Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2009

Open Access 01-12-2009 | Research

Induction of endogenous γ-globin gene expression with decoy oligonucleotide targeting Oct-1 transcription factor consensus sequence

Authors: Xiaoxin S Xu, Xin Hong, Gan Wang

Published in: Journal of Hematology & Oncology | Issue 1/2009

Login to get access

Abstract

Human β-globin disorders are relatively common genetic diseases cause by mutations in the β-globin gene. Increasing the expression of the γ-globin gene has great benefits in reducing complications associated with these diseases. The Oct-1 transcription factor is involved in the transcriptional regulation of the γ-globin gene. The human γ-globin genes (both Aγ and Gγ-globin genes) carry three Oct-1 transcription factor consensus sequences within their promoter regions. We have studied the possibility of inducing γ-globin gene expression using decoy oligonucleotides that target the Oct-1 transcription factor consensus sequence. A double-stranded 22 bp decoy oligonucleotide containing the Oct-1 consensus sequence was synthesized. The results obtained from our in vitro binding assay revealed a strong competitive binding of the decoy oligonucleotide for the Oct-1 transcription factor. When K562 human erythroleukemia cells were treated with the Oct-1 decoy oligonucleotide, significant increases in the level of the γ-globin mRNA were observed. The results of our western blots further demonstrated significant increases of the fetal hemoglobin (HbF, α2γ2) in the Oct-1 decoy oligonucleotide-treated K562 cells. The results of our immunoprecipitation (IP) studies revealed that the treatment of K562 cells with the Oct-1 decoy oligonucleotide significantly reduced the level of the endogenous γ-globin gene promoter region DNA co-precipitated with the Oct-1 transcription factor. These results suggest that the decoy oligonucleotide designed for the Oct-1 transcription factor consensus sequence could induce expression of the endogenous γ-globin gene through competitive binding of the Oct-1 transcription factor, resulting in activation of the γ-globin genes. Therefore, disrupting the bindings of the Oct-1 transcriptional factors with the decoy oligonucleotide provides a novel approach for inducing expression of the γ-globin genes. It also provides an innovative strategy for the treatment of many disease conditions, including sickle cell anemia and β-thalassemia.
Appendix
Available only for authorised users
Literature
1.
go back to reference Stamatoyannopoulos G, Nienhuis A, Majerus X, Varmus X: The molecular Basis of Blood diseases. 1994, W.B. Saunders Company, Philadelphia, PA, Second Stamatoyannopoulos G, Nienhuis A, Majerus X, Varmus X: The molecular Basis of Blood diseases. 1994, W.B. Saunders Company, Philadelphia, PA, Second
3.
go back to reference Chakalova L, Carter D, Debrand E, Goyenechea B, Horton A, Miles J, Osborne C, Fraser P: Developmental regulation of the beta-globin gene locus. Prog Mol Subcell Biol. 2006, 38: 183-206.CrossRef Chakalova L, Carter D, Debrand E, Goyenechea B, Horton A, Miles J, Osborne C, Fraser P: Developmental regulation of the beta-globin gene locus. Prog Mol Subcell Biol. 2006, 38: 183-206.CrossRef
4.
go back to reference Pace BS, Zein S: Understanding mechanisms of gamma-globin gene regulation to develop strategies for pharmacological fetal hemoglobin induction. Dev Dyn. 2006, 235: 1727-1737.CrossRefPubMed Pace BS, Zein S: Understanding mechanisms of gamma-globin gene regulation to develop strategies for pharmacological fetal hemoglobin induction. Dev Dyn. 2006, 235: 1727-1737.CrossRefPubMed
5.
go back to reference Mahajan MC, Karmakar S, Weissman SM: Control of beta globin genes. J Cell Biochem. 2007, 102: 801-810.CrossRefPubMed Mahajan MC, Karmakar S, Weissman SM: Control of beta globin genes. J Cell Biochem. 2007, 102: 801-810.CrossRefPubMed
6.
