Skip to main content
Top
Published in: Journal of Assisted Reproduction and Genetics 2/2020

01-02-2020 | Infertility | Gamete Biology

The potential impact of tumor suppressor genes on human gametogenesis: a case-control study

Authors: Avner Hershlag, Alexandra Peyser, Sara L Bristow, Oscar Puig, Andrew Pollock, Mohamad Niknazar, Alea A Mills

Published in: Journal of Assisted Reproduction and Genetics | Issue 2/2020

Login to get access

Abstract

Purpose

To study the incidence of tumor suppressor gene (TSG) mutations in men and women with impaired gametogenesis.

Methods

Gene association analyses were performed on blood samples in two distinct patient populations: males with idiopathic male infertility and females with unexplained diminished ovarian reserve (DOR). The male study group consisted of men with idiopathic azoospermia, oligozoospermia, asthenozoospermia, or teratozoospermia. Age-matched controls were men with normal semen analyses. The female study group consisted of women with unexplained DOR with anti-Müllerian hormone levels ≤ 1.1 ng/mL. Controls were age-matched women with normal ovarian reserve (> 1.1 ng/mL).

Results

Fifty-seven male cases (mean age = 38.4; mean sperm count = 15.7 ± 12.1; mean motility = 38.2 ± 24.7) and 37 age-matched controls (mean age = 38.0; mean sperm count = 89.6 ± 37.5; mean motility = 56.2 ± 14.3) were compared. Variants observed in CHD5 were found to be enriched in the study group (p = 0.000107). The incidence of CHD5 mutation c.*3198_*3199insT in the 3′UTR (rs538186680) was significantly higher in cases compared to controls (p = 0.0255). 72 DOR cases (mean age = 38.7; mean AMH = 0.5 ± 0.3; mean FSH = 11.7 ± 12.5) and 48 age-matched controls (mean age = 37.6; mean AMH = 4.1 ± 3.0; mean FSH = 7.1 ± 2.2) were compared. Mutations in CHD5 (c.-140A>C), RB1 (c.1422-18delT, rs70651121), and TP53 (c.376-161A>G, rs75821853) were found at significantly higher frequencies in DOR cases compared to controls (p ≤ 0.05). In addition, 363 variants detected in the DOR patients were not present in the control group.

