Skip to main content
Top
Published in: Orphanet Journal of Rare Diseases 1/2016

Open Access 01-12-2016 | Research

Increased red cell distribution width in Fanconi anemia: a novel marker of stress erythropoiesis

Authors: Rosa Sousa, Cristina Gonçalves, Isabel Couto Guerra, Emília Costa, Ana Fernandes, Maria do Bom Sucesso, Joana Azevedo, Alfredo Rodriguez, Rocio Rius, Carlos Seabra, Fátima Ferreira, Letícia Ribeiro, Anabela Ferrão, Sérgio Castedo, Esmeralda Cleto, Jorge Coutinho, Félix Carvalho, José Barbot, Beatriz Porto

Published in: Orphanet Journal of Rare Diseases | Issue 1/2016

Login to get access

Abstract

Background

Red cell distribution width (RDW), a classical parameter used in the differential diagnosis of anemia, has recently been recognized as a marker of chronic inflammation and high levels of oxidative stress (OS). Fanconi anemia (FA) is a genetic disorder associated to redox imbalance and dysfunctional response to OS. Clinically, it is characterized by progressive bone marrow failure, which remains the primary cause of morbidity and mortality. Macrocytosis and increased fetal hemoglobin, two indicators of bone marrow stress erythropoiesis, are generally the first hematological manifestations to appear in FA. However, the significance of RDW and its possible relation to stress erythropoiesis have never been explored in FA. In the present study we analyzed routine complete blood counts from 34 FA patients and evaluated RDW, correlating with the hematological parameters most consistently associated with the FA phenotype.

Results

We showed, for the first time, that RDW is significantly increased in FA. We also showed that increased RDW is correlated with thrombocytopenia, neutropenia and, most importantly, highly correlated with anemia. Analyzing sequential hemograms from 3 FA patients with different clinical outcomes, during 10 years follow-up, we confirmed a consistent association between increased RDW and decreased hemoglobin, which supports the postulated importance of RDW in the evaluation of hematological disease progression.

Conclusions

This study shows, for the first time, that RDW is significantly increased in FA, and this increment is correlated with neutropenia, thrombocytopenia, and highly correlated with anemia. According to the present results, it is suggested that increased RDW can be a novel marker of stress erythropoiesis in FA.
Appendix
Available only for authorised users
Literature
1.
go back to reference Salvagno GL, Sanchis-Gomar F, Picanza A, Lippi G. Red blood cell distribution width: a simple parameter with multiple clinical applications. Crit Rev Clin Lab Sci. 2015;52(2):86–105.CrossRefPubMed Salvagno GL, Sanchis-Gomar F, Picanza A, Lippi G. Red blood cell distribution width: a simple parameter with multiple clinical applications. Crit Rev Clin Lab Sci. 2015;52(2):86–105.CrossRefPubMed
2.
go back to reference Tsuboi S, Miyauchi K, Kasai T, Ogita M, Dohi T, Miyazaki T, et al. Impact of red blood cell distribution width on long-term mortality in diabetic patients after percutaneous coronary intervention. Circ J. 2013;77(2):456–61.CrossRefPubMed Tsuboi S, Miyauchi K, Kasai T, Ogita M, Dohi T, Miyazaki T, et al. Impact of red blood cell distribution width on long-term mortality in diabetic patients after percutaneous coronary intervention. Circ J. 2013;77(2):456–61.CrossRefPubMed
3.
go back to reference Semba RD, Patel KV, Ferrucci L, Sun K, Roy CN, Guralnik JM, et al. Serum antioxidants and inflammation predict red cell distribution width in older women: the Women’s Health and Aging Study I. Clin Nutr. 2010;29(5):600–4.CrossRefPubMedPubMedCentral Semba RD, Patel KV, Ferrucci L, Sun K, Roy CN, Guralnik JM, et al. Serum antioxidants and inflammation predict red cell distribution width in older women: the Women’s Health and Aging Study I. Clin Nutr. 2010;29(5):600–4.CrossRefPubMedPubMedCentral
4.
go back to reference Friedman JS, Lopez MF, Fleming MD, Rivera A, Martin FM, Welsh ML, et al. SOD2-deficiency anemia: protein oxidation and altered protein expression reveal targets of damage, stress response, and antioxidant responsiveness. Blood. 2004;104(8):2565–73.CrossRefPubMed Friedman JS, Lopez MF, Fleming MD, Rivera A, Martin FM, Welsh ML, et al. SOD2-deficiency anemia: protein oxidation and altered protein expression reveal targets of damage, stress response, and antioxidant responsiveness. Blood. 2004;104(8):2565–73.CrossRefPubMed
5.
go back to reference Duxin JP, Walter JC. What is the DNA repair defect underlying Fanconi anemia? Curr Opin Cell Biol. 2015;37:49–60.CrossRefPubMed Duxin JP, Walter JC. What is the DNA repair defect underlying Fanconi anemia? Curr Opin Cell Biol. 2015;37:49–60.CrossRefPubMed
6.
go back to reference D’Andrea AD, Grompe M. The Fanconi anaemia/BRCA pathway. Nat Rev Cancer. 2003;3(1):23–34. Epub 2003/01/02.CrossRefPubMed D’Andrea AD, Grompe M. The Fanconi anaemia/BRCA pathway. Nat Rev Cancer. 2003;3(1):23–34. Epub 2003/01/02.CrossRefPubMed
7.
go back to reference Auerbach AD, Rogatko A, Schroeder-Kurth TM. International Fanconi Anemia Registry: relation of clinical symptoms to diepoxybutane sensitivity. Blood. 1989;73(2):391–6.PubMed Auerbach AD, Rogatko A, Schroeder-Kurth TM. International Fanconi Anemia Registry: relation of clinical symptoms to diepoxybutane sensitivity. Blood. 1989;73(2):391–6.PubMed
8.
go back to reference Pagano G, Talamanca AA, Castello G, d’Ischia M, Pallardo FV, Petrovic S, et al. From clinical description, to in vitro and animal studies, and backward to patients: oxidative stress and mitochondrial dysfunction in Fanconi anemia. Free Radic Biol Med. 2013;58:118–25. Epub 2013/02/05.CrossRefPubMed Pagano G, Talamanca AA, Castello G, d’Ischia M, Pallardo FV, Petrovic S, et al. From clinical description, to in vitro and animal studies, and backward to patients: oxidative stress and mitochondrial dysfunction in Fanconi anemia. Free Radic Biol Med. 2013;58:118–25. Epub 2013/02/05.CrossRefPubMed
9.
go back to reference Pagano G, Talamanca AA, Castello G, d’Ischia M, Pallardo FV, Petrovic S, et al. Bone marrow cell transcripts from Fanconi anaemia patients reveal in vivo alterations in mitochondrial, redox and DNA repair pathways. Eur J Haematol. 2013;91(2):141–51. Epub 2013/05/08.CrossRefPubMed Pagano G, Talamanca AA, Castello G, d’Ischia M, Pallardo FV, Petrovic S, et al. Bone marrow cell transcripts from Fanconi anaemia patients reveal in vivo alterations in mitochondrial, redox and DNA repair pathways. Eur J Haematol. 2013;91(2):141–51. Epub 2013/05/08.CrossRefPubMed
10.
11.
go back to reference Auerbach AD, Liu Q, Ghosh R, Pollack MS, Douglas GW, Broxmeyer HE. Prenatal identification of potential donors for umbilical cord blood transplantation for Fanconi anemia. Transfusion. 1990;30(8):682–7.CrossRefPubMed Auerbach AD, Liu Q, Ghosh R, Pollack MS, Douglas GW, Broxmeyer HE. Prenatal identification of potential donors for umbilical cord blood transplantation for Fanconi anemia. Transfusion. 1990;30(8):682–7.CrossRefPubMed
12.
go back to reference Kelly PF, Radtke S, von Kalle C, Balcik B, Bohn K, Mueller R, et al. Stem cell collection and gene transfer in Fanconi anemia. Mol Ther. 2007;15(1):211–9.CrossRefPubMed Kelly PF, Radtke S, von Kalle C, Balcik B, Bohn K, Mueller R, et al. Stem cell collection and gene transfer in Fanconi anemia. Mol Ther. 2007;15(1):211–9.CrossRefPubMed
13.
go back to reference Landmann E, Bluetters-Sawatzki R, Schindler D, Gortner L. Fanconi anemia in a neonate with pancytopenia. J Pediatr. 2004;145(1):125–7. Epub 2004/07/09.CrossRefPubMed Landmann E, Bluetters-Sawatzki R, Schindler D, Gortner L. Fanconi anemia in a neonate with pancytopenia. J Pediatr. 2004;145(1):125–7. Epub 2004/07/09.CrossRefPubMed
15.
go back to reference Alter BP. Fetal erythropoiesis in stress hematopoiesis. Exp Hematol. 1979;5:200–9. Alter BP. Fetal erythropoiesis in stress hematopoiesis. Exp Hematol. 1979;5:200–9.
16.
go back to reference Alter BP, Rosenberg PS, Day T, Menzel S, Giri N, Savage SA, et al. Genetic regulation of fetal haemoglobin in inherited bone marrow failure syndromes. Br J Haematol. 2013;162(4):542–6. Epub 2013/05/30.CrossRefPubMedPubMedCentral Alter BP, Rosenberg PS, Day T, Menzel S, Giri N, Savage SA, et al. Genetic regulation of fetal haemoglobin in inherited bone marrow failure syndromes. Br J Haematol. 2013;162(4):542–6. Epub 2013/05/30.CrossRefPubMedPubMedCentral
17.
go back to reference Porto B, Sousa R, Ponte F, Torgal A, Campilho F, Campos A, et al. Fanconi anemia: cytogenetic diagnosis of 40 cases. Acta Med Port. 2011;24(3):405–12.PubMed Porto B, Sousa R, Ponte F, Torgal A, Campilho F, Campos A, et al. Fanconi anemia: cytogenetic diagnosis of 40 cases. Acta Med Port. 2011;24(3):405–12.PubMed
18.
go back to reference Auerbach AD. Diagnosis of fanconi anemia by diepoxybutane analysis. Curr Protoc Hum Genet. 2015;85(8):1–8. Auerbach AD. Diagnosis of fanconi anemia by diepoxybutane analysis. Curr Protoc Hum Genet. 2015;85(8):1–8.
19.
go back to reference Orkin SH, Nathan DG, Ginsburg D, Look AT, Fisher DE, Lux IV S. Nathan and Oski’s hematology of infancy and childhood. Philadelphia: Saunders Elsevier; 2008. Orkin SH, Nathan DG, Ginsburg D, Look AT, Fisher DE, Lux IV S. Nathan and Oski’s hematology of infancy and childhood. Philadelphia: Saunders Elsevier; 2008.
20.
go back to reference Bujak K, Wasilewski J, Osadnik T, Jonczyk S, Kolodziejska A, Gierlotka M, et al. The prognostic role of red blood cell distribution width in coronary artery disease: a review of the pathophysiology. Dis Markers. 2015;824624(10):26. Bujak K, Wasilewski J, Osadnik T, Jonczyk S, Kolodziejska A, Gierlotka M, et al. The prognostic role of red blood cell distribution width in coronary artery disease: a review of the pathophysiology. Dis Markers. 2015;824624(10):26.
21.
go back to reference Nordenson I. Effect of superoxide dismutase and catalase on spontaneously occurring chromosome breaks in patients with Fanconi’s anemia. Hereditas. 1977;86(2):147–50.CrossRefPubMed Nordenson I. Effect of superoxide dismutase and catalase on spontaneously occurring chromosome breaks in patients with Fanconi’s anemia. Hereditas. 1977;86(2):147–50.CrossRefPubMed
22.
go back to reference Joenje H, Arwert F, Eriksson AW, de Koning H, Oostra AB. Oxygen-dependence of chromosomal aberrations in Fanconi’s anaemia. Nature. 1981;290(5802):142–3.CrossRefPubMed Joenje H, Arwert F, Eriksson AW, de Koning H, Oostra AB. Oxygen-dependence of chromosomal aberrations in Fanconi’s anaemia. Nature. 1981;290(5802):142–3.CrossRefPubMed
23.
go back to reference Cumming RC, Lightfoot J, Beard K, Youssoufian H, O’Brien PJ, Buchwald M. Fanconi anemia group C protein prevents apoptosis in hematopoietic cells through redox regulation of GSTP1. Nat Med. 2001;7(7):814–20.CrossRefPubMed Cumming RC, Lightfoot J, Beard K, Youssoufian H, O’Brien PJ, Buchwald M. Fanconi anemia group C protein prevents apoptosis in hematopoietic cells through redox regulation of GSTP1. Nat Med. 2001;7(7):814–20.CrossRefPubMed
24.
go back to reference Du W, Rani R, Sipple J, Schick J, Myers KC, Mehta P, et al. The FA pathway counteracts oxidative stress through selective protection of antioxidant defense gene promoters. Blood. 2012;119(18):4142–51.CrossRefPubMedPubMedCentral Du W, Rani R, Sipple J, Schick J, Myers KC, Mehta P, et al. The FA pathway counteracts oxidative stress through selective protection of antioxidant defense gene promoters. Blood. 2012;119(18):4142–51.CrossRefPubMedPubMedCentral
25.
26.
go back to reference Li J, Sipple J, Maynard S, Mehta PA, Rose SR, Davies SM, et al. Fanconi anemia links reactive oxygen species to insulin resistance and obesity. Antioxid Redox Signal. 2012;17(8):1083–98.CrossRefPubMedPubMedCentral Li J, Sipple J, Maynard S, Mehta PA, Rose SR, Davies SM, et al. Fanconi anemia links reactive oxygen species to insulin resistance and obesity. Antioxid Redox Signal. 2012;17(8):1083–98.CrossRefPubMedPubMedCentral
27.
go back to reference Mukhopadhyay SS, Leung KS, Hicks MJ, Hastings PJ, Youssoufian H, Plon SE. Defective mitochondrial peroxiredoxin-3 results in sensitivity to oxidative stress in Fanconi anemia. J Cell Biol. 2006;175(2):225–35.CrossRefPubMedPubMedCentral Mukhopadhyay SS, Leung KS, Hicks MJ, Hastings PJ, Youssoufian H, Plon SE. Defective mitochondrial peroxiredoxin-3 results in sensitivity to oxidative stress in Fanconi anemia. J Cell Biol. 2006;175(2):225–35.CrossRefPubMedPubMedCentral
28.
go back to reference Pagano G. Mitomycin C, and diepoxybutane action mechanisms and FANCC protein functions: further insights into the role for oxidative stress in Fanconi’s anaemia phenotype. Carcinogenesis. 2000;21(5):1067–8.CrossRefPubMed Pagano G. Mitomycin C, and diepoxybutane action mechanisms and FANCC protein functions: further insights into the role for oxidative stress in Fanconi’s anaemia phenotype. Carcinogenesis. 2000;21(5):1067–8.CrossRefPubMed
29.
go back to reference Pagano G, Degan P, d’Ischia M, Kelly FJ, Nobili B, Pallardo FV, et al. Oxidative stress as a multiple effector in Fanconi anaemia clinical phenotype. Eur J Haematol. 2005;75(2):93–100.CrossRefPubMed Pagano G, Degan P, d’Ischia M, Kelly FJ, Nobili B, Pallardo FV, et al. Oxidative stress as a multiple effector in Fanconi anaemia clinical phenotype. Eur J Haematol. 2005;75(2):93–100.CrossRefPubMed
31.
go back to reference Pang Q, Fagerlie S, Christianson TA, Keeble W, Faulkner G, Diaz J, et al. The Fanconi anemia protein FANCC binds to and facilitates the activation of STAT1 by gamma interferon and hematopoietic growth factors. Mol Cell Biol. 2000;20(13):4724–35.CrossRefPubMedPubMedCentral Pang Q, Fagerlie S, Christianson TA, Keeble W, Faulkner G, Diaz J, et al. The Fanconi anemia protein FANCC binds to and facilitates the activation of STAT1 by gamma interferon and hematopoietic growth factors. Mol Cell Biol. 2000;20(13):4724–35.CrossRefPubMedPubMedCentral
32.
go back to reference Saadatzadeh MR, Bijangi-Vishehsaraei K, Hong P, Bergmann H, Haneline LS. Oxidant hypersensitivity of Fanconi anemia type C-deficient cells is dependent on a redox-regulated apoptotic pathway. J Biol Chem. 2004;279(16):16805–12.CrossRefPubMed Saadatzadeh MR, Bijangi-Vishehsaraei K, Hong P, Bergmann H, Haneline LS. Oxidant hypersensitivity of Fanconi anemia type C-deficient cells is dependent on a redox-regulated apoptotic pathway. J Biol Chem. 2004;279(16):16805–12.CrossRefPubMed
33.
go back to reference Brosh Jr RM, Bellani M, Liu Y, Seidman MM. Fanconi anemia: a DNA repair disorder characterized by accelerated decline of the hematopoietic stem cell compartment and other features of aging. Ageing Res Rev. 2016;17(16):30081–2. Brosh Jr RM, Bellani M, Liu Y, Seidman MM. Fanconi anemia: a DNA repair disorder characterized by accelerated decline of the hematopoietic stem cell compartment and other features of aging. Ageing Res Rev. 2016;17(16):30081–2.
34.
go back to reference Tulpule A, Lensch MW, Miller JD, Austin K, D’Andrea A, Schlaeger TM, et al. Knockdown of Fanconi anemia genes in human embryonic stem cells reveals early developmental defects in the hematopoietic lineage. Blood. 2010;115(17):3453–62.CrossRefPubMedPubMedCentral Tulpule A, Lensch MW, Miller JD, Austin K, D’Andrea A, Schlaeger TM, et al. Knockdown of Fanconi anemia genes in human embryonic stem cells reveals early developmental defects in the hematopoietic lineage. Blood. 2010;115(17):3453–62.CrossRefPubMedPubMedCentral
35.
go back to reference Geiselhart A, Lier A, Walter D, Milsom MD. Disrupted signaling through the Fanconi anemia pathway leads to dysfunctional hematopoietic stem cell biology: underlying mechanisms and potential therapeutic strategies. Anemia. 2012;2012:265790. Epub 2012/06/08.CrossRefPubMedPubMedCentral Geiselhart A, Lier A, Walter D, Milsom MD. Disrupted signaling through the Fanconi anemia pathway leads to dysfunctional hematopoietic stem cell biology: underlying mechanisms and potential therapeutic strategies. Anemia. 2012;2012:265790. Epub 2012/06/08.CrossRefPubMedPubMedCentral
36.
go back to reference Ceccaldi R, Parmar K, Mouly E, Delord M, Kim JM, Regairaz M, et al. Bone marrow failure in Fanconi anemia is triggered by an exacerbated p53/p21 DNA damage response that impairs hematopoietic stem and progenitor cells. Cell Stem Cell. 2012;11(1):36–49.CrossRefPubMedPubMedCentral Ceccaldi R, Parmar K, Mouly E, Delord M, Kim JM, Regairaz M, et al. Bone marrow failure in Fanconi anemia is triggered by an exacerbated p53/p21 DNA damage response that impairs hematopoietic stem and progenitor cells. Cell Stem Cell. 2012;11(1):36–49.CrossRefPubMedPubMedCentral
38.
go back to reference Anur P, Yates J, Garbati MR, Vanderwerf S, Keeble W, Rathbun K, et al. p38 MAPK inhibition suppresses the TLR-hypersensitive phenotype in FANCC- and FANCA-deficient mononuclear phagocytes. Blood. 2012;119(9):1992–2002.CrossRefPubMedPubMedCentral Anur P, Yates J, Garbati MR, Vanderwerf S, Keeble W, Rathbun K, et al. p38 MAPK inhibition suppresses the TLR-hypersensitive phenotype in FANCC- and FANCA-deficient mononuclear phagocytes. Blood. 2012;119(9):1992–2002.CrossRefPubMedPubMedCentral
39.
go back to reference Walter D, Lier A, Geiselhart A, Thalheimer FB, Huntscha S, Sobotta MC, et al. Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells. Nature. 2015;520(7548):549–52.CrossRefPubMed Walter D, Lier A, Geiselhart A, Thalheimer FB, Huntscha S, Sobotta MC, et al. Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells. Nature. 2015;520(7548):549–52.CrossRefPubMed
40.
go back to reference Straface E, Masella R, Del Principe D, Franceschi C, Korkina LG, Zatterale A, et al. Spectrin changes occur in erythrocytes from patients with Fanconi’s anemia and their parents. Biochem Biophys Res Commun. 2000;273(3):899–901.CrossRefPubMed Straface E, Masella R, Del Principe D, Franceschi C, Korkina LG, Zatterale A, et al. Spectrin changes occur in erythrocytes from patients with Fanconi’s anemia and their parents. Biochem Biophys Res Commun. 2000;273(3):899–901.CrossRefPubMed
41.
go back to reference Castella M, Pujol R, Callen E, Ramirez MJ, Casado JA, Talavera M, et al. Chromosome fragility in patients with Fanconi anaemia: diagnostic implications and clinical impact. J Med Genet. 2011;48(4):242–50.CrossRefPubMed Castella M, Pujol R, Callen E, Ramirez MJ, Casado JA, Talavera M, et al. Chromosome fragility in patients with Fanconi anaemia: diagnostic implications and clinical impact. J Med Genet. 2011;48(4):242–50.CrossRefPubMed
42.
go back to reference Zhang QS, Benedetti E, Deater M, Schubert K, Major A, Pelz C, et al. Oxymetholone therapy of fanconi anemia suppresses osteopontin transcription and induces hematopoietic stem cell cycling. Stem Cell Rep. 2015;4(1):90–102.CrossRef Zhang QS, Benedetti E, Deater M, Schubert K, Major A, Pelz C, et al. Oxymetholone therapy of fanconi anemia suppresses osteopontin transcription and induces hematopoietic stem cell cycling. Stem Cell Rep. 2015;4(1):90–102.CrossRef
Metadata
Title
Increased red cell distribution width in Fanconi anemia: a novel marker of stress erythropoiesis
Authors
Rosa Sousa
Cristina Gonçalves
Isabel Couto Guerra
Emília Costa
Ana Fernandes
Maria do Bom Sucesso
Joana Azevedo
Alfredo Rodriguez
Rocio Rius
Carlos Seabra
Fátima Ferreira
Letícia Ribeiro
Anabela Ferrão
Sérgio Castedo
Esmeralda Cleto
Jorge Coutinho
Félix Carvalho
José Barbot
Beatriz Porto
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Orphanet Journal of Rare Diseases / Issue 1/2016
Electronic ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-016-0485-0

Other articles of this Issue 1/2016

Orphanet Journal of Rare Diseases 1/2016 Go to the issue