31.
go back to reference Kaushik N, Rege N, Yadav PN, Sarafianos SG, Modak MJ, Pandey VN: Biochemical analysis of catalytically crucial aspartate mutants of human immunodeficiency virus type 1 reverse transcriptase. Biochemistry. 1996, 35: 11536-11546. 10.1021/bi960364x.CrossRefPubMed Kaushik N, Rege N, Yadav PN, Sarafianos SG, Modak MJ, Pandey VN: Biochemical analysis of catalytically crucial aspartate mutants of human immunodeficiency virus type 1 reverse transcriptase. Biochemistry. 1996, 35: 11536-11546. 10.1021/bi960364x.CrossRefPubMed
32.
go back to reference Prasad VR, Goff SP: Linker insertion mutagenesis of the human immunodeficiency virus reverse transcriptase expressed in bacteria: definition of the minimal polymerase domain. Proc Natl Acad Sci USA. 1989, 86: 3104-3108. 10.1073/pnas.86.9.3104.PubMedCentralCrossRefPubMed Prasad VR, Goff SP: Linker insertion mutagenesis of the human immunodeficiency virus reverse transcriptase expressed in bacteria: definition of the minimal polymerase domain. Proc Natl Acad Sci USA. 1989, 86: 3104-3108. 10.1073/pnas.86.9.3104.PubMedCentralCrossRefPubMed
33.
go back to reference Hansen J, Schulze T, Mellert W, Moelling K: Identification and characterization of HIV-specific RNase H by monoclonal antibody. Embo J. 1988, 7: 239-243.PubMedCentralPubMed Hansen J, Schulze T, Mellert W, Moelling K: Identification and characterization of HIV-specific RNase H by monoclonal antibody. Embo J. 1988, 7: 239-243.PubMedCentralPubMed
34.
go back to reference DeStefano JJ, Buiser RG, Mallaber LM, Myers TW, Bambara RA, Fay PJ: Polymerization and RNase H activities of the reverse transcriptases from avian myeloblastosis, human immunodeficiency, and Moloney murine leukemia viruses are functionally uncoupled. J Biol Chem. 1991, 266: 7423-7431.PubMed DeStefano JJ, Buiser RG, Mallaber LM, Myers TW, Bambara RA, Fay PJ: Polymerization and RNase H activities of the reverse transcriptases from avian myeloblastosis, human immunodeficiency, and Moloney murine leukemia viruses are functionally uncoupled. J Biol Chem. 1991, 266: 7423-7431.PubMed
35.
go back to reference Wohrl BM, Moelling K: Interaction of HIV-1 ribonuclease H with polypurine tract containing RNA-DNA hybrids. Biochemistry. 1990, 29: 10141-10147. 10.1021/bi00496a001.CrossRefPubMed Wohrl BM, Moelling K: Interaction of HIV-1 ribonuclease H with polypurine tract containing RNA-DNA hybrids. Biochemistry. 1990, 29: 10141-10147. 10.1021/bi00496a001.CrossRefPubMed
36.
go back to reference Oyama F, Kikuchi R, Crouch RJ, Uchida T: Intrinsic properties of reverse transcriptase in reverse transcription. Associated RNase H is essentially regarded as an endonuclease. J Biol Chem. 1989, 264: 18808-18817.PubMed Oyama F, Kikuchi R, Crouch RJ, Uchida T: Intrinsic properties of reverse transcriptase in reverse transcription. Associated RNase H is essentially regarded as an endonuclease. J Biol Chem. 1989, 264: 18808-18817.PubMed
37.
go back to reference Hostomsky Z, Hostomska Z, Hudson GO, Moomaw EW, Nodes BR: Reconstitution in vitro of RNase H activity by using purified N-terminal and C-terminal domains of human immunodeficiency virus type 1 reverse transcriptase. Proc Natl Acad Sci USA. 1991, 88: 1148-1152. 10.1073/pnas.88.4.1148.PubMedCentralCrossRefPubMed Hostomsky Z, Hostomska Z, Hudson GO, Moomaw EW, Nodes BR: Reconstitution in vitro of RNase H activity by using purified N-terminal and C-terminal domains of human immunodeficiency virus type 1 reverse transcriptase. Proc Natl Acad Sci USA. 1991, 88: 1148-1152. 10.1073/pnas.88.4.1148.PubMedCentralCrossRefPubMed
38.
