Skip to main content
Top
Published in: Metabolic Brain Disease 4/2008

01-12-2008 | Original Paper

Influence of ketone bodies on oxidative stress parameters in brain of developing rats in vitro

Authors: Ana Paula Beskow, Carolina Gonçalves Fernandes, Guilhian Leipnitz, Lucila de Bortoli da Silva, Bianca Seminotti, Alexandre U. Amaral, Angela T. S. Wyse, Clóvis M. D. Wannmacher, Carmen R. Vargas, Carlos S. Dutra-Filho, Moacir Wajner

Published in: Metabolic Brain Disease | Issue 4/2008

Login to get access

Abstract

Pro-oxidant and antioxidant properties have been found for acetoacetate (AcAc) and β-hydroxybutyrate (BHB) in peripheral tissues. In the present study we investigated the role of AcAc and BHB at concentrations found in diabetic patients during ketoacidotic crises and in individuals affected by succinyl CoA: 3-oxoacid CoA transferase and acetoacetyl-CoA thiolase deficiencies, disorders clinically characterized by neurological symptoms, on a large number of oxidative stress parameters in fresh cerebral cortex of developing rats. Lipid peroxidation (chemiluminescence and thiobarbituric acid–reactive substances levels), protein oxidative damage (carbonyl formation and sulfhydryl oxidation), 2′,7′-dichlorofluorescin diacetate oxidation and the non-enzymatic (total antioxidant reactivity and glutathione levels) and enzymatic (glutathione peroxidase, superoxide dismutase and catalase activities) antioxidant defenses were not changed by doses of BHB and AcAc as high as 25 mM in cortical supernatants under basal conditions. Furthermore, BHB did not affect the increased thiobarbituric acid–reactive substances levels provoked by 3-hydroxy-3-methylglutaric and 3-methylglutaconic acids and by a hydroxyl-induced generation system. Finally, BHB and AcAc were not able to oxidize sulfhydryl groups from a commercial GSH solution. Therefore, under basal conditions or under situations with high production of free radicals, AcAc and BHB were not able to reduce or increase the oxidative stress parameters in the brain. Taken together, our present results do not support the hypothesis that BHB and AcAc act as potent direct or indirect pro-oxidants or antioxidants in the CNS.
Literature
go back to reference Abdelmegged MA, Klim AK, Woodcroft KJ, Novak RF (2004) Acetoacetate activation of extracellular signal-regulated kinase 1/2 and p38 mitogen-actived protein kinase in primary cultured rat hepatocytes: role of oxidative stress. J Pharmacol Exp Ther 310:728–736CrossRef Abdelmegged MA, Klim AK, Woodcroft KJ, Novak RF (2004) Acetoacetate activation of extracellular signal-regulated kinase 1/2 and p38 mitogen-actived protein kinase in primary cultured rat hepatocytes: role of oxidative stress. J Pharmacol Exp Ther 310:728–736CrossRef
go back to reference Adrogue HJ, Wilson H, Boyd AE III, Suki WN, Eknoyan G (1982) Plasma acid-base patterns in diabetic ketoacidosis. N Engl J Med 307:1603–1610PubMed Adrogue HJ, Wilson H, Boyd AE III, Suki WN, Eknoyan G (1982) Plasma acid-base patterns in diabetic ketoacidosis. N Engl J Med 307:1603–1610PubMed
go back to reference Aksenov MY, Markesbery WR (2001) Change in thiol content and expression of glutathione redox system gene in the hippocampus and cerebellum in Alzheimer's disease. Neurosci Lett 302:141–145PubMedCrossRef Aksenov MY, Markesbery WR (2001) Change in thiol content and expression of glutathione redox system gene in the hippocampus and cerebellum in Alzheimer's disease. Neurosci Lett 302:141–145PubMedCrossRef
go back to reference Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS (2004) Calcium, ATP, and ROS: a mitochondrial love–hate triangle. Am J Physiol Cell Physiol 287:C817–C833PubMedCrossRef Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS (2004) Calcium, ATP, and ROS: a mitochondrial love–hate triangle. Am J Physiol Cell Physiol 287:C817–C833PubMedCrossRef
go back to reference Browne RW, Armstrong D (1998) Reduced glutathione and glutathione disulfide. Methods Mol Biol 108:347–352PubMed Browne RW, Armstrong D (1998) Reduced glutathione and glutathione disulfide. Methods Mol Biol 108:347–352PubMed
go back to reference Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 186:407–421PubMedCrossRef Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 186:407–421PubMedCrossRef
go back to reference Evelson P, Travacio M, Repetto M, Escobar J, Llesuy S, Lissi E (2001) Evaluation of total reactive antioxidant potential (TRAP) of tissue homogenates and their cytosols. Arch Biochem Biophys 388:261–266CrossRef Evelson P, Travacio M, Repetto M, Escobar J, Llesuy S, Lissi E (2001) Evaluation of total reactive antioxidant potential (TRAP) of tissue homogenates and their cytosols. Arch Biochem Biophys 388:261–266CrossRef
go back to reference Fukao T, Shintaku H, Kusubae R, Zhang GX, Nakamura K, Kondo M, Kondo N (2004) Patients Homozygous for the T435N mutation of Succinyl-CoA: 3-Ketoacid CoA Transferase (SCOT) do not show permanent ketosis. Pediatr Res 56:858–863PubMedCrossRef Fukao T, Shintaku H, Kusubae R, Zhang GX, Nakamura K, Kondo M, Kondo N (2004) Patients Homozygous for the T435N mutation of Succinyl-CoA: 3-Ketoacid CoA Transferase (SCOT) do not show permanent ketosis. Pediatr Res 56:858–863PubMedCrossRef
go back to reference Gilbert DL, Pyzik PL, Freeman JM (2000) The ketogenic diet: seizure control correlates better with serum beta-hydroxybutyrate than with urine ketones. J Child Neurol 15:787–790PubMedCrossRef Gilbert DL, Pyzik PL, Freeman JM (2000) The ketogenic diet: seizure control correlates better with serum beta-hydroxybutyrate than with urine ketones. J Child Neurol 15:787–790PubMedCrossRef
go back to reference Gonzalez-Flecha B, Llesuy S, Boveris A (1991) Hydroperoxide-initiated chemiluminescence: an assay for oxidative stress in biopsies of heart, liver, and muscle. Free Radic Biol Med 10:93–100PubMedCrossRef Gonzalez-Flecha B, Llesuy S, Boveris A (1991) Hydroperoxide-initiated chemiluminescence: an assay for oxidative stress in biopsies of heart, liver, and muscle. Free Radic Biol Med 10:93–100PubMedCrossRef
go back to reference Jain SK (1989) Hyperglycemia can cause membrane lipid peroxidation and osmotic fragiliy in human red blood cells. J Biol Chem 264:21340–21345PubMed Jain SK (1989) Hyperglycemia can cause membrane lipid peroxidation and osmotic fragiliy in human red blood cells. J Biol Chem 264:21340–21345PubMed
go back to reference Jain SK, McVie R (1999) Hyperketonemia can increase lipid peroxidation and lower glutathione levels in human erythrocytes in vitro and in type 1 diabetic patients. Diabetes 48:555–1850CrossRef Jain SK, McVie R (1999) Hyperketonemia can increase lipid peroxidation and lower glutathione levels in human erythrocytes in vitro and in type 1 diabetic patients. Diabetes 48:555–1850CrossRef
go back to reference Jain SK, Krishnaswamy K, Lim G (1998) Ketosis (acetoacetate) can generate oxygen radicals and cause increased lipid peroxidation and growth inhibition in human endothelial cells. Free Radic Biol Med 25:1083–1088PubMedCrossRef Jain SK, Krishnaswamy K, Lim G (1998) Ketosis (acetoacetate) can generate oxygen radicals and cause increased lipid peroxidation and growth inhibition in human endothelial cells. Free Radic Biol Med 25:1083–1088PubMedCrossRef
go back to reference Jain SK, McVie R, Jackson R, Levine SN, Lim G (1999) Effect of hyperketonemia on plasma lipid peroxidation levels in diabetic patients. Diabetes Care 22:1171–1175PubMedCrossRef Jain SK, McVie R, Jackson R, Levine SN, Lim G (1999) Effect of hyperketonemia on plasma lipid peroxidation levels in diabetic patients. Diabetes Care 22:1171–1175PubMedCrossRef
go back to reference Jain SK, Kannan K, Lim G, Matthew-Gree J, Mc Vie R, Bocchini JA (2003) Elevated blood interleukin-6 levels in hyperketonemic type 1 diabetic patients and secretion by acetoacetate-treated cultured U937 monocytes. Diabetes Care 26:2139–2143PubMedCrossRef Jain SK, Kannan K, Lim G, Matthew-Gree J, Mc Vie R, Bocchini JA (2003) Elevated blood interleukin-6 levels in hyperketonemic type 1 diabetic patients and secretion by acetoacetate-treated cultured U937 monocytes. Diabetes Care 26:2139–2143PubMedCrossRef
go back to reference Jain SK, McVie R, Bocchini JA Jr (2006) Hyperketonemia (ketosis), oxidative stress and type 1 diabetes. Pathophysiology 13:163–170PubMedCrossRef Jain SK, McVie R, Bocchini JA Jr (2006) Hyperketonemia (ketosis), oxidative stress and type 1 diabetes. Pathophysiology 13:163–170PubMedCrossRef
go back to reference Kashiwaya Y, Takeshima T, Mori N, Nakashima K, Clarke K, Veech RL (2000) D-beta-hydroxybutyrate protects neurons in models of lzheimer's and Parkinson's disease. Proc Natl Acad Sci USA 97:5440–5444PubMedCrossRef Kashiwaya Y, Takeshima T, Mori N, Nakashima K, Clarke K, Veech RL (2000) D-beta-hydroxybutyrate protects neurons in models of lzheimer's and Parkinson's disease. Proc Natl Acad Sci USA 97:5440–5444PubMedCrossRef
go back to reference Laffel L (1999) Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes Metab Res Rev 15:412–426PubMedCrossRef Laffel L (1999) Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes Metab Res Rev 15:412–426PubMedCrossRef
go back to reference LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′,7′- dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5:227–231PubMedCrossRef LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′,7′- dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5:227–231PubMedCrossRef
go back to reference Lee DM, Hoffman WH, Carl GF, Khichi M, Cornwell PE (2002) Lipid peroxidation and antioxidant vitamins prior to, during, and after correction of diabetic ketoacidosis. J Diabetes Complicat 16:294–300PubMedCrossRef Lee DM, Hoffman WH, Carl GF, Khichi M, Cornwell PE (2002) Lipid peroxidation and antioxidant vitamins prior to, during, and after correction of diabetic ketoacidosis. J Diabetes Complicat 16:294–300PubMedCrossRef
go back to reference Lissi E, Salim-Hanna M, Pascual C, del Castillo MD (1995) Evaluation of total antioxidant potential (TRAP) and total antioxidant reactivity from luminol-enhanced chemiluminescence measurements. Free Radic Biol Med 18:153–158PubMedCrossRef Lissi E, Salim-Hanna M, Pascual C, del Castillo MD (1995) Evaluation of total antioxidant potential (TRAP) and total antioxidant reactivity from luminol-enhanced chemiluminescence measurements. Free Radic Biol Med 18:153–158PubMedCrossRef
go back to reference Lowry OH, Rosebrough NJ, Lewis-Farr A, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMed Lowry OH, Rosebrough NJ, Lewis-Farr A, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMed
go back to reference Maalouf M, Sullivan PG, Davis L, Kim DY, Rho JM (2007) Ketones inhibit mitochondrial production of reactive oxygen species production following glutamate excitotoxicity by increasing NADH oxidation. Neuroscience 145:256–264PubMedCrossRef Maalouf M, Sullivan PG, Davis L, Kim DY, Rho JM (2007) Ketones inhibit mitochondrial production of reactive oxygen species production following glutamate excitotoxicity by increasing NADH oxidation. Neuroscience 145:256–264PubMedCrossRef
go back to reference Massieu L, Haces ML, Montiel T, Hernandez-Fonseca K (2003) Acetoacetate protects hippocampal neurons against glutamate-mediated neuronal damage during glycolysis inhibition. Neuroscience 120:365–378PubMedCrossRef Massieu L, Haces ML, Montiel T, Hernandez-Fonseca K (2003) Acetoacetate protects hippocampal neurons against glutamate-mediated neuronal damage during glycolysis inhibition. Neuroscience 120:365–378PubMedCrossRef
go back to reference Mitchell GA, Kassovska-Bratinova S, Boukaftane Y, Robert M-F, Wang SP, Ashmarina L, Lambert M (1995) Medical aspects of ketone body metabolism. Clin Invest Med 18:193–216PubMed Mitchell GA, Kassovska-Bratinova S, Boukaftane Y, Robert M-F, Wang SP, Ashmarina L, Lambert M (1995) Medical aspects of ketone body metabolism. Clin Invest Med 18:193–216PubMed
go back to reference Mitchell GA, Fukao TJC (2001) Inborn errors of ketone body metabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 2340–2342 Mitchell GA, Fukao TJC (2001) Inborn errors of ketone body metabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 2340–2342
go back to reference Natarajan R, Gerrity RG, Gu JL, Lanting L, Thomas L, Nadler JL (2002) Role of 12-lipoxygenase and oxidant stress in hyperglycaemia-induced acceleration of atherosclerosis in a diabetic pig model. Diabetologia 45:125–133PubMedCrossRef Natarajan R, Gerrity RG, Gu JL, Lanting L, Thomas L, Nadler JL (2002) Role of 12-lipoxygenase and oxidant stress in hyperglycaemia-induced acceleration of atherosclerosis in a diabetic pig model. Diabetologia 45:125–133PubMedCrossRef
go back to reference Niezen-Koning KE, Wanders RJA, Ruiter JPN, Ijlst L, Visser G, Reitsma-Bierens WCC, Heymans HSA, Reijngoud DJ, Smit GPA (1997) Succinyl-CoA:acetoacetate transferase deficiency: identification of a new patient whit a neonatal onset and review of the literature. Eur J Pediatr 156:870–873PubMedCrossRef Niezen-Koning KE, Wanders RJA, Ruiter JPN, Ijlst L, Visser G, Reitsma-Bierens WCC, Heymans HSA, Reijngoud DJ, Smit GPA (1997) Succinyl-CoA:acetoacetate transferase deficiency: identification of a new patient whit a neonatal onset and review of the literature. Eur J Pediatr 156:870–873PubMedCrossRef
go back to reference Nischikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, Giardino I, Brownlee M (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycemic damage. Nature 404:787–790CrossRef Nischikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, Giardino I, Brownlee M (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycemic damage. Nature 404:787–790CrossRef
go back to reference Owen OE, Morgan AP, Kemp HG, Sullivan JM, Herrera MG, Cahill GF Jr (1967) Brain metabolism during fasting. J Clin Invest 46:1589–1595PubMedCrossRef Owen OE, Morgan AP, Kemp HG, Sullivan JM, Herrera MG, Cahill GF Jr (1967) Brain metabolism during fasting. J Clin Invest 46:1589–1595PubMedCrossRef
go back to reference Rajeswari P, Natarajan R, Nadler JL, Kumar D (1991) Glucose induces lipid peroxidation and inactivation of membrane associated iron transport enzymes in human erythrocytes in vivo and in vitro. J Cell Physiol 149:100–109PubMedCrossRef Rajeswari P, Natarajan R, Nadler JL, Kumar D (1991) Glucose induces lipid peroxidation and inactivation of membrane associated iron transport enzymes in human erythrocytes in vivo and in vitro. J Cell Physiol 149:100–109PubMedCrossRef
go back to reference Reznick AZ, Packer L (1994) Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol 233:357–363PubMedCrossRef Reznick AZ, Packer L (1994) Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol 233:357–363PubMedCrossRef
go back to reference Squires JE, Sun J, Caffrey JL, Yoshishige D, Mallet RT (2003) Acetoacetate augments β-adrenergic inotropism of stunned myocardium by an antioxidant mechanism. Am J Physiol Heart Circ Physiol 284:H1340–H1347PubMed Squires JE, Sun J, Caffrey JL, Yoshishige D, Mallet RT (2003) Acetoacetate augments β-adrenergic inotropism of stunned myocardium by an antioxidant mechanism. Am J Physiol Heart Circ Physiol 284:H1340–H1347PubMed
go back to reference Sullivan PG, Rippy NA, Dorenbos K, Concepcion RC, Agarwal AK, Rho JM (2004) The ketogenic diet increase mitochondrial uncoupling protein levels and activity. Ann. Neurol. 55:576–580PubMedCrossRef Sullivan PG, Rippy NA, Dorenbos K, Concepcion RC, Agarwal AK, Rho JM (2004) The ketogenic diet increase mitochondrial uncoupling protein levels and activity. Ann. Neurol. 55:576–580PubMedCrossRef
go back to reference Suzuki M, Sato K, Dohi S, Sato T, Matsuura A, Hairaide A (2001) Effect of beta-hydroxybutyrate, a cerebral function improving agent, on cerebral hypoxia, anoxia and ischemia in mice and rats. Jpn J Pharmacol 87:143–150PubMedCrossRef Suzuki M, Sato K, Dohi S, Sato T, Matsuura A, Hairaide A (2001) Effect of beta-hydroxybutyrate, a cerebral function improving agent, on cerebral hypoxia, anoxia and ischemia in mice and rats. Jpn J Pharmacol 87:143–150PubMedCrossRef
go back to reference Suzuki M, Kitamura Y, Mori S, Sato K, Dohi S, Sato T, Matsuura A, Hairaide A (2002) Beta-hydroxybutirate, a cerebral function improving agent, protects rat brain against ischemic damage caused by permanent and transient focal cerebral ischemia. Jpn J Pharmacol 89:36–43PubMedCrossRef Suzuki M, Kitamura Y, Mori S, Sato K, Dohi S, Sato T, Matsuura A, Hairaide A (2002) Beta-hydroxybutirate, a cerebral function improving agent, protects rat brain against ischemic damage caused by permanent and transient focal cerebral ischemia. Jpn J Pharmacol 89:36–43PubMedCrossRef
go back to reference Tesfamariam B, Cohen RA (1992) Free radicals mediate endothelial cell dysfunction caused by elevated glucose. J Physiol 262:H321–H326 Tesfamariam B, Cohen RA (1992) Free radicals mediate endothelial cell dysfunction caused by elevated glucose. J Physiol 262:H321–H326
go back to reference Veech RL, Chance B, Kashiwaya Y, Lardy HA, Cahill GF Jr (2001) Ketones bodies, potential therapeutic uses. IUBMB Life 51:241–247PubMedCrossRef Veech RL, Chance B, Kashiwaya Y, Lardy HA, Cahill GF Jr (2001) Ketones bodies, potential therapeutic uses. IUBMB Life 51:241–247PubMedCrossRef
Metadata
Title
Influence of ketone bodies on oxidative stress parameters in brain of developing rats in vitro
Authors
Ana Paula Beskow
Carolina Gonçalves Fernandes
Guilhian Leipnitz
Lucila de Bortoli da Silva
Bianca Seminotti
Alexandre U. Amaral
Angela T. S. Wyse
Clóvis M. D. Wannmacher
Carmen R. Vargas
Carlos S. Dutra-Filho
Moacir Wajner
Publication date
01-12-2008
Publisher
Springer US
Published in
Metabolic Brain Disease / Issue 4/2008
Print ISSN: 0885-7490
Electronic ISSN: 1573-7365
DOI
https://doi.org/10.1007/s11011-008-9108-3

Other articles of this Issue 4/2008

Metabolic Brain Disease 4/2008 Go to the issue