Conclusion

Unexplained impaired gametogenesis in both males and females may be associated with genetic variation in TSGs. TSGs, which play cardinal roles in cell-cycle control, might also be critical for normal spermatogenesis and oogenesis. If validated in larger prospective studies, it is possible that TSGs provide an etiological basis for some patients with impaired gametogenesis.
Literature
1.
go back to reference Gunes S, Al-Sadaan M, Agarwal A. Spermatogenesis, DNA damage and DNA repair mechanisms in male infertility. Reprod BioMed Online. 2015;31(3):309–19.CrossRef Gunes S, Al-Sadaan M, Agarwal A. Spermatogenesis, DNA damage and DNA repair mechanisms in male infertility. Reprod BioMed Online. 2015;31(3):309–19.CrossRef
2.
go back to reference Sanchez F, Smitz J. Molecular control of oogenesis. Biochim Biophys Acta Mol basis Dis. 2012;1822(12):1896–912.CrossRef Sanchez F, Smitz J. Molecular control of oogenesis. Biochim Biophys Acta Mol basis Dis. 2012;1822(12):1896–912.CrossRef
3.
go back to reference O’Shaughnessy PJ. Hormonal control of germ cell development and spermatogenesis. Semin Cell Dev Biol. 2014;29:55–65.CrossRef O’Shaughnessy PJ. Hormonal control of germ cell development and spermatogenesis. Semin Cell Dev Biol. 2014;29:55–65.CrossRef
4.
go back to reference Matzuk MM, Lamb DJ. Genetic dissection of mammalian fertility pathways. Nat Cell Biol. 2002;4:S33–40.CrossRef Matzuk MM, Lamb DJ. Genetic dissection of mammalian fertility pathways. Nat Cell Biol. 2002;4:S33–40.CrossRef
5.
go back to reference Kalro BN. Impaired fertility caused by endocrine dysfunction in women. Endocrinol Metab Clin N Am. 2003;32(3):573–92.CrossRef Kalro BN. Impaired fertility caused by endocrine dysfunction in women. Endocrinol Metab Clin N Am. 2003;32(3):573–92.CrossRef
6.
go back to reference Harris SE, Kandil HMS, Niederberger CS. Endocrinopathies in male infertility. In: Sabanegh ES, editor. Male infertility: problems and solutions. Totowa, NJ: Humana Press; 2011. p. 47–55.CrossRef Harris SE, Kandil HMS, Niederberger CS. Endocrinopathies in male infertility. In: Sabanegh ES, editor. Male infertility: problems and solutions. Totowa, NJ: Humana Press; 2011. p. 47–55.CrossRef
7.
go back to reference Hixon ML, Gualberto A. The control of mitosis. Front Biosci. 2000;5:D50–7.CrossRef Hixon ML, Gualberto A. The control of mitosis. Front Biosci. 2000;5:D50–7.CrossRef
8.
go back to reference Cohen PE, Pollack SE, Pollard JW. Genetic analysis of chromosome pairing, recombination, and cell cycle control during first meiotic prophase in mammals. Endocr Rev. 2006;27(4):398–426.CrossRef Cohen PE, Pollack SE, Pollard JW. Genetic analysis of chromosome pairing, recombination, and cell cycle control during first meiotic prophase in mammals. Endocr Rev. 2006;27(4):398–426.CrossRef
9.
go back to reference MacQueen AJ, Hochwagen A. Checkpoint mechanisms: the puppet masters of meiotic prophase. Trends Cell Biol. 2011;21(7):393–400.CrossRef MacQueen AJ, Hochwagen A. Checkpoint mechanisms: the puppet masters of meiotic prophase. Trends Cell Biol. 2011;21(7):393–400.CrossRef
10.
go back to reference Gorbsky GJ. The spindle checkpoint and chromosome segregation in meiosis. FEBS J. 2015;282(13):2471–87.CrossRef Gorbsky GJ. The spindle checkpoint and chromosome segregation in meiosis. FEBS J. 2015;282(13):2471–87.CrossRef
11.
go back to reference Collins JK, Jones KT. DNA damage responses in mammalian oocytes. Reproduction. 2016;152(1):R15–22.CrossRef Collins JK, Jones KT. DNA damage responses in mammalian oocytes. Reproduction. 2016;152(1):R15–22.CrossRef
12.
go back to reference Aitken RJ, Buckingham D, West K, Wu FC, Zikopoulos K, Richardson DW. Differential contribution of leucocytes and spermatozoa to the generation of reactive oxygen species in the ejaculates of oligozoospermic patients and fertile donors. J Reprod Fertil. 1992;94(2):451–62.CrossRef Aitken RJ, Buckingham D, West K, Wu FC, Zikopoulos K, Richardson DW. Differential contribution of leucocytes and spermatozoa to the generation of reactive oxygen species in the ejaculates of oligozoospermic patients and fertile donors. J Reprod Fertil. 1992;94(2):451–62.CrossRef
13.
go back to reference Sharma R, Masaki J, Agarwal A. Sperm DNA fragmentation analysis using the TUNEL assay. In: Methods in molecular biology (Clifton, NJ). 2013. p. 121–136. Sharma R, Masaki J, Agarwal A. Sperm DNA fragmentation analysis using the TUNEL assay. In: Methods in molecular biology (Clifton, NJ). 2013. p. 121–136.
14.
go back to reference Tamburrino L, Marchiani S, Montoya M, Elia Marino F, Natali I, Cambi M, et al. Mechanisms and clinical correlates of sperm DNA damage. Asian J Androl. 2012;14(1):24–31.CrossRef Tamburrino L, Marchiani S, Montoya M, Elia Marino F, Natali I, Cambi M, et al. Mechanisms and clinical correlates of sperm DNA damage. Asian J Androl. 2012;14(1):24–31.CrossRef
15.
go back to reference Meistrich ML, Mohapatra B, Shirley CR, Zhao M. Roles of transition nuclear proteins in spermiogenesis. Chromosoma. 2003;111(8):483–8.CrossRef Meistrich ML, Mohapatra B, Shirley CR, Zhao M. Roles of transition nuclear proteins in spermiogenesis. Chromosoma. 2003;111(8):483–8.CrossRef
16.
go back to reference Rousseaux S, Boussouar F, Gaucher J, Reynoird N, Montellier E, Curtet S, et al. Molecular models for post-meiotic male genome reprogramming. Syst Biol Reprod Med. 2011;57(1–2):50–3.CrossRef Rousseaux S, Boussouar F, Gaucher J, Reynoird N, Montellier E, Curtet S, et al. Molecular models for post-meiotic male genome reprogramming. Syst Biol Reprod Med. 2011;57(1–2):50–3.CrossRef
17.
go back to reference Sakkas D, Mariethoz E, Manicardi G, Bizzaro D, Bianchi PG, Bianchi U. Origin of DNA damage in ejaculated human spermatozoa. Rev Reprod. 1999;4(1):31–7.CrossRef Sakkas D, Mariethoz E, Manicardi G, Bizzaro D, Bianchi PG, Bianchi U. Origin of DNA damage in ejaculated human spermatozoa. Rev Reprod. 1999;4(1):31–7.CrossRef
18.
go back to reference Sakkas D, Mariethoz E. St. John JC. Abnormal sperm parameters in humans are indicative of an abortive apoptotic mechanism linked to the Fas-mediated pathway. Exp Cell Res. 1999;251(2):350–5.CrossRef Sakkas D, Mariethoz E. St. John JC. Abnormal sperm parameters in humans are indicative of an abortive apoptotic mechanism linked to the Fas-mediated pathway. Exp Cell Res. 1999;251(2):350–5.CrossRef
19.
go back to reference Ménézo Y, Dale B, Cohen M. DNA damage and repair in human oocytes and embryos: a review. Zygote. 2010;18(4):357–65.CrossRef Ménézo Y, Dale B, Cohen M. DNA damage and repair in human oocytes and embryos: a review. Zygote. 2010;18(4):357–65.CrossRef
20.
go back to reference Oktay K, Kim JY, Barad D, Babayev SN. Association of BRCA1 mutations with occult primary ovarian insufficiency: a possible explanation for the link between infertility and breast/ovarian cancer risks. J Clin Oncol. 2010;28(2):240–4.CrossRef Oktay K, Kim JY, Barad D, Babayev SN. Association of BRCA1 mutations with occult primary ovarian insufficiency: a possible explanation for the link between infertility and breast/ovarian cancer risks. J Clin Oncol. 2010;28(2):240–4.CrossRef
21.
go back to reference Wang ET, Pisarska MD, Bresee C, Chen Y-DI, Lester J, Afshar Y, et al. BRCA1 germline mutations may be associated with reduced ovarian reserve. Fertil Steril. 2014;102(6):1723–8.CrossRef Wang ET, Pisarska MD, Bresee C, Chen Y-DI, Lester J, Afshar Y, et al. BRCA1 germline mutations may be associated with reduced ovarian reserve. Fertil Steril. 2014;102(6):1723–8.CrossRef
22.
go back to reference Phillips K-A, Collins IM, Milne RL, McLachlan SA, Friedlander M, Hickey M, et al. Anti-Müllerian hormone serum concentrations of women with germline BRCA1 or BRCA2 mutations. Hum Reprod. 2016;31(5):1126–32.CrossRef Phillips K-A, Collins IM, Milne RL, McLachlan SA, Friedlander M, Hickey M, et al. Anti-Müllerian hormone serum concentrations of women with germline BRCA1 or BRCA2 mutations. Hum Reprod. 2016;31(5):1126–32.CrossRef
23.
go back to reference Fraga LR, Dutra CG, Boquett JA, Vianna FSL, Gonçalves RO, Paskulin DD, et al. p53 signaling pathway polymorphisms associated to recurrent pregnancy loss. Mol Biol Rep. 2014;41(3):1871–7.CrossRef Fraga LR, Dutra CG, Boquett JA, Vianna FSL, Gonçalves RO, Paskulin DD, et al. p53 signaling pathway polymorphisms associated to recurrent pregnancy loss. Mol Biol Rep. 2014;41(3):1871–7.CrossRef
24.
go back to reference Chan Y, Zhu B, Jiang H, Zhang J, Luo Y, Tang W. Influence of TP53 Codon 72 Polymorphism alone or in combination with HDM2 SNP309 on human infertility and IVF outcome. PLoS One. 2016;11(11):e0167147.CrossRef Chan Y, Zhu B, Jiang H, Zhang J, Luo Y, Tang W. Influence of TP53 Codon 72 Polymorphism alone or in combination with HDM2 SNP309 on human infertility and IVF outcome. PLoS One. 2016;11(11):e0167147.CrossRef
25.
go back to reference Lu NX, Xia YK, Gu AH, Liang J, Wang SL, Wang XR. Lack of association between polymorphisms in p53 gene and spermatogenetic failure in a Chinese population. Andrologia. 2007;39(6):223–8.CrossRef Lu NX, Xia YK, Gu AH, Liang J, Wang SL, Wang XR. Lack of association between polymorphisms in p53 gene and spermatogenetic failure in a Chinese population. Andrologia. 2007;39(6):223–8.CrossRef
26.
go back to reference Chan Y, Jiang H, Ma L, Chen J, Li D, Meng Y, et al. No association of TP 53 codon 72 SNP with male infertility: a study in a Chinese population and a meta-analysis. Syst Biol Reprod Med. 2015;61(4):222–7.CrossRef Chan Y, Jiang H, Ma L, Chen J, Li D, Meng Y, et al. No association of TP 53 codon 72 SNP with male infertility: a study in a Chinese population and a meta-analysis. Syst Biol Reprod Med. 2015;61(4):222–7.CrossRef
27.
go back to reference de Morais MP, Curado RF, e Silva KSF, Moura KKVO, Arruda JT. Male idiopathic infertility and the TP53 polymorphism in codon 72. Genet Mol Res 2016;15(4). de Morais MP, Curado RF, e Silva KSF, Moura KKVO, Arruda JT. Male idiopathic infertility and the TP53 polymorphism in codon 72. Genet Mol Res 2016;15(4).
28.
go back to reference World Health Organization, editor. WHO Laboratory Manual for the Examination and Processing of Human Semen. 5th ed. Geneva: WHO Press; 2010. World Health Organization, editor. WHO Laboratory Manual for the Examination and Processing of Human Semen. 5th ed. Geneva: WHO Press; 2010.
29.
go back to reference Cohen J, Chabbert-Buffet N, Darai E. Diminished ovarian reserve, premature ovarian failure, poor ovarian responder--a plea for universal definitions. J Assist Reprod Genet. 2015;32(12):1709–12.CrossRef Cohen J, Chabbert-Buffet N, Darai E. Diminished ovarian reserve, premature ovarian failure, poor ovarian responder--a plea for universal definitions. J Assist Reprod Genet. 2015;32(12):1709–12.CrossRef
30.
go back to reference Ferraretti AP, La Marca A, Fauser BCJM, Tarlatzis B, Nargund G, Gianaroli L, et al. ESHRE consensus on the definition of “poor response” to ovarian stimulation for in vitro fertilization: the Bologna criteria. Hum Reprod. 2011;26(7):1616–24.CrossRef Ferraretti AP, La Marca A, Fauser BCJM, Tarlatzis B, Nargund G, Gianaroli L, et al. ESHRE consensus on the definition of “poor response” to ovarian stimulation for in vitro fertilization: the Bologna criteria. Hum Reprod. 2011;26(7):1616–24.CrossRef
31.
go back to reference R Core Team. R: A language and environment for statistical computing. 2017; R Core Team. R: A language and environment for statistical computing. 2017;
32.
go back to reference Benjamini Y, Hochberg Y. Controlling the False discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57(1):289–300. Benjamini Y, Hochberg Y. Controlling the False discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57(1):289–300.
33.
go back to reference Schwartz D, Goldfinger N, Kam Z, Rotter V. p53 controls low DNA damage-dependent premeiotic checkpoint and facilitates DNA repair during spermatogenesis. Cell Growth Differ. 1999;10(10):665–75.PubMed Schwartz D, Goldfinger N, Kam Z, Rotter V. p53 controls low DNA damage-dependent premeiotic checkpoint and facilitates DNA repair during spermatogenesis. Cell Growth Differ. 1999;10(10):665–75.PubMed
34.
go back to reference Yang QE, Gwost I, Oatley MJ, Oatley JM. Retinoblastoma protein (RB1) controls fate determination in stem cells and progenitors of the mouse male germline. Biol Reprod. 2013;89(5):113.PubMedPubMedCentral Yang QE, Gwost I, Oatley MJ, Oatley JM. Retinoblastoma protein (RB1) controls fate determination in stem cells and progenitors of the mouse male germline. Biol Reprod. 2013;89(5):113.PubMedPubMedCentral
35.
go back to reference Li W, Wu J, Kim S-Y, Zhao M, Hearn SA, Zhang MQ, et al. Chd5 orchestrates chromatin remodelling during sperm development. Nat Commun. 2014;5:3812.CrossRef Li W, Wu J, Kim S-Y, Zhao M, Hearn SA, Zhang MQ, et al. Chd5 orchestrates chromatin remodelling during sperm development. Nat Commun. 2014;5:3812.CrossRef
36.
go back to reference Zhuang T, Hess RA, Kolla V, Higashi M, Raabe TD, Brodeur GM. CHD5 is required for spermiogenesis and chromatin condensation. Mech Dev. 2014;131:35–46.CrossRef Zhuang T, Hess RA, Kolla V, Higashi M, Raabe TD, Brodeur GM. CHD5 is required for spermiogenesis and chromatin condensation. Mech Dev. 2014;131:35–46.CrossRef
37.
go back to reference Spiess A-N, Feig C, Schulze W, Chalmel F, Cappallo-Obermann H, Primig M, et al. Cross-platform gene expression signature of human spermatogenic failure reveals inflammatory-like response. Hum Reprod. 2007;22(11):2936–46.CrossRef Spiess A-N, Feig C, Schulze W, Chalmel F, Cappallo-Obermann H, Primig M, et al. Cross-platform gene expression signature of human spermatogenic failure reveals inflammatory-like response. Hum Reprod. 2007;22(11):2936–46.CrossRef
38.
go back to reference Agarwal V, Bell GW, Nam J-W, Bartel DP. Predicting effective microRNA target sites in mammalian mRNS. Elife. 2015;4. Agarwal V, Bell GW, Nam J-W, Bartel DP. Predicting effective microRNA target sites in mammalian mRNS. Elife. 2015;4.
39.
go back to reference Mayr C. What are 3' UTRs doing? Cold Spring Harb Perspect Biol. 2018. Mayr C. What are 3' UTRs doing? Cold Spring Harb Perspect Biol. 2018.
40.
go back to reference De La Fuente R, Viveiros MM, Burns KH, Adashi EY, Matzuk MM, Eppig JJ. Major chromatin remodeling in the germinal vesicle (GV) of mammalian oocytes is dispensable for global transcriptional silencing but required for centromeric heterochromatin function. Dev Biol. 2004;275(2):447–58.CrossRef De La Fuente R, Viveiros MM, Burns KH, Adashi EY, Matzuk MM, Eppig JJ. Major chromatin remodeling in the germinal vesicle (GV) of mammalian oocytes is dispensable for global transcriptional silencing but required for centromeric heterochromatin function. Dev Biol. 2004;275(2):447–58.CrossRef
41.
go back to reference Luciano AM, Franciosi F, Dieci C, Lodde V. Changes in large-scale chromatin structure and function during oogenesis: a journey in company with follicular cells. Anim Reprod Sci. 2014;149(1–2):3–10.CrossRef Luciano AM, Franciosi F, Dieci C, Lodde V. Changes in large-scale chromatin structure and function during oogenesis: a journey in company with follicular cells. Anim Reprod Sci. 2014;149(1–2):3–10.CrossRef
42.
go back to reference Marfella CGA, Imbalzano AN. The Chd family of chromatin remodelers. Mutat Res. 2007;618(1–2):30–40.CrossRef Marfella CGA, Imbalzano AN. The Chd family of chromatin remodelers. Mutat Res. 2007;618(1–2):30–40.CrossRef
43.
go back to reference Bagchi A, Papazoglu C, Wu Y, Capurso D, Brodt M, Francis D, et al. CHD5 is a tumor suppressor at human 1p36. Cell. 2007;128(3):459–75.CrossRef Bagchi A, Papazoglu C, Wu Y, Capurso D, Brodt M, Francis D, et al. CHD5 is a tumor suppressor at human 1p36. Cell. 2007;128(3):459–75.CrossRef
44.
go back to reference Li W, Mills AA. Packing for the journey: CHD5 remodels the genome. Cell Cycle. 2014;13(12):1833–4.CrossRef Li W, Mills AA. Packing for the journey: CHD5 remodels the genome. Cell Cycle. 2014;13(12):1833–4.CrossRef
Metadata
Title
The potential impact of tumor suppressor genes on human gametogenesis: a case-control study
Authors
Avner Hershlag
Alexandra Peyser
Sara L Bristow
Oscar Puig
Andrew Pollock
Mohamad Niknazar
Alea A Mills
Publication date
01-02-2020
Publisher
Springer US
Published in
Journal of Assisted Reproduction and Genetics / Issue 2/2020
Print ISSN: 1058-0468
Electronic ISSN: 1573-7330
DOI
https://doi.org/10.1007/s10815-019-01634-3

Other articles of this Issue 2/2020

Journal of Assisted Reproduction and Genetics 2/2020 Go to the issue