go back to reference Misra HS, Pandey PK, Pandey VN: An enzymatically active chimeric HIV-1 reverse transcriptase (RT) with the RNase-H domain of murine leukemia virus RT exists as a monomer. J Biol Chem. 1998, 273: 9785-9789. 10.1074/jbc.273.16.9785.CrossRefPubMed Misra HS, Pandey PK, Pandey VN: An enzymatically active chimeric HIV-1 reverse transcriptase (RT) with the RNase-H domain of murine leukemia virus RT exists as a monomer. J Biol Chem. 1998, 273: 9785-9789. 10.1074/jbc.273.16.9785.CrossRefPubMed
39.
go back to reference Chowdhury K, Kaushik N, Pandey VN, Modak MJ: Elucidation of the role of Arg 110 of murine leukemia virus reverse transcriptase in the catalytic mechanism: biochemical characterization of its mutant enzymes. Biochemistry. 1996, 35: 16610-16620. 10.1021/bi961462l.CrossRefPubMed Chowdhury K, Kaushik N, Pandey VN, Modak MJ: Elucidation of the role of Arg 110 of murine leukemia virus reverse transcriptase in the catalytic mechanism: biochemical characterization of its mutant enzymes. Biochemistry. 1996, 35: 16610-16620. 10.1021/bi961462l.CrossRefPubMed
40.
go back to reference Harris D, Lee R, Misra HS, Pandey PK, Pandey VN: The p51 subunit of human immunodeficiency virus type 1 reverse transcriptase is essential in loading the p66 subunit on the template primer. Biochemistry. 1998, 37: 5903-5908. 10.1021/bi9728452.CrossRefPubMed Harris D, Lee R, Misra HS, Pandey PK, Pandey VN: The p51 subunit of human immunodeficiency virus type 1 reverse transcriptase is essential in loading the p66 subunit on the template primer. Biochemistry. 1998, 37: 5903-5908. 10.1021/bi9728452.CrossRefPubMed
41.
go back to reference Lee R, Kaushik N, Modak MJ, Vinayak R, Pandey VN: Polyamide nucleic acid targeted to the primer binding site of the HIV-1 RNA genome blocks in vitro HIV-1 reverse transcription. Biochemistry. 1998, 37: 900-910. 10.1021/bi972197m.CrossRefPubMed Lee R, Kaushik N, Modak MJ, Vinayak R, Pandey VN: Polyamide nucleic acid targeted to the primer binding site of the HIV-1 RNA genome blocks in vitro HIV-1 reverse transcription. Biochemistry. 1998, 37: 900-910. 10.1021/bi972197m.CrossRefPubMed
42.
go back to reference Harris D, Yadav PN, Pandey VN: Loss of polymerase activity due to Tyr to Phe substitution in the YMDD motif of human immunodeficiency virus type-1 reverse transcriptase is compensated by Met to Val substitution within the same motif. Biochemistry. 1998, 37: 9630-9640. 10.1021/bi980549z.CrossRefPubMed Harris D, Yadav PN, Pandey VN: Loss of polymerase activity due to Tyr to Phe substitution in the YMDD motif of human immunodeficiency virus type-1 reverse transcriptase is compensated by Met to Val substitution within the same motif. Biochemistry. 1998, 37: 9630-9640. 10.1021/bi980549z.CrossRefPubMed
43.
go back to reference Sanger F, Nicklen S, Coulson AR: DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA. 1977, 74: 5463-5467. 10.1073/pnas.74.12.5463.PubMedCentralCrossRefPubMed Sanger F, Nicklen S, Coulson AR: DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA. 1977, 74: 5463-5467. 10.1073/pnas.74.12.5463.PubMedCentralCrossRefPubMed
44.
go back to reference Sharma B, Kaushik N, Upadhyay A, Tripathi S, Singh K, Pandey VN: A positively charged side chain at position 154 on the beta8-alphaE loop of HIV-1 RT is required for stable ternary complex formation. Nucleic Acids Res. 2003, 31: 5167-5174. 10.1093/nar/gkg708.PubMedCentralCrossRefPubMed Sharma B, Kaushik N, Upadhyay A, Tripathi S, Singh K, Pandey VN: A positively charged side chain at position 154 on the beta8-alphaE loop of HIV-1 RT is required for stable ternary complex formation. Nucleic Acids Res. 2003, 31: 5167-5174. 10.1093/nar/gkg708.PubMedCentralCrossRefPubMed
45.