go back to reference Yang YM, Pace B: Pharmacologic induction of fetal hemoglobin synthesis: cellular and molecular mechanisms. Pediatr Pathol Mol Med. 2001, 20: 87-106.CrossRefPubMed Yang YM, Pace B: Pharmacologic induction of fetal hemoglobin synthesis: cellular and molecular mechanisms. Pediatr Pathol Mol Med. 2001, 20: 87-106.CrossRefPubMed
7.
go back to reference Wang G, Xu X, Pace B, Glazer PM, Chan P, Goodman SR, Shokolenko I: Induction of human gamma-globin gene expression via peptide nucleic acids (PNAs). Nucleic Acids Res. 1999, 27: 2806-2813.PubMedCentralCrossRefPubMed Wang G, Xu X, Pace B, Glazer PM, Chan P, Goodman SR, Shokolenko I: Induction of human gamma-globin gene expression via peptide nucleic acids (PNAs). Nucleic Acids Res. 1999, 27: 2806-2813.PubMedCentralCrossRefPubMed
8.
9.
go back to reference Lisowski L, Sadelain M: Current status of globin gene therapy for the treatment of beta-thalassaemia. Br J Haematol. 2008, 141: 335-345.CrossRefPubMed Lisowski L, Sadelain M: Current status of globin gene therapy for the treatment of beta-thalassaemia. Br J Haematol. 2008, 141: 335-345.CrossRefPubMed
10.
go back to reference Phillips K, Luisi B: The virtuoso of versatility: POU proteins that flex to fit. J Mol Biol. 2000, 302: 1023-1039.CrossRefPubMed Phillips K, Luisi B: The virtuoso of versatility: POU proteins that flex to fit. J Mol Biol. 2000, 302: 1023-1039.CrossRefPubMed
11.
go back to reference Surrey S, Delgrosso K, Malladi P, Schwartz E: A single base change at position -175 in the 5'-flanking region of the Gγ-globin gene from a black with Gγβ+-HPFH. Blood. 1988, 71: 807-810.PubMed Surrey S, Delgrosso K, Malladi P, Schwartz E: A single base change at position -175 in the 5'-flanking region of the Gγ-globin gene from a black with Gγβ+-HPFH. Blood. 1988, 71: 807-810.PubMed
12.
go back to reference Ottolenghi S, Nicolis S, Taramelli R, Malgaretti N, Mantovani R, Comi P, Giglioni B, Longinotti M, Dore F, Oggiano LEA: Sardinian G gamma-HPFH: a T-C substitution in a conserved "octamer" sequence in the G gamma-globin promoter. Blood. 1988, 71: 815-817.PubMed Ottolenghi S, Nicolis S, Taramelli R, Malgaretti N, Mantovani R, Comi P, Giglioni B, Longinotti M, Dore F, Oggiano LEA: Sardinian G gamma-HPFH: a T-C substitution in a conserved "octamer" sequence in the G gamma-globin promoter. Blood. 1988, 71: 815-817.PubMed
13.
go back to reference Stoming TA, Stoming GS, Lanclos KD, Fei YI, Altay C, Kutlar F, Huisman THJ: An Aγ type of nondeletional hereditary persistence of fetal hemoglobin with a T->C mutation at position -175 to the cap site of the Aγ globin gene. Blood. 1989, 73: 329-333.PubMed Stoming TA, Stoming GS, Lanclos KD, Fei YI, Altay C, Kutlar F, Huisman THJ: An Aγ type of nondeletional hereditary persistence of fetal hemoglobin with a T->C mutation at position -175 to the cap site of the Aγ globin gene. Blood. 1989, 73: 329-333.PubMed
14.
go back to reference Xu X, Glazer PM, Wang G: Activation of human γ-globin gene expression via triplex-forming oligonucleotide (TFO)-directed mutations in the γ-globin gene 5' flanking region. Gene. 2000, 242: 219-228.CrossRefPubMed Xu X, Glazer PM, Wang G: Activation of human γ-globin gene expression via triplex-forming oligonucleotide (TFO)-directed mutations in the γ-globin gene 5' flanking region. Gene. 2000, 242: 219-228.CrossRefPubMed
15.
go back to reference Gambari R: New trends in the development of transcription factor decoy (TFD) pharmacotherapy. Curr Drug Targets. 2004, 5: 419-430.CrossRefPubMed Gambari R: New trends in the development of transcription factor decoy (TFD) pharmacotherapy. Curr Drug Targets. 2004, 5: 419-430.CrossRefPubMed
16.
go back to reference Cutroneo KR, White SL, Chiu JF, Ehrlich HP: Tissue fibrosis and carcinogenesis: divergent or successive pathways dictate multiple molecular therapeutic targets for oligo decoy therapies. J Cell Biochem. 2006, 97: 1161-1174.CrossRefPubMed Cutroneo KR, White SL, Chiu JF, Ehrlich HP: Tissue fibrosis and carcinogenesis: divergent or successive pathways dictate multiple molecular therapeutic targets for oligo decoy therapies. J Cell Biochem. 2006, 97: 1161-1174.CrossRefPubMed
17.
go back to reference Isomura I, Morita A: Regulation of NF-kappaB signaling by decoy oligodeoxynucleotides. Microbiol Immunol. 2006, 50: 559-563.CrossRefPubMed Isomura I, Morita A: Regulation of NF-kappaB signaling by decoy oligodeoxynucleotides. Microbiol Immunol. 2006, 50: 559-563.CrossRefPubMed
18.
go back to reference Tomita N, Kashihara N, Morishita R: Transcription factor decoy oligonucleotide-based therapeutic strategy for renal disease. Clin Exp Nephrol. 2007, 11: 7-17.CrossRefPubMed Tomita N, Kashihara N, Morishita R: Transcription factor decoy oligonucleotide-based therapeutic strategy for renal disease. Clin Exp Nephrol. 2007, 11: 7-17.CrossRefPubMed
19.
go back to reference Edwards MR, Bartlett NW, Clarke D, Birrell M, Belvisi M, Johnston SL: (2009) Targeting the NF-kappaB pathway in asthma and chronic obstructive pulmonary disease. Pharmacol Ther. 2009, 121: 1-13.CrossRefPubMed Edwards MR, Bartlett NW, Clarke D, Birrell M, Belvisi M, Johnston SL: (2009) Targeting the NF-kappaB pathway in asthma and chronic obstructive pulmonary disease. Pharmacol Ther. 2009, 121: 1-13.CrossRefPubMed
20.
go back to reference Eller MS, Yaar M, Ostrom K, Harkness DD, Gilchrest BA: A role for interleukin-1 in epidermal differentiation: regulation by expression of functional versus decoy receptors. J Cell Sci. 1995, 108: 2741-2746.PubMed Eller MS, Yaar M, Ostrom K, Harkness DD, Gilchrest BA: A role for interleukin-1 in epidermal differentiation: regulation by expression of functional versus decoy receptors. J Cell Sci. 1995, 108: 2741-2746.PubMed
21.
go back to reference Sharma HW, Perez JR, Higgins-Sochaski K, Hsiao R, Narayanan R: Transcription factor decoy approach to decipher the role of NF-kappa B in oncogenesis. Anticancer Res. 1996, 16: 61-69.PubMed Sharma HW, Perez JR, Higgins-Sochaski K, Hsiao R, Narayanan R: Transcription factor decoy approach to decipher the role of NF-kappa B in oncogenesis. Anticancer Res. 1996, 16: 61-69.PubMed
22.
go back to reference Tomita N, Horiuchi M, Tomita S, Gibbons GH, Kim JY, Baran D, Dzau VJ: An oligonucleotide decoy for transcription factor E2F inhibits mesangial cell proliferation in vitro. Am J Physiol. 1998, 275: 278-284. Tomita N, Horiuchi M, Tomita S, Gibbons GH, Kim JY, Baran D, Dzau VJ: An oligonucleotide decoy for transcription factor E2F inhibits mesangial cell proliferation in vitro. Am J Physiol. 1998, 275: 278-284.
23.
go back to reference Shiratsuchi T, Ishibashi H, Shirasuna K: Inhibition of epidermal growth factor-induced invasion by dexamethasone and AP-1 decoy in human squamous cell carcinoma cell lines. J Cell Physiol. 2002, 193: 340-348.CrossRefPubMed Shiratsuchi T, Ishibashi H, Shirasuna K: Inhibition of epidermal growth factor-induced invasion by dexamethasone and AP-1 decoy in human squamous cell carcinoma cell lines. J Cell Physiol. 2002, 193: 340-348.CrossRefPubMed
24.
go back to reference Wang LH, Yang XY, Zhang X, Mihalic K, Xiao W, Farrar WL: The cis decoy against the estrogen response element suppresses breast cancer cells via target disrupting c-fos not mitogen-activated protein kinase activity. Cancer Res. 2003, 63: 2046-2051.PubMed Wang LH, Yang XY, Zhang X, Mihalic K, Xiao W, Farrar WL: The cis decoy against the estrogen response element suppresses breast cancer cells via target disrupting c-fos not mitogen-activated protein kinase activity. Cancer Res. 2003, 63: 2046-2051.PubMed
25.
go back to reference Novak EM, Metzger M, Chammas R, da Costa M, Dantas K, Manabe C, Pires J, de Oliveira AC, Bydlowski SP: Downregulation of TNF-alpha and VEGF expression by Sp1 decoy oligodeoxynucleotides in mouse melanoma tumor. Gene Ther. 2003, 10: 1992-1997.CrossRefPubMed Novak EM, Metzger M, Chammas R, da Costa M, Dantas K, Manabe C, Pires J, de Oliveira AC, Bydlowski SP: Downregulation of TNF-alpha and VEGF expression by Sp1 decoy oligodeoxynucleotides in mouse melanoma tumor. Gene Ther. 2003, 10: 1992-1997.CrossRefPubMed
26.
go back to reference Penolazzi L, Borgatti M, Lambertini E, Mischiati C, Finotti A, Romanelli A, Saviano M, Pedone C, Piva R, Gambari R: Peptide nucleic acid-DNA decoy chimeras targeting NF-kappaB transcription factors: Induction of apoptosis in human primary osteoclasts. Int J Mol Med. 2004, 14: 145-152.PubMed Penolazzi L, Borgatti M, Lambertini E, Mischiati C, Finotti A, Romanelli A, Saviano M, Pedone C, Piva R, Gambari R: Peptide nucleic acid-DNA decoy chimeras targeting NF-kappaB transcription factors: Induction of apoptosis in human primary osteoclasts. Int J Mol Med. 2004, 14: 145-152.PubMed
27.
go back to reference Borgatti M, Boyd DD, Lampronti I, Bianchi N, Fabbri E, Saviano M, Romanelli A, Pedone C, Gambari R: Decoy molecules based on PNA-DNA chimeras and targeting Sp1 transcription factors inhibit the activity of urokinase-type plasminogen activator receptor (uPAR) promoter. Oncol Res. 2005, 15: 373-383.PubMed Borgatti M, Boyd DD, Lampronti I, Bianchi N, Fabbri E, Saviano M, Romanelli A, Pedone C, Gambari R: Decoy molecules based on PNA-DNA chimeras and targeting Sp1 transcription factors inhibit the activity of urokinase-type plasminogen activator receptor (uPAR) promoter. Oncol Res. 2005, 15: 373-383.PubMed
28.
go back to reference Fabian RH, Perez-Polo JR, Kent TA: A decoy oligonucleotide inhibiting nuclear factor-kappaB binding to the IgGkappaB consensus site reduces cerebral injury and apoptosis in neonatal hypoxic-ischemic encephalopathy. J Neurosci Res. 2007, 85: 1420-1426.CrossRefPubMed Fabian RH, Perez-Polo JR, Kent TA: A decoy oligonucleotide inhibiting nuclear factor-kappaB binding to the IgGkappaB consensus site reduces cerebral injury and apoptosis in neonatal hypoxic-ischemic encephalopathy. J Neurosci Res. 2007, 85: 1420-1426.CrossRefPubMed
29.
go back to reference Osako MK, Tomita N, Nakagami H, Kunugiza Y, Yoshino M, Yuyama K, Tomita T, Yoshikawa H, Ogihara T, Morishita R: Increase in nuclease resistance and incorporation of NF-kappaB decoy oligodeoxynucleotides by modification of the 3'-terminus. J Gene Med. 2007, 9: 812-819.CrossRefPubMed Osako MK, Tomita N, Nakagami H, Kunugiza Y, Yoshino M, Yuyama K, Tomita T, Yoshikawa H, Ogihara T, Morishita R: Increase in nuclease resistance and incorporation of NF-kappaB decoy oligodeoxynucleotides by modification of the 3'-terminus. J Gene Med. 2007, 9: 812-819.CrossRefPubMed
30.
go back to reference Tsiftsoglou AS, Wong W, Robinson SH, Hensold J: Hemin increase production of beta-like globin RNA transcripts in human erythroleukemia K-562 cells. Dev Genet. 1989, 10: 311-317.CrossRefPubMed Tsiftsoglou AS, Wong W, Robinson SH, Hensold J: Hemin increase production of beta-like globin RNA transcripts in human erythroleukemia K-562 cells. Dev Genet. 1989, 10: 311-317.CrossRefPubMed
31.
go back to reference Fibach E, Kollia P, Schechter AN, Noguchi CT, Rodgers GP: Hemin-induced acceleration of hemoglobin production in immature cultured erythroid cells: preferential enhancement of fetal hemoglobin. Blood. 1995, 85: 2967-2974.PubMed Fibach E, Kollia P, Schechter AN, Noguchi CT, Rodgers GP: Hemin-induced acceleration of hemoglobin production in immature cultured erythroid cells: preferential enhancement of fetal hemoglobin. Blood. 1995, 85: 2967-2974.PubMed
32.
go back to reference Tahara T, Sun J, Nakanishi K, Yamamoto M, Mori H, Saito T, Fujita H, Igarashi K, Taketani S: Heme positively regulates the expression of beta-globin at the locus control region via the transcriptional factor Bach1 in erythroid cells. J Biol Chem. 2004, 279: 5480-5487.CrossRefPubMed Tahara T, Sun J, Nakanishi K, Yamamoto M, Mori H, Saito T, Fujita H, Igarashi K, Taketani S: Heme positively regulates the expression of beta-globin at the locus control region via the transcriptional factor Bach1 in erythroid cells. J Biol Chem. 2004, 279: 5480-5487.CrossRefPubMed
33.
go back to reference Bigler J, Eisenman RN: Isolation of a thyroid hormone-responsive gene by immunoprecipitation of thyroid hormone receptor-DNA complexes. Mol Cell Biol. 1994, 14: 7621-7632.PubMedCentralCrossRefPubMed Bigler J, Eisenman RN: Isolation of a thyroid hormone-responsive gene by immunoprecipitation of thyroid hormone receptor-DNA complexes. Mol Cell Biol. 1994, 14: 7621-7632.PubMedCentralCrossRefPubMed
34.
go back to reference Weinmann AS, Farnhamm PJ: Identification of unknown target genes of human transcription factors using chromatin immunoprecipitation. Methods. 2002, 26: 37-47.CrossRefPubMed Weinmann AS, Farnhamm PJ: Identification of unknown target genes of human transcription factors using chromatin immunoprecipitation. Methods. 2002, 26: 37-47.CrossRefPubMed
35.
go back to reference Morishita R, Gibbons GH, Horiuchi M, Kaneda Y, Ogihara T, Dzau VJ: Role of AP-1 complex in angiotensin II-mediated transforming growth factor-beta expression and growth of smooth muscle cells: using decoy approach against AP-1 binding site. Biochem Biophys Res Commun. 1998, 243: 361-367.CrossRefPubMed Morishita R, Gibbons GH, Horiuchi M, Kaneda Y, Ogihara T, Dzau VJ: Role of AP-1 complex in angiotensin II-mediated transforming growth factor-beta expression and growth of smooth muscle cells: using decoy approach against AP-1 binding site. Biochem Biophys Res Commun. 1998, 243: 361-367.CrossRefPubMed
36.
go back to reference Lee YN, Park YG, Choi YH, Cho YS, Cho-Chung YS: CRE-transcription factor decoy oligonucleotide inhibition of MCF-7 breast cancer cells: cross-talk with p53 signaling pathway. Biochemistry. 2000, 39: 4863-4868.CrossRefPubMed Lee YN, Park YG, Choi YH, Cho YS, Cho-Chung YS: CRE-transcription factor decoy oligonucleotide inhibition of MCF-7 breast cancer cells: cross-talk with p53 signaling pathway. Biochemistry. 2000, 39: 4863-4868.CrossRefPubMed
37.
go back to reference Borgatti M, Finotti A, Romanelli A, Saviano M, Bianchi N, Lampronti I, Lambertini E, Penolazzi L, Nastruzzi C, Mischiati C, Piva R, Pedone C, Gambari R: Peptide nucleic acids (PNA)-DNA chimeras targeting transcription factors as a tool to modify gene expression. Curr Drug Targets. 2004, 5: 735-744.CrossRefPubMed Borgatti M, Finotti A, Romanelli A, Saviano M, Bianchi N, Lampronti I, Lambertini E, Penolazzi L, Nastruzzi C, Mischiati C, Piva R, Pedone C, Gambari R: Peptide nucleic acids (PNA)-DNA chimeras targeting transcription factors as a tool to modify gene expression. Curr Drug Targets. 2004, 5: 735-744.CrossRefPubMed
38.
go back to reference Cho JW, Kim JY, Kim CW, Lee KS: Down-regulation of TGF-beta1-induced type I collagen synthesis by AP-1 transcription factor decoy in scleroderma fibroblasts. J Dermatol Sci. 2006, 43: 207-209.CrossRefPubMed Cho JW, Kim JY, Kim CW, Lee KS: Down-regulation of TGF-beta1-induced type I collagen synthesis by AP-1 transcription factor decoy in scleroderma fibroblasts. J Dermatol Sci. 2006, 43: 207-209.CrossRefPubMed
39.
go back to reference Bitko V, Barik S: Intranasal antisense therapy: preclinical models with a clinical future?. Curr Opin Mol Ther. 2007, 9: 119-125.PubMed Bitko V, Barik S: Intranasal antisense therapy: preclinical models with a clinical future?. Curr Opin Mol Ther. 2007, 9: 119-125.PubMed
40.
go back to reference Eckstein F: The versatility of oligonucleotides as potential therapeutics. Expert Opin Biol Ther. 2007, 7: 1021-1034.CrossRefPubMed Eckstein F: The versatility of oligonucleotides as potential therapeutics. Expert Opin Biol Ther. 2007, 7: 1021-1034.CrossRefPubMed
41.
go back to reference Spurgers KB, Sharkey CM, Warfield KL, Bavari S: Oligonucleotide antiviral therapeutics: antisense and RNA interference for highly pathogenic RNA viruses. Antiviral Res. 2008, 78: 26-36.CrossRefPubMed Spurgers KB, Sharkey CM, Warfield KL, Bavari S: Oligonucleotide antiviral therapeutics: antisense and RNA interference for highly pathogenic RNA viruses. Antiviral Res. 2008, 78: 26-36.CrossRefPubMed
42.
go back to reference Rayburn ER, Zhang R: Antisense, RNAi, and gene silencing strategies for therapy: mission possible or impossible?. Drug Discov Today. 2008, 13: 513-521.PubMedCentralCrossRefPubMed Rayburn ER, Zhang R: Antisense, RNAi, and gene silencing strategies for therapy: mission possible or impossible?. Drug Discov Today. 2008, 13: 513-521.PubMedCentralCrossRefPubMed
Metadata
Title
Induction of endogenous γ-globin gene expression with decoy oligonucleotide targeting Oct-1 transcription factor consensus sequence
Authors
Xiaoxin S Xu
Xin Hong
Gan Wang
Publication date
01-12-2009
Publisher
BioMed Central
Published in
Journal of Hematology & Oncology / Issue 1/2009
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/1756-8722-2-15

Other articles of this Issue 1/2009

Journal of Hematology & Oncology 1/2009 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine