Skip to main content
Top
Published in: BMC Women's Health 1/2018

Open Access 01-07-2018 | Research

Influence of co-morbidity on body composition changes after weight loss intervention among overweight housewives: a follow-up study of the MyBFF@home

Authors: Nur Shahida Abdul Aziz, Suzana Shahar, Rashidah Ambak, Noor Safiza Mohamad Nor, Ahmad Taufik Jamil, Tahir Aris

Published in: BMC Women's Health | Special Issue 1/2018

Login to get access

Abstract

Background

Obesity is a risk factor for co-morbidities such as diabetes, hypertension, osteoarthritis and cardiovascular diseases. However, it is unclear if the presence of co-morbidities has any effect on the magnitude of body composition changes following weight reduction programmes. Thus, this study aimed to determine changes in body composition among obese housewives with and without co-morbidities after they participated in a weight loss intervention.

Methods

This is a follow-up study among 84 obese housewives without co-morbidities aged 18 to 59 years old who previously participated as a control group (delayed intervention, G1) in the My Body is Fit and Fabulous at Home (MyBFF@home) Phase II. Baseline data were obtained from 12 month data collection for this group. A new group of 42 obese housewives with co-morbidities (G2) were also recruited. Both groups received a 6 month intervention (July–December 2015) consisting of dietary counselling, physical activity (PA) and self-monitoring tools (PA diary, food diary and pedometer). Study parameters included weight, height, waist circumference, blood pressure and body compositions. Body compositions were measured using a bioelectrical impedance analysis device, Inbody 720. Descriptive and repeated measures ANOVA analyses were performed using SPSS 21.

Results

There were reductions in mean body fat, fat mass and visceral fat area, particularly among obese women without co-morbidities. There were also decreases fat and skeletal muscle from baseline to month six with mean difference − 0.12 (95% CI: -0.38, 0.14) and visceral fat area from month three to month six with mean difference − 9.22 (− 17.87, − 0.56) for G1. G2 showed a decreasing pattern of skeletal muscle from baseline to month six with mean difference − 0.01(95% CI: -0.38, 0.37). There was a significant difference for group effect of visceral fat area (p < 0.05) with mean difference of − 11.49(95% CI: -20.07, 2.91). It showed that the intervention programs was effective to reduce visceral fat area compared to other part of body composition.

Conclusion

Obese participants without co-morbidities showed more desirable changes in body composition. Visceral fat area was reduced regardless of morbidity status. Weight management efforts are therefore not as straightforward in those with co-morbidities compared to those without, and require thorough and tailor-made strategies for a better chance of success.
Literature
3.
go back to reference Neeland IJ, Ayers CR, Rohatgi AK, Turer AT, Berry JD, Das SR, et al. Associations of visceral and abdominal subcutaneous adipose tissue with markers of cardiac and metabolic risk in obese adults. Obesity. 2013;21(9) Neeland IJ, Ayers CR, Rohatgi AK, Turer AT, Berry JD, Das SR, et al. Associations of visceral and abdominal subcutaneous adipose tissue with markers of cardiac and metabolic risk in obese adults. Obesity. 2013;21(9)
4.
go back to reference Ording AG, Sørensen HT. Concepts of comorbidities, multiple morbidities, complications, and their clinical epidemiologic analogs. Clinical epidemiology. 2013;5:199.CrossRefPubMedPubMedCentral Ording AG, Sørensen HT. Concepts of comorbidities, multiple morbidities, complications, and their clinical epidemiologic analogs. Clinical epidemiology. 2013;5:199.CrossRefPubMedPubMedCentral
5.
go back to reference Valderas JM, Starfield B, Sibbald B, Salisbury C, Roland M. Defining comorbidity: implications for understanding health and health services. Ann Fam Med. 2009;7(4):357–63.CrossRefPubMedPubMedCentral Valderas JM, Starfield B, Sibbald B, Salisbury C, Roland M. Defining comorbidity: implications for understanding health and health services. Ann Fam Med. 2009;7(4):357–63.CrossRefPubMedPubMedCentral
6.
go back to reference Davis MC. Measuring adiposity in health research. Handbook of physiological research methods in Health Psychol 2007:10259–275. Davis MC. Measuring adiposity in health research. Handbook of physiological research methods in Health Psychol 2007:10259–275.
7.
go back to reference Johannsen DL, Knuth ND, Huizenga R, Rood JC, Ravussin E, Hall KD. Metabolic slowing with massive weight loss despite preservation of fat-free mass. J Clin Endocrinol Metab. 2012;97(7):2489–96.CrossRefPubMedPubMedCentral Johannsen DL, Knuth ND, Huizenga R, Rood JC, Ravussin E, Hall KD. Metabolic slowing with massive weight loss despite preservation of fat-free mass. J Clin Endocrinol Metab. 2012;97(7):2489–96.CrossRefPubMedPubMedCentral
8.
go back to reference Stiegler P, Cunliffe A. The role of diet and exercise for the maintenance of fat-free mass and resting metabolic rate during weight loss. Sports Med. 2006;36(3):239–62.CrossRefPubMed Stiegler P, Cunliffe A. The role of diet and exercise for the maintenance of fat-free mass and resting metabolic rate during weight loss. Sports Med. 2006;36(3):239–62.CrossRefPubMed
10.
go back to reference MASO. Strategy for the prevention of Obesity Malaysia: Malaysian Association for the Study of Obesity (MASO); 2005. MASO. Strategy for the prevention of Obesity Malaysia: Malaysian Association for the Study of Obesity (MASO); 2005.
11.
go back to reference Harsha DW, Bray GA. Weight loss and blood pressure control; (pro). Hypertension. 2008;51(6):1420–5.CrossRefPubMed Harsha DW, Bray GA. Weight loss and blood pressure control; (pro). Hypertension. 2008;51(6):1420–5.CrossRefPubMed
12.
go back to reference Franz MJ. The dilemma of weight loss in diabetes. Diabetes Spectrum. 2007;20(3):133–6.CrossRef Franz MJ. The dilemma of weight loss in diabetes. Diabetes Spectrum. 2007;20(3):133–6.CrossRef
13.
go back to reference Foster-Schubert KE, Alfano CM, Duggan CR, Xiao L, Campbell KL, Kong A, et al. Effect of diet and exercise, alone or combined, on weight and body composition in overweight-to-obese post-menopausal women. Obesity. 2012;20(8):1628–38.CrossRefPubMed Foster-Schubert KE, Alfano CM, Duggan CR, Xiao L, Campbell KL, Kong A, et al. Effect of diet and exercise, alone or combined, on weight and body composition in overweight-to-obese post-menopausal women. Obesity. 2012;20(8):1628–38.CrossRefPubMed
16.
go back to reference Sun G, et al. Comparison of multifrequency bioelectrical impedance analysis with dual-energy X-ray absorptiometry for assessment of percentage body fat in a large, healthy population. Am J Clin Nutr. 2005;81:74–8.CrossRefPubMed Sun G, et al. Comparison of multifrequency bioelectrical impedance analysis with dual-energy X-ray absorptiometry for assessment of percentage body fat in a large, healthy population. Am J Clin Nutr. 2005;81:74–8.CrossRefPubMed
17.
go back to reference Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P, Liu C, et al. Abdominal visceral and subcutaneous adipose tissue compartments. Circulation. 2007;116(1):39–48.CrossRefPubMed Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P, Liu C, et al. Abdominal visceral and subcutaneous adipose tissue compartments. Circulation. 2007;116(1):39–48.CrossRefPubMed
20.
go back to reference Volpe SL, Kobusingye H, Bailur S, Stanek E. Effect of diet and exercise on body composition, energy intake and leptin levels in overweight women and men. J Am Coll Nutr. 2008 Apr 1;27(2):195–208.CrossRefPubMed Volpe SL, Kobusingye H, Bailur S, Stanek E. Effect of diet and exercise on body composition, energy intake and leptin levels in overweight women and men. J Am Coll Nutr. 2008 Apr 1;27(2):195–208.CrossRefPubMed
21.
go back to reference Snel M, van Diepen JA, Stijnen T, Pijl H, Romijn JA, Meinders AE, et al. Immediate and long-term effects of addition of exercise to a 16-week very low-calorie diet on low-grade inflammation in obese, insulin-dependent type 2 diabetic patients. Food Chem Toxicol. 2011;1:49(12):3104–11.CrossRefPubMed Snel M, van Diepen JA, Stijnen T, Pijl H, Romijn JA, Meinders AE, et al. Immediate and long-term effects of addition of exercise to a 16-week very low-calorie diet on low-grade inflammation in obese, insulin-dependent type 2 diabetic patients. Food Chem Toxicol. 2011;1:49(12):3104–11.CrossRefPubMed
22.
go back to reference Institute for Public Health National Health and Morbidity Survey 2011(NHMS 2011). Vol.1: Methodology and General Findings 2011. Institute for Public Health National Health and Morbidity Survey 2011(NHMS 2011). Vol.1: Methodology and General Findings 2011.
23.
go back to reference Mohamad Nor NS, Ambak R, Omar MA, Sahar S, Abdul Aziz NS, Mohd Yusoff MF, et al. Methodology of the my body is fit and fabulous at home (MyBFF@ home): an intervention study to combat obesity among housewives in Malaysia. J Womens Health, Issues Care. 2016;5:2.CrossRef Mohamad Nor NS, Ambak R, Omar MA, Sahar S, Abdul Aziz NS, Mohd Yusoff MF, et al. Methodology of the my body is fit and fabulous at home (MyBFF@ home): an intervention study to combat obesity among housewives in Malaysia. J Womens Health, Issues Care. 2016;5:2.CrossRef
25.
go back to reference Li YC, Li CI, Lin WY, Liu CS, Hsu HS, Lee CC, et al. Percentage of body fat assessment using bioelectrical impedance analysis and dual-energy X-ray absorptiometry in a weight loss program for obese or overweight Chinese adults. PLoS One. 2013;8(4):e58272.CrossRefPubMedPubMedCentral Li YC, Li CI, Lin WY, Liu CS, Hsu HS, Lee CC, et al. Percentage of body fat assessment using bioelectrical impedance analysis and dual-energy X-ray absorptiometry in a weight loss program for obese or overweight Chinese adults. PLoS One. 2013;8(4):e58272.CrossRefPubMedPubMedCentral
26.
go back to reference Blumenthal JA, Sherwood A, Gullette EC, Babyak M, Waugh R, Georgiades A, et al. Exercise and weight loss reduce blood pressure in men and women with mild hypertension: effects on cardiovascular, metabolic, and hemodynamic functioning. Arch Intern Med. 2000;160(13):1947–58.CrossRefPubMed Blumenthal JA, Sherwood A, Gullette EC, Babyak M, Waugh R, Georgiades A, et al. Exercise and weight loss reduce blood pressure in men and women with mild hypertension: effects on cardiovascular, metabolic, and hemodynamic functioning. Arch Intern Med. 2000;160(13):1947–58.CrossRefPubMed
28.
go back to reference Roberts SB, Rosenberg I. Nutrition and aging: changes in the regulation of energy metabolism with aging. Physiol Rev. 2006;86(2):651–67. PubMed PMID: 16601270 CrossRefPubMed Roberts SB, Rosenberg I. Nutrition and aging: changes in the regulation of energy metabolism with aging. Physiol Rev. 2006;86(2):651–67. PubMed PMID: 16601270 CrossRefPubMed
29.
go back to reference Andreou E, Philippou C, Papandreou D. Effects of an intervention and maintenance weight loss diet with and without exercise on anthropometric indices in overweight and obese healthy women. Ann Nutr Metab. 2011;59:187–92.CrossRefPubMed Andreou E, Philippou C, Papandreou D. Effects of an intervention and maintenance weight loss diet with and without exercise on anthropometric indices in overweight and obese healthy women. Ann Nutr Metab. 2011;59:187–92.CrossRefPubMed
30.
go back to reference Fogelholm M, Kukkonen-Harjula K, Nenonen A, Pasanen M. Effects of walking training on weight maintenance after a very-low-energy diet in premenopausal obese women: a randomized controlled trial. Arch Intern Med. 2000;160(14):2177–84.CrossRefPubMed Fogelholm M, Kukkonen-Harjula K, Nenonen A, Pasanen M. Effects of walking training on weight maintenance after a very-low-energy diet in premenopausal obese women: a randomized controlled trial. Arch Intern Med. 2000;160(14):2177–84.CrossRefPubMed
32.
go back to reference Astrup A, Finer N. Redefining type 2 diabetes: “diabesity” or “obesity dependent diabetes mellitus”? Obes Rev. 2000;1(2):57–9.CrossRefPubMed Astrup A, Finer N. Redefining type 2 diabetes: “diabesity” or “obesity dependent diabetes mellitus”? Obes Rev. 2000;1(2):57–9.CrossRefPubMed
33.
go back to reference Lee M, Aronne LJ. Weight management for type 2 diabetes mellitus: global cardiovascular risk reduction. Am J Cardiol. 2007;99:68B–79B.CrossRefPubMed Lee M, Aronne LJ. Weight management for type 2 diabetes mellitus: global cardiovascular risk reduction. Am J Cardiol. 2007;99:68B–79B.CrossRefPubMed
Metadata
Title
Influence of co-morbidity on body composition changes after weight loss intervention among overweight housewives: a follow-up study of the MyBFF@home
Authors
Nur Shahida Abdul Aziz
Suzana Shahar
Rashidah Ambak
Noor Safiza Mohamad Nor
Ahmad Taufik Jamil
Tahir Aris
Publication date
01-07-2018
Publisher
BioMed Central
Published in
BMC Women's Health / Issue Special Issue 1/2018
Electronic ISSN: 1472-6874
DOI
https://doi.org/10.1186/s12905-018-0600-6

Other articles of this Special Issue 1/2018

BMC Women's Health 1/2018 Go to the issue