go back to reference Pandey PK, Kaushik N, Singh K, Sharma B, Upadhyay AK, Kumar S, Harris D, Pandey VN: Insertion of a small peptide of six amino acids into the beta7-beta8 loop of the p51 subunit of HIV-1 reverse transcriptase perturbs the heterodimer and affects its activities. BMC Biochem. 2002, 3: 18-10.1186/1471-2091-3-18.PubMedCentralCrossRefPubMed Pandey PK, Kaushik N, Singh K, Sharma B, Upadhyay AK, Kumar S, Harris D, Pandey VN: Insertion of a small peptide of six amino acids into the beta7-beta8 loop of the p51 subunit of HIV-1 reverse transcriptase perturbs the heterodimer and affects its activities. BMC Biochem. 2002, 3: 18-10.1186/1471-2091-3-18.PubMedCentralCrossRefPubMed
46.
go back to reference Kaushik N, Chowdhury K, Pandey VN, Modak MJ: Valine of the YVDD motif of moloney murine leukemia virus reverse transcriptase: role in the fidelity of DNA synthesis. Biochemistry. 2000, 39: 5155-5165. 10.1021/bi992223b.CrossRefPubMed Kaushik N, Chowdhury K, Pandey VN, Modak MJ: Valine of the YVDD motif of moloney murine leukemia virus reverse transcriptase: role in the fidelity of DNA synthesis. Biochemistry. 2000, 39: 5155-5165. 10.1021/bi992223b.CrossRefPubMed
47.
go back to reference Pandey VN, Kaushik N, Rege N, Sarafianos SG, Yadav PN, Modak MJ: Role of methionine 184 of human immunodeficiency virus type-1 reverse transcriptase in the polymerase function and fidelity of DNA synthesis. Biochemistry. 1996, 35: 2168-2179. 10.1021/bi9516642.CrossRefPubMed Pandey VN, Kaushik N, Rege N, Sarafianos SG, Yadav PN, Modak MJ: Role of methionine 184 of human immunodeficiency virus type-1 reverse transcriptase in the polymerase function and fidelity of DNA synthesis. Biochemistry. 1996, 35: 2168-2179. 10.1021/bi9516642.CrossRefPubMed
48.
go back to reference Meyer PR, Matsuura SE, So AG, Scott WA: Unblocking of chain-terminated primer by HIV-1 reverse transcriptase through a nucleotide-dependent mechanism. Proc Natl Acad Sci USA. 1998, 95: 13471-13476. 10.1073/pnas.95.23.13471.PubMedCentralCrossRefPubMed Meyer PR, Matsuura SE, So AG, Scott WA: Unblocking of chain-terminated primer by HIV-1 reverse transcriptase through a nucleotide-dependent mechanism. Proc Natl Acad Sci USA. 1998, 95: 13471-13476. 10.1073/pnas.95.23.13471.PubMedCentralCrossRefPubMed
49.
go back to reference Palaniappan C, Wisniewski M, Jacques PS, Le Grice SF, Fay PJ, Bambara RA: Mutations within the primer grip region of HIV-1 reverse transcriptase result in loss of RNase H function. J Biol Chem. 1997, 272: 11157-11164. 10.1074/jbc.272.12.7676.CrossRefPubMed Palaniappan C, Wisniewski M, Jacques PS, Le Grice SF, Fay PJ, Bambara RA: Mutations within the primer grip region of HIV-1 reverse transcriptase result in loss of RNase H function. J Biol Chem. 1997, 272: 11157-11164. 10.1074/jbc.272.12.7676.CrossRefPubMed
50.
go back to reference Ghosh M, Jacques PS, Rodgers DW, Ottman M, Darlix JL, Le Grice SF: Alterations to the primer grip of p66 HIV-1 reverse transcriptase and their consequences for template-primer utilization. Biochemistry. 1996, 35: 8553-8562. 10.1021/bi952773j.CrossRefPubMed Ghosh M, Jacques PS, Rodgers DW, Ottman M, Darlix JL, Le Grice SF: Alterations to the primer grip of p66 HIV-1 reverse transcriptase and their consequences for template-primer utilization. Biochemistry. 1996, 35: 8553-8562. 10.1021/bi952773j.CrossRefPubMed
51.
go back to reference Boyer PL, Ferris AL, Hughes SH: Mutational analysis of the fingers domain of human immunodeficiency virus type 1 reverse transcriptase. J Virol. 1992, 66: 7533-7537.PubMedCentralPubMed Boyer PL, Ferris AL, Hughes SH: Mutational analysis of the fingers domain of human immunodeficiency virus type 1 reverse transcriptase. J Virol. 1992, 66: 7533-7537.PubMedCentralPubMed
52.
go back to reference Larder BA, Purifoy DJ, Powell KL, Darby G: Site-specific mutagenesis of AIDS virus reverse transcriptase. Nature. 1987, 327: 716-717. 10.1038/327716a0.CrossRefPubMed Larder BA, Purifoy DJ, Powell KL, Darby G: Site-specific mutagenesis of AIDS virus reverse transcriptase. Nature. 1987, 327: 716-717. 10.1038/327716a0.CrossRefPubMed
53.
go back to reference Hizi A, Hughes SH, Shaharabany M: Mutational analysis of the ribonuclease H activity of human immunodeficiency virus 1 reverse transcriptase. Virology. 1990, 175: 575-580. 10.1016/0042-6822(90)90444-V.CrossRefPubMed Hizi A, Hughes SH, Shaharabany M: Mutational analysis of the ribonuclease H activity of human immunodeficiency virus 1 reverse transcriptase. Virology. 1990, 175: 575-580. 10.1016/0042-6822(90)90444-V.CrossRefPubMed
54.
go back to reference Tisdale M, Kemp SD, Parry NR, Larder BA: Rapid in vitro selection of human immunodeficiency virus type 1 resistant to 3'-thiacytidine inhibitors due to a mutation in the YMDD region of reverse transcriptase. Proc Natl Acad Sci USA. 1993, 90: 5653-5656. 10.1073/pnas.90.12.5653.PubMedCentralCrossRefPubMed Tisdale M, Kemp SD, Parry NR, Larder BA: Rapid in vitro selection of human immunodeficiency virus type 1 resistant to 3'-thiacytidine inhibitors due to a mutation in the YMDD region of reverse transcriptase. Proc Natl Acad Sci USA. 1993, 90: 5653-5656. 10.1073/pnas.90.12.5653.PubMedCentralCrossRefPubMed
55.
go back to reference Kotewicz ML, Sampson CM, D'Alessio JM, Gerard GF: Isolation of cloned Moloney murine leukemia virus reverse transcriptase lacking ribonuclease H activity. Nucleic Acids Res. 1988, 16: 265-277. 10.1093/nar/16.1.265.PubMedCentralCrossRefPubMed Kotewicz ML, Sampson CM, D'Alessio JM, Gerard GF: Isolation of cloned Moloney murine leukemia virus reverse transcriptase lacking ribonuclease H activity. Nucleic Acids Res. 1988, 16: 265-277. 10.1093/nar/16.1.265.PubMedCentralCrossRefPubMed
56.
go back to reference Hizi A, Barber A, Hughes SH: Effects of small insertions on the RNA-dependent DNA polymerase activity of HIV-1 reverse transcriptase. Virology. 1989, 170: 326-329. 10.1016/0042-6822(89)90389-9.CrossRefPubMed Hizi A, Barber A, Hughes SH: Effects of small insertions on the RNA-dependent DNA polymerase activity of HIV-1 reverse transcriptase. Virology. 1989, 170: 326-329. 10.1016/0042-6822(89)90389-9.CrossRefPubMed
57.
go back to reference Post K, Guo J, Kalman E, Uchida T, Crouch RJ, Levin JG: A large deletion in the connection subdomain of murine leukemia virus reverse transcriptase or replacement of the RNase H domain with Escherichia coli RNase H results in altered polymerase and RNase H activities. Biochemistry. 1993, 32: 5508-5517. 10.1021/bi00072a004.CrossRefPubMed Post K, Guo J, Kalman E, Uchida T, Crouch RJ, Levin JG: A large deletion in the connection subdomain of murine leukemia virus reverse transcriptase or replacement of the RNase H domain with Escherichia coli RNase H results in altered polymerase and RNase H activities. Biochemistry. 1993, 32: 5508-5517. 10.1021/bi00072a004.CrossRefPubMed
58.
go back to reference Levin JG, Crouch RJ, Post K, Hu SC, McKelvin D, Zweig M, Court DL, Gerwin BI: Functional organization of the murine leukemia virus reverse transcriptase: characterization of a bacterially expressed AKR DNA polymerase deficient in RNase H activity. J Virol. 1988, 62: 4376-4380.PubMedCentralPubMed Levin JG, Crouch RJ, Post K, Hu SC, McKelvin D, Zweig M, Court DL, Gerwin BI: Functional organization of the murine leukemia virus reverse transcriptase: characterization of a bacterially expressed AKR DNA polymerase deficient in RNase H activity. J Virol. 1988, 62: 4376-4380.PubMedCentralPubMed
Metadata
Title
Influence of the RNase H domain of retroviral reverse transcriptases on the metal specificity and substrate selection of their polymerase domains
Authors
Tanaji T Talele
Alok Upadhyay
Virendra N Pandey
Publication date
01-12-2009
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2009
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/1743-422X-6-159

Other articles of this Issue 1/2009

Virology Journal 1/2009 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine