Skip to main content
Top
Published in: Radiation Oncology 1/2014

Open Access 01-12-2014 | Research

Independent absorbed-dose calculation using the Monte Carlo algorithm in volumetric modulated arc therapy

Authors: Akihiro Haga, Taiki Magome, Shigeharu Takenaka, Toshikazu Imae, Akira Sakumi, Akihiro Nomoto, Hiroshi Igaki, Kenshiro Shiraishi, Hideomi Yamashita, Kuni Ohtomo, Keiichi Nakagawa

Published in: Radiation Oncology | Issue 1/2014

Login to get access

Abstract

Purpose

To report the result of independent absorbed-dose calculations based on a Monte Carlo (MC) algorithm in volumetric modulated arc therapy (VMAT) for various treatment sites.

Methods and materials

All treatment plans were created by the superposition/convolution (SC) algorithm of SmartArc (Pinnacle V9.2, Philips). The beam information was converted into the format of the Monaco V3.3 (Elekta), which uses the X-ray voxel-based MC (XVMC) algorithm. The dose distribution was independently recalculated in the Monaco. The dose for the planning target volume (PTV) and the organ at risk (OAR) were analyzed via comparisons with those of the treatment plan.
Before performing an independent absorbed-dose calculation, the validation was conducted via irradiation from 3 different gantry angles with a 10- × 10-cm2 field. For the independent absorbed-dose calculation, 15 patients with cancer (prostate, 5; lung, 5; head and neck, 3; rectal, 1; and esophageal, 1) who were treated with single-arc VMAT were selected. To classify the cause of the dose difference between the Pinnacle and Monaco TPSs, their calculations were also compared with the measurement data.

Result

In validation, the dose in Pinnacle agreed with that in Monaco within 1.5%. The agreement in VMAT calculations between Pinnacle and Monaco using phantoms was exceptional; at the isocenter, the difference was less than 1.5% for all the patients. For independent absorbed-dose calculations, the agreement was also extremely good. For the mean dose for the PTV in particular, the agreement was within 2.0% in all the patients; specifically, no large difference was observed for high-dose regions. Conversely, a significant difference was observed in the mean dose for the OAR. For patients with prostate cancer, the mean rectal dose calculated in Monaco was significantly smaller than that calculated in Pinnacle.

Conclusions

There was no remarkable difference between the SC and XVMC calculations in the high-dose regions. The difference observed in the low-dose regions may have arisen from various causes such as the intrinsic dose deviation in the MC calculation, modeling accuracy, and CT-to-density table used in each planning system It is useful to perform independent absorbed-dose calculations with the MC algorithm in intensity-modulated radiation therapy commissioning.
Appendix
Available only for authorised users
Literature
1.
go back to reference Papanikolaou N, Battista J, Boyer A, Kappas C, Klein E, Mackie T, Sharpe M, Van Dyk J: Tissue Inhomogeneity Corrections for Megavoltage Photon Beams. AAPM Report No 85, Task Group No 65 of the Radiation Therapy Committee of the American Association of Physicists in Medicine. Madison, WI: Medical Physics Publishing; 2004. Papanikolaou N, Battista J, Boyer A, Kappas C, Klein E, Mackie T, Sharpe M, Van Dyk J: Tissue Inhomogeneity Corrections for Megavoltage Photon Beams. AAPM Report No 85, Task Group No 65 of the Radiation Therapy Committee of the American Association of Physicists in Medicine. Madison, WI: Medical Physics Publishing; 2004.
2.
go back to reference Fraass BA, Smathers J, Deye J: Summary and recommendations of a National Cancer Institute workshop on issues limiting the clinical use of Monte Carlo dose calculation algorithms for megavoltage external beam radiation therapy. Med Phys 2003, 30: 3206-3216. 10.1118/1.1626990CrossRefPubMed Fraass BA, Smathers J, Deye J: Summary and recommendations of a National Cancer Institute workshop on issues limiting the clinical use of Monte Carlo dose calculation algorithms for megavoltage external beam radiation therapy. Med Phys 2003, 30: 3206-3216. 10.1118/1.1626990CrossRefPubMed
3.
go back to reference Mackie TR, Bielajew AF, Rogers DWO, Battista JJ: Generation of photon energy deposition kernels using the EGS Monte Carlo code. Phys Med Biol 1988, 33: 1-20. 10.1088/0031-9155/33/1/001CrossRefPubMed Mackie TR, Bielajew AF, Rogers DWO, Battista JJ: Generation of photon energy deposition kernels using the EGS Monte Carlo code. Phys Med Biol 1988, 33: 1-20. 10.1088/0031-9155/33/1/001CrossRefPubMed
4.
go back to reference Ahnesjö A: Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous media. Med Phys 1989, 16: 577-592. 10.1118/1.596360CrossRefPubMed Ahnesjö A: Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous media. Med Phys 1989, 16: 577-592. 10.1118/1.596360CrossRefPubMed
5.
go back to reference Chetty IJ, Curran B, Cygler JE, DeMarco JJ, Ezzell G, Faddegon BA, Kawrakow I, Keall PJ, Liu H, Ma CMC, Rogers DWO, Seuntjens J, Sheikh-Bagheri D, Siebers JV: Report of the AAPM Task Group No. 105: issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning. Med Phys 2007, 34: 4818-4853. 10.1118/1.2795842CrossRefPubMed Chetty IJ, Curran B, Cygler JE, DeMarco JJ, Ezzell G, Faddegon BA, Kawrakow I, Keall PJ, Liu H, Ma CMC, Rogers DWO, Seuntjens J, Sheikh-Bagheri D, Siebers JV: Report of the AAPM Task Group No. 105: issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning. Med Phys 2007, 34: 4818-4853. 10.1118/1.2795842CrossRefPubMed
6.
go back to reference Kawrakow I, Fippel M, Friedrich K: 3D electron dose calculation using a voxel-based Monte Carlo algorithm (VMC). Med Phys 1996, 23: 445-457. 10.1118/1.597673CrossRefPubMed Kawrakow I, Fippel M, Friedrich K: 3D electron dose calculation using a voxel-based Monte Carlo algorithm (VMC). Med Phys 1996, 23: 445-457. 10.1118/1.597673CrossRefPubMed
7.
go back to reference Fippel M, Laub W, Huber B, Nüsslin F: Experimental investigation of a fast Monte Carlo photon beam dose calculation algorithm. Phys Med Biol 1999, 44: 3039-3054. 10.1088/0031-9155/44/12/313CrossRefPubMed Fippel M, Laub W, Huber B, Nüsslin F: Experimental investigation of a fast Monte Carlo photon beam dose calculation algorithm. Phys Med Biol 1999, 44: 3039-3054. 10.1088/0031-9155/44/12/313CrossRefPubMed
8.
go back to reference Fippel M, Nüsslin F: Foundations of the Monte Carlo method for dose calculation in radiotherapy. Z Med Phys 2011, 11: 73-82.CrossRef Fippel M, Nüsslin F: Foundations of the Monte Carlo method for dose calculation in radiotherapy. Z Med Phys 2011, 11: 73-82.CrossRef
9.
go back to reference Fragoso M, Wen N, Kumar S, Liu D, Ryu S, Movsas B, Munther A, Chetty IJ: Dosimetric verification and clinical evaluation of a new commercially available Monte Carlo-based dose algorithm for application in stereotactic body radiation therapy (SBRT) treatment planning. Phys Med Biol 2010, 55: 4445-4464. 10.1088/0031-9155/55/16/S02CrossRefPubMed Fragoso M, Wen N, Kumar S, Liu D, Ryu S, Movsas B, Munther A, Chetty IJ: Dosimetric verification and clinical evaluation of a new commercially available Monte Carlo-based dose algorithm for application in stereotactic body radiation therapy (SBRT) treatment planning. Phys Med Biol 2010, 55: 4445-4464. 10.1088/0031-9155/55/16/S02CrossRefPubMed
10.
go back to reference Fotina I, Kragl G, Kroupa B, Trausmuth R, Georg D: Clinical comparison of dose calculation using the enhanced collapsed cone algorithm vs. a new Monte Carlo algorithm. Strahlenther Onkol 2011, 187: 433-441. 10.1007/s00066-011-2215-9CrossRefPubMed Fotina I, Kragl G, Kroupa B, Trausmuth R, Georg D: Clinical comparison of dose calculation using the enhanced collapsed cone algorithm vs. a new Monte Carlo algorithm. Strahlenther Onkol 2011, 187: 433-441. 10.1007/s00066-011-2215-9CrossRefPubMed
11.
go back to reference Paelinck L, Reynaert N, Thierens H, De Neve W, De Wagter C: Experimental verification of lung dose with radiochromic film: comparison with Monte Carlo simulations and commercially available treatment planning systems. Phys Med Biol 2005, 50: 2055-2069. 10.1088/0031-9155/50/9/009CrossRefPubMed Paelinck L, Reynaert N, Thierens H, De Neve W, De Wagter C: Experimental verification of lung dose with radiochromic film: comparison with Monte Carlo simulations and commercially available treatment planning systems. Phys Med Biol 2005, 50: 2055-2069. 10.1088/0031-9155/50/9/009CrossRefPubMed
12.
go back to reference Krieger T, Sauer OA: Monte Carlo-versus pencil-beam-/collapsed cone-dose calculation in a heterogeneous multi-layer phantom. Phys Med Biol 2005, 50: 859-868. 10.1088/0031-9155/50/5/010CrossRefPubMed Krieger T, Sauer OA: Monte Carlo-versus pencil-beam-/collapsed cone-dose calculation in a heterogeneous multi-layer phantom. Phys Med Biol 2005, 50: 859-868. 10.1088/0031-9155/50/5/010CrossRefPubMed
13.
go back to reference Fogliata A, Vanetti E, Albers D, Brink C, Clivio A, Knöös T, Nicolini G, Cozzi L: On the dosimetric behaviour of photon dose calculation algorithms in the presence of simple geometric heterogeneities: comparison with Monte Carlo calculations. Phys Med Biol 2007, 52: 1363-1385. 10.1088/0031-9155/52/5/011CrossRefPubMed Fogliata A, Vanetti E, Albers D, Brink C, Clivio A, Knöös T, Nicolini G, Cozzi L: On the dosimetric behaviour of photon dose calculation algorithms in the presence of simple geometric heterogeneities: comparison with Monte Carlo calculations. Phys Med Biol 2007, 52: 1363-1385. 10.1088/0031-9155/52/5/011CrossRefPubMed
14.
go back to reference Panettieri V, Wennberg B, Gagliardi G, Duch MA, Ginjaume M, Lax I: SBRT of lung tumours: Monte Carlo simulation with PENELOPE of dose distributions including respiratory motion and comparison with different treatment planning systems. Phys Med Biol 2007, 52: 4265-4281. 10.1088/0031-9155/52/14/016CrossRefPubMed Panettieri V, Wennberg B, Gagliardi G, Duch MA, Ginjaume M, Lax I: SBRT of lung tumours: Monte Carlo simulation with PENELOPE of dose distributions including respiratory motion and comparison with different treatment planning systems. Phys Med Biol 2007, 52: 4265-4281. 10.1088/0031-9155/52/14/016CrossRefPubMed
15.
go back to reference Fotina I, Winkler P, Künzler T, Reiterer J, Simmat I, Georg D: Advanced kernel methods vs. Monte Carlo-based dose calculation for high energy photon beams. Radiother Oncol 2009, 93: 645-653. 10.1016/j.radonc.2009.10.013CrossRefPubMed Fotina I, Winkler P, Künzler T, Reiterer J, Simmat I, Georg D: Advanced kernel methods vs. Monte Carlo-based dose calculation for high energy photon beams. Radiother Oncol 2009, 93: 645-653. 10.1016/j.radonc.2009.10.013CrossRefPubMed
16.
go back to reference Crowe SB, Kairn T, Trapp JV, Feilding AL: Monte Carlo evaluation of collapsed-cone convolution calculations in head and neck radiotherapy treatment plans. World Congress on Medical Physics and Biomedical Engineering Beijing, China, IFMBE Proceedings 2013, 39: 1803-1806. Crowe SB, Kairn T, Trapp JV, Feilding AL: Monte Carlo evaluation of collapsed-cone convolution calculations in head and neck radiotherapy treatment plans. World Congress on Medical Physics and Biomedical Engineering Beijing, China, IFMBE Proceedings 2013, 39: 1803-1806.
17.
go back to reference Vanderstraeten B, Reynaert N, Paelinck L, Madani I, De Wagter C, De Gersem W, De Neve W, Thierens H: Accuracy of patient dose calculation for lung IMRT: a comparison of Monte Carlo, convolution/superposition, and pencil beam computations. Med Phys 2006, 33: 3149-3158. 10.1118/1.2241992CrossRefPubMed Vanderstraeten B, Reynaert N, Paelinck L, Madani I, De Wagter C, De Gersem W, De Neve W, Thierens H: Accuracy of patient dose calculation for lung IMRT: a comparison of Monte Carlo, convolution/superposition, and pencil beam computations. Med Phys 2006, 33: 3149-3158. 10.1118/1.2241992CrossRefPubMed
18.
go back to reference Bush K, Townson R, Zavgorodni S: Monte Carlo simulation of RapidArc radiotherapy delivery. Phys Med Biol 2008, 53: 359-370. 10.1088/0031-9155/53/19/N01CrossRef Bush K, Townson R, Zavgorodni S: Monte Carlo simulation of RapidArc radiotherapy delivery. Phys Med Biol 2008, 53: 359-370. 10.1088/0031-9155/53/19/N01CrossRef
19.
go back to reference Ceberg S, Gagne I, Gustafsson H, Scherman JB, Korreman SS, Kjaer-Kristoffersen F, Hilts M, Bäck SA: RapidArc treatment verification in 3D using polymer gel dosimetry and Monte Carlo simulation. Phys Med Biol 2010, 55: 4885-4898. 10.1088/0031-9155/55/17/001CrossRefPubMed Ceberg S, Gagne I, Gustafsson H, Scherman JB, Korreman SS, Kjaer-Kristoffersen F, Hilts M, Bäck SA: RapidArc treatment verification in 3D using polymer gel dosimetry and Monte Carlo simulation. Phys Med Biol 2010, 55: 4885-4898. 10.1088/0031-9155/55/17/001CrossRefPubMed
20.
go back to reference Gagne MI, Ansbacher W, Zavgorodni S, Popescu C, Beckham WA: A Monte Carlo evaluation of RapidArc dose calculations for oropharynx radiotherapy. Phys Med Biol 2008, 53: 7167-7185. 10.1088/0031-9155/53/24/011CrossRefPubMed Gagne MI, Ansbacher W, Zavgorodni S, Popescu C, Beckham WA: A Monte Carlo evaluation of RapidArc dose calculations for oropharynx radiotherapy. Phys Med Biol 2008, 53: 7167-7185. 10.1088/0031-9155/53/24/011CrossRefPubMed
21.
go back to reference Gete E, Duzenli C, Milette M-P, Mestrovic A, Hyde D, Bergman AM, Teke T: A Monte Carlo approach to validation of FFF VMAT treatment plans for the TrueBeam linac. Med Phys 2013, 40: 021707. 10.1118/1.4773883CrossRefPubMed Gete E, Duzenli C, Milette M-P, Mestrovic A, Hyde D, Bergman AM, Teke T: A Monte Carlo approach to validation of FFF VMAT treatment plans for the TrueBeam linac. Med Phys 2013, 40: 021707. 10.1118/1.4773883CrossRefPubMed
22.
go back to reference Fippel M: Fast Monte Carlo dose calculation for photon beams based on the VMC electron algorithm. Med Phys 1999, 26: 1466-1475. 10.1118/1.598676CrossRefPubMed Fippel M: Fast Monte Carlo dose calculation for photon beams based on the VMC electron algorithm. Med Phys 1999, 26: 1466-1475. 10.1118/1.598676CrossRefPubMed
23.
go back to reference Fippel M, Haryanto F, Dohm O, Nüsslin F, Kriesen S: A virtual photon energy fluence model for Monte Carlo dose calculation. Med Phys 2003, 30: 301-311. 10.1118/1.1543152CrossRefPubMed Fippel M, Haryanto F, Dohm O, Nüsslin F, Kriesen S: A virtual photon energy fluence model for Monte Carlo dose calculation. Med Phys 2003, 30: 301-311. 10.1118/1.1543152CrossRefPubMed
Metadata
Title
Independent absorbed-dose calculation using the Monte Carlo algorithm in volumetric modulated arc therapy
Authors
Akihiro Haga
Taiki Magome
Shigeharu Takenaka
Toshikazu Imae
Akira Sakumi
Akihiro Nomoto
Hiroshi Igaki
Kenshiro Shiraishi
Hideomi Yamashita
Kuni Ohtomo
Keiichi Nakagawa
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2014
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/1748-717X-9-75

Other articles of this Issue 1/2014

Radiation Oncology 1/2014 Go to the issue