Skip to main content
Top
Published in: Critical Care 1/2020

Open Access 01-12-2020 | Research

Individualized flow-controlled ventilation compared to best clinical practice pressure-controlled ventilation: a prospective randomized porcine study

Authors: Patrick Spraider, Judith Martini, Julia Abram, Gabriel Putzer, Bernhard Glodny, Tobias Hell, Tom Barnes, Dietmar Enk

Published in: Critical Care | Issue 1/2020

Login to get access

Abstract

Background

Flow-controlled ventilation is a novel ventilation method which allows to individualize ventilation according to dynamic lung mechanic limits based on direct tracheal pressure measurement at a stable constant gas flow during inspiration and expiration. The aim of this porcine study was to compare individualized flow-controlled ventilation (FCV) and current guideline-conform pressure-controlled ventilation (PCV) in long-term ventilation.

Methods

Anesthetized pigs were ventilated with either FCV or PCV over a period of 10 h with a fixed FiO2 of 0.3. FCV settings were individualized by compliance-guided positive end-expiratory pressure (PEEP) and peak pressure (Ppeak) titration. Flow was adjusted to maintain normocapnia and the inspiration to expiration ratio (I:E ratio) was set at 1:1. PCV was performed with a PEEP of 5 cm H2O and Ppeak was set to achieve a tidal volume (VT) of 7 ml/kg. The respiratory rate was adjusted to maintain normocapnia and the I:E ratio was set at 1:1.5. Repeated measurements during observation period were assessed by linear mixed-effects model.

Results

In FCV (n = 6), respiratory minute volume was significantly reduced (6.0 vs 12.7, MD − 6.8 (− 8.2 to − 5.4) l/min; p < 0.001) as compared to PCV (n = 6). Oxygenation was improved in the FCV group (paO2 119.8 vs 96.6, MD 23.2 (9.0 to 37.5) Torr; 15.97 vs 12.87, MD 3.10 (1.19 to 5.00) kPa; p = 0.010) and CO2 removal was more efficient (paCO2 40.1 vs 44.9, MD − 4.7 (− 7.4 to − 2.0) Torr; 5.35 vs 5.98, MD − 0.63 (− 0.99 to − 0.27) kPa; p = 0.006). Ppeak and driving pressure were comparable in both groups, whereas PEEP was significantly lower in FCV (p = 0.002). Computed tomography revealed a significant reduction in non-aerated lung tissue in individualized FCV (p = 0.026) and no significant difference in overdistended lung tissue, although a significantly higher VT was applied (8.2 vs 7.6, MD 0.7 (0.2 to 1.2) ml/kg; p = 0.025).

Conclusion

Our long-term ventilation study demonstrates the applicability of a compliance-guided individualization of FCV settings, which resulted in significantly improved gas exchange and lung tissue aeration without signs of overinflation as compared to best clinical practice PCV.
Literature
1.
go back to reference Beitler JR, Malhotra A, Thompson BT. Ventilator-induced lung injury. Clin Chest Med. 2016;37(4):633–46.CrossRef Beitler JR, Malhotra A, Thompson BT. Ventilator-induced lung injury. Clin Chest Med. 2016;37(4):633–46.CrossRef
2.
go back to reference Slutsky AS, Ranieri VM. Ventilator-induced lung injury. N Engl J Med. 2013;369(22):2126–36.CrossRef Slutsky AS, Ranieri VM. Ventilator-induced lung injury. N Engl J Med. 2013;369(22):2126–36.CrossRef
3.
go back to reference O'Gara B, Talmor D. Perioperative lung protective ventilation. BMJ. 2018;362:k3030.CrossRef O'Gara B, Talmor D. Perioperative lung protective ventilation. BMJ. 2018;362:k3030.CrossRef
4.
go back to reference Nieman GF, Satalin J, Gatto LA, et al. Personalizing mechanical ventilation according to physiologic parameters to stabilize alveoli and minimize ventilator induced lung injury (VILI). Intensive Care Med Exp. 2017;5(1):8.CrossRef Nieman GF, Satalin J, Gatto LA, et al. Personalizing mechanical ventilation according to physiologic parameters to stabilize alveoli and minimize ventilator induced lung injury (VILI). Intensive Care Med Exp. 2017;5(1):8.CrossRef
5.
go back to reference Barnes T, van Asseldonk D, Enk D. Minimisation of dissipated energy in the airways during mechanical ventilation by using constant inspiratory and expiratory flows - flow-controlled ventilation (FCV). Med Hypotheses. 2018;121:167–76.CrossRef Barnes T, van Asseldonk D, Enk D. Minimisation of dissipated energy in the airways during mechanical ventilation by using constant inspiratory and expiratory flows - flow-controlled ventilation (FCV). Med Hypotheses. 2018;121:167–76.CrossRef
6.
go back to reference Barnes T, Enk D. Ventilation for low dissipated energy achieved using flow control during both inspiration and expiration. Trends Anaesth Crit Care. 2019;24:5–12.CrossRef Barnes T, Enk D. Ventilation for low dissipated energy achieved using flow control during both inspiration and expiration. Trends Anaesth Crit Care. 2019;24:5–12.CrossRef
7.
go back to reference Gattinoni L, Tonetti T, Quintel M, et al. Ventilator-related causes of lung injury: the mechanical power. Intensive Care Med. 2016;42(10):1567–75.CrossRef Gattinoni L, Tonetti T, Quintel M, et al. Ventilator-related causes of lung injury: the mechanical power. Intensive Care Med. 2016;42(10):1567–75.CrossRef
8.
go back to reference Putzer G, Braun P, Mair P, et al. Effects of head-up vs. supine CPR on cerebral oxygenation and cerebral metabolism - a prospective, randomized porcine study. Resuscitation. 2018;128:51–5.CrossRef Putzer G, Braun P, Mair P, et al. Effects of head-up vs. supine CPR on cerebral oxygenation and cerebral metabolism - a prospective, randomized porcine study. Resuscitation. 2018;128:51–5.CrossRef
9.
go back to reference Swindle MM, Makin A, Frazier KS, et al. Swine as models in biomedical research and toxicology testing. Vet Pathol. 2012;49(2):344–56.CrossRef Swindle MM, Makin A, Frazier KS, et al. Swine as models in biomedical research and toxicology testing. Vet Pathol. 2012;49(2):344–56.CrossRef
10.
go back to reference Gattinoni L, Caironi P, Goodman LR, et al. What has computed tomography taught us about the acute respiratory distress syndrome? Am J Respir Crit Care Med. 2001;164(9):1701–11.CrossRef Gattinoni L, Caironi P, Goodman LR, et al. What has computed tomography taught us about the acute respiratory distress syndrome? Am J Respir Crit Care Med. 2001;164(9):1701–11.CrossRef
11.
go back to reference Chiumello D, Gotti M, Guanziroli M, et al. Bedside calculation of mechanical power during volume- and pressure-controlled mechanical ventilation. Crit Care. 2020;24(1):417.CrossRef Chiumello D, Gotti M, Guanziroli M, et al. Bedside calculation of mechanical power during volume- and pressure-controlled mechanical ventilation. Crit Care. 2020;24(1):417.CrossRef
12.
go back to reference Schmidt J, Wenzel C, Schumann S, et al. Improved lung recruitment and oxygenation during mandatory ventilation with a new expiratory ventilation assistance device: a controlled interventional trial in healthy pigs. Eur J Anaesthesiol. 2018;35(10):736–44.CrossRef Schmidt J, Wenzel C, Schumann S, et al. Improved lung recruitment and oxygenation during mandatory ventilation with a new expiratory ventilation assistance device: a controlled interventional trial in healthy pigs. Eur J Anaesthesiol. 2018;35(10):736–44.CrossRef
13.
go back to reference Schmidt J, Wenzel C, Schumann S, et al. Flow-controlled ventilation attenuates lung injury in a porcine model of acute respiratory distress syndrome: a preclinical randomized controlled study. Crit Care Med. 2020;48(3):e241–8.CrossRef Schmidt J, Wenzel C, Schumann S, et al. Flow-controlled ventilation attenuates lung injury in a porcine model of acute respiratory distress syndrome: a preclinical randomized controlled study. Crit Care Med. 2020;48(3):e241–8.CrossRef
14.
go back to reference Schmidt J, Günther F, Schumann S, et al. Glottic visibility for laryngeal surgery: Tritube vs. microlaryngeal tube: a randomised controlled trial. Eur J Anaesthesiol. 2019;36(12):963–71. Schmidt J, Günther F, Schumann S, et al. Glottic visibility for laryngeal surgery: Tritube vs. microlaryngeal tube: a randomised controlled trial. Eur J Anaesthesiol. 2019;36(12):963–71.
15.
go back to reference Weber J, Schmidt J, Schumann S, et al. Flow-controlled ventilation improves gas exchange in lung-healthy patients - a randomized interventional cross-over study. Acta Anaesthesiol Scand. 2020;64(4):481–8.CrossRef Weber J, Schmidt J, Schumann S, et al. Flow-controlled ventilation improves gas exchange in lung-healthy patients - a randomized interventional cross-over study. Acta Anaesthesiol Scand. 2020;64(4):481–8.CrossRef
16.
go back to reference Weber J, Straka L, Schumann S, et al. Flow-controlled ventilation (FCV) improves regional ventilation in obese patients - a randomized controlled crossover trial. BMC Anesthesiol. 2020;20(1):24.CrossRef Weber J, Straka L, Schumann S, et al. Flow-controlled ventilation (FCV) improves regional ventilation in obese patients - a randomized controlled crossover trial. BMC Anesthesiol. 2020;20(1):24.CrossRef
17.
go back to reference Acute Respiratory Distress Syndrome Network – Brower RG, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–8.CrossRef Acute Respiratory Distress Syndrome Network – Brower RG, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–8.CrossRef
18.
go back to reference Cressoni M, Cadringher P, Gattinoni L, et al. Lung inhomogeneity in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2014;189(2):149–58.PubMed Cressoni M, Cadringher P, Gattinoni L, et al. Lung inhomogeneity in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2014;189(2):149–58.PubMed
19.
go back to reference Retamal J, Bergamini BC, Bruhn A, et al. Non-lobar atelectasis generates inflammation and structural alveolar injury in the surrounding healthy tissue during mechanical ventilation. Crit Care. 2014;18(5):505.CrossRef Retamal J, Bergamini BC, Bruhn A, et al. Non-lobar atelectasis generates inflammation and structural alveolar injury in the surrounding healthy tissue during mechanical ventilation. Crit Care. 2014;18(5):505.CrossRef
20.
go back to reference Chen ZL, Song YL, Chen YZ, et al. An estimation of mechanical stress on alveolar walls during repetitive alveolar reopening and closure. J Appl Physiol. 2015;119(3):190–201.CrossRef Chen ZL, Song YL, Chen YZ, et al. An estimation of mechanical stress on alveolar walls during repetitive alveolar reopening and closure. J Appl Physiol. 2015;119(3):190–201.CrossRef
Metadata
Title
Individualized flow-controlled ventilation compared to best clinical practice pressure-controlled ventilation: a prospective randomized porcine study
Authors
Patrick Spraider
Judith Martini
Julia Abram
Gabriel Putzer
Bernhard Glodny
Tobias Hell
Tom Barnes
Dietmar Enk
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2020
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-020-03325-3

Other articles of this Issue 1/2020

Critical Care 1/2020 Go to the issue