Skip to main content
Top
Published in: Clinical Hypertension 1/2015

Open Access 01-12-2015 | Research

Increased pulse wave velocity and augmentation index after isometric handgrip exercise in patients with coronary artery disease

Authors: Shin-Hang Moon, Jae-Cheol Moon, Da-Hee Heo, Young-Hyup Lim, Joon-Hyouk Choi, Song-Yi Kim, Ki-Seok Kim, Seung-Jae Joo

Published in: Clinical Hypertension | Issue 1/2015

Login to get access

Abstract

Background

Arterial stiffness of patients with coronary artery disease (CAD), which is expected to be increased due to a generalized atherosclerotic process of human body, may be more evident after the acute increase of blood pressure (BP) or peripheral vascular resistance. Isometric handgrip exercise is a simple and easily applicable method to achieve this goal. We investigated the changes of hemodynamic parameters and arterial stiffness indexes after handgrip exercise in patients with CAD.

Methods

Forty-two subjects, who underwent coronary angiography (CAG), were enrolled. After CAG, baseline arterial waveforms were traced at the aortic root and external iliac artery using right coronary catheters. Arterial waveforms were recorded at 1, 2, and 3 min in the aortic root and at 3 min in the external iliac artery after isometric handgrip exercise at 30% ~ 40% of the maximal handgrip power. Augmentation pressure (AP) and augmentation index (AIx) were measured at aortic pressure waveforms. Pulse wave velocity (PWV) was calculated using the ECG-gated time difference of the upstroke of arterial waveforms and the distance between the aortic root and the external iliac artery.

Results

Thirty patients had CAD (CAD group), and others showed no significant coronary stenosis (non-CAD group). Baseline hemodynamic parameters including AIx and PWV were not different between both groups. After isometric handgrip exercise, central systolic blood pressure (BP), central diastolic BP, central pulse pressure, peripheral systolic BP, and peripheral pulse pressure were increased in all patients. AIx inclined significantly from 1 min after exercise only in patients with CAD (before 17.7% ± 9.7% vs. 3 min after exercise 22.3% ± 10.7%, p < 0.001). PWV also increased significantly after exercise only in patients with CAD (before 10.03 ± 1.99 m/s vs. 3 min after 11.09 ± 2.45 m/s, p < 0.001).

Conclusions

Arterial stiffness indexes at rest were not different between patients with and without CAD. After isometric handgrip exercise, increased arterial stiffness became evident only in patients with CAD.
Literature
1.
go back to reference Mattace-Raso FU, van der Cammen TJ, Hofman A, van Popele NM, Bos ML, Schalekamp MA, et al. Arterial stiffness and risk of coronary heart disease and stroke: the Rotterdam Study. Circulation. 2006;113:657–63.CrossRefPubMed Mattace-Raso FU, van der Cammen TJ, Hofman A, van Popele NM, Bos ML, Schalekamp MA, et al. Arterial stiffness and risk of coronary heart disease and stroke: the Rotterdam Study. Circulation. 2006;113:657–63.CrossRefPubMed
2.
go back to reference Mitchell GF, Hwang SJ, Vasan RS, Larson MG, Pencina MJ, Hamburg NM, et al. Arterial stiffness and cardiovascular events: the Framingham Heart Study. Circulation. 2010;121:505–11.CrossRefPubMedCentralPubMed Mitchell GF, Hwang SJ, Vasan RS, Larson MG, Pencina MJ, Hamburg NM, et al. Arterial stiffness and cardiovascular events: the Framingham Heart Study. Circulation. 2010;121:505–11.CrossRefPubMedCentralPubMed
3.
go back to reference Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol. 2010;55:1318–27.CrossRefPubMed Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol. 2010;55:1318–27.CrossRefPubMed
4.
go back to reference Ben-Shlomo Y, Spears M, Boustred C, May M, Anderson SG, Benjamin EJ, et al. Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant meta-analysis of prospective observational data from 17,635 subjects. J Am Coll Cardiol. 2014;63:636–46.CrossRefPubMedCentralPubMed Ben-Shlomo Y, Spears M, Boustred C, May M, Anderson SG, Benjamin EJ, et al. Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant meta-analysis of prospective observational data from 17,635 subjects. J Am Coll Cardiol. 2014;63:636–46.CrossRefPubMedCentralPubMed
5.
go back to reference Sakuragi S, Abhayaratna WP. Arterial stiffness: methods of measurement, physiologic determinants and prediction of cardiovascular outcomes. Int J Cardiol. 2010;138:112–8.CrossRefPubMed Sakuragi S, Abhayaratna WP. Arterial stiffness: methods of measurement, physiologic determinants and prediction of cardiovascular outcomes. Int J Cardiol. 2010;138:112–8.CrossRefPubMed
6.
go back to reference Lim HE, Park CG, Shin SH, Ahn JC, Seo HS, Oh DJ. Aortic pulse wave velocity as an independent marker of coronary artery disease. Blood Press. 2004;13:369–75.CrossRefPubMed Lim HE, Park CG, Shin SH, Ahn JC, Seo HS, Oh DJ. Aortic pulse wave velocity as an independent marker of coronary artery disease. Blood Press. 2004;13:369–75.CrossRefPubMed
7.
go back to reference Covic A, Haydar AA, Bhamra-Ariza P, Gusbeth-Tatomir P, Goldsmith DJ. Aortic pulse wave velocity and arterial wave reflections predict the extent and severity of coronary artery disease in chronic kidney disease patients. J Nephrol. 2005;18:388–96.PubMed Covic A, Haydar AA, Bhamra-Ariza P, Gusbeth-Tatomir P, Goldsmith DJ. Aortic pulse wave velocity and arterial wave reflections predict the extent and severity of coronary artery disease in chronic kidney disease patients. J Nephrol. 2005;18:388–96.PubMed
8.
go back to reference Kullo IJ, Bielak LF, Turner ST, Sheedy 2nd PF, Peyser PA. Aortic pulse wave velocity is associated with the presence and quantity of coronary artery calcium: a community-based study. Hypertension. 2006;47:174–9.CrossRefPubMed Kullo IJ, Bielak LF, Turner ST, Sheedy 2nd PF, Peyser PA. Aortic pulse wave velocity is associated with the presence and quantity of coronary artery calcium: a community-based study. Hypertension. 2006;47:174–9.CrossRefPubMed
9.
go back to reference Hope SA, Antonis P, Adam D, Cameron JD, Meredith IT. Arterial pulse wave velocity but not augmentation index is associated with coronary artery disease extent and severity: implications for arterial transfer function applicability. J Hypertens. 2007;25:2105–9.CrossRefPubMed Hope SA, Antonis P, Adam D, Cameron JD, Meredith IT. Arterial pulse wave velocity but not augmentation index is associated with coronary artery disease extent and severity: implications for arterial transfer function applicability. J Hypertens. 2007;25:2105–9.CrossRefPubMed
10.
go back to reference Bechlioulis A, Vakalis K, Naka KK, Bourantas CV, Papamichael ND, Kotsia A, et al. Increased aortic pulse wave velocity is associated with the presence of angiographic coronary artery disease in overweight and obese patients. Am J Hypertens. 2013;26:265–70.CrossRefPubMed Bechlioulis A, Vakalis K, Naka KK, Bourantas CV, Papamichael ND, Kotsia A, et al. Increased aortic pulse wave velocity is associated with the presence of angiographic coronary artery disease in overweight and obese patients. Am J Hypertens. 2013;26:265–70.CrossRefPubMed
11.
go back to reference Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Böhm M, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J. 2013;34:2159–219.CrossRefPubMed Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Böhm M, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J. 2013;34:2159–219.CrossRefPubMed
12.
go back to reference Weber T, Auer J, O’Rourke MF, Kvas E, Lassnig E, Berent R, et al. Arterial stiffness, wave reflections, and the risk of coronary artery disease. Circulation. 2004;109:184–9.CrossRefPubMed Weber T, Auer J, O’Rourke MF, Kvas E, Lassnig E, Berent R, et al. Arterial stiffness, wave reflections, and the risk of coronary artery disease. Circulation. 2004;109:184–9.CrossRefPubMed
13.
go back to reference Fischer-Rasokat U, Brenck F, Zeiher AM, Spyridopoulos I. Radial augmentation index unmasks premature coronary artery disease in younger males. Blood Press Monit. 2009;14:59–67.CrossRefPubMed Fischer-Rasokat U, Brenck F, Zeiher AM, Spyridopoulos I. Radial augmentation index unmasks premature coronary artery disease in younger males. Blood Press Monit. 2009;14:59–67.CrossRefPubMed
14.
go back to reference Hayashi S, Yamada H, Bando M, Hotchi J, Ise T, Yamaguchi K, et al. Augmentation index does not reflect risk of coronary artery disease in elderly patients. Circ J. 2014;78:1176–82.CrossRefPubMed Hayashi S, Yamada H, Bando M, Hotchi J, Ise T, Yamaguchi K, et al. Augmentation index does not reflect risk of coronary artery disease in elderly patients. Circ J. 2014;78:1176–82.CrossRefPubMed
15.
go back to reference Helfant RH, De Villa MA, Meister SG. Effect of sustained isometric handgrip exercise on left ventricular performance. Circulation. 1971;44:982–93.CrossRefPubMed Helfant RH, De Villa MA, Meister SG. Effect of sustained isometric handgrip exercise on left ventricular performance. Circulation. 1971;44:982–93.CrossRefPubMed
16.
go back to reference Kivowitz C, Parmley WW, Donoso R, Marcus H, Ganz W, Swan HJC. Effects of isometric exercise on cardiac performance: the grip test. Circulation. 1971;44:994–1002.CrossRefPubMed Kivowitz C, Parmley WW, Donoso R, Marcus H, Ganz W, Swan HJC. Effects of isometric exercise on cardiac performance: the grip test. Circulation. 1971;44:994–1002.CrossRefPubMed
17.
go back to reference Chae MJ, Jung IH, Jang DH, Lee SY, Hyun JY, Jung JH, et al. The brachial ankle pulse wave velocity is associated with the presence of significant coronary artery disease but not the extent. Korean Circ J. 2013;43:239–45.CrossRefPubMedCentralPubMed Chae MJ, Jung IH, Jang DH, Lee SY, Hyun JY, Jung JH, et al. The brachial ankle pulse wave velocity is associated with the presence of significant coronary artery disease but not the extent. Korean Circ J. 2013;43:239–45.CrossRefPubMedCentralPubMed
18.
go back to reference Kim KM, Yoo BS, Ko A, Kim JM, Kim HS, Lee JW, et al. Do different arterial stiffness parameters provide similar information in high-risk patients for coronary artery disease? Korean Circ J. 2013;43:819–24.CrossRefPubMedCentralPubMed Kim KM, Yoo BS, Ko A, Kim JM, Kim HS, Lee JW, et al. Do different arterial stiffness parameters provide similar information in high-risk patients for coronary artery disease? Korean Circ J. 2013;43:819–24.CrossRefPubMedCentralPubMed
19.
go back to reference Kingwell BA, Waddell TK, Medley TL, Cameron JD, Dart AM. Large artery stiffness predicts ischemic threshold in patients with coronary artery disease. J Am Coll Cardiol. 2002;40:773–9.CrossRefPubMed Kingwell BA, Waddell TK, Medley TL, Cameron JD, Dart AM. Large artery stiffness predicts ischemic threshold in patients with coronary artery disease. J Am Coll Cardiol. 2002;40:773–9.CrossRefPubMed
20.
go back to reference Cho SW, Kim BK, Kim JH, Byun YS, Goh CW, Rhee KJ, et al. Non-invasively measured aortic wave reflection and pulse pressure amplification are related to the severity of coronary artery disease. J Cardiol. 2013;62:131–7.CrossRefPubMed Cho SW, Kim BK, Kim JH, Byun YS, Goh CW, Rhee KJ, et al. Non-invasively measured aortic wave reflection and pulse pressure amplification are related to the severity of coronary artery disease. J Cardiol. 2013;62:131–7.CrossRefPubMed
21.
go back to reference Hietanen E. Cardiovascular responses to static exercise. Scand J Work Environ Health. 1984;10:397–402.CrossRefPubMed Hietanen E. Cardiovascular responses to static exercise. Scand J Work Environ Health. 1984;10:397–402.CrossRefPubMed
22.
go back to reference Bilinska M, Kosydar-Piechna M, Gasiorowska A, Mikulski T, Piotrowski W, Nazar K, et al. Influence of dynamic training on hemodynamic, neurohormonal responses to static exercise and on inflammatory markers in patients after coronary artery bypass grafting. Circ J. 2010;74:2598–604.CrossRefPubMed Bilinska M, Kosydar-Piechna M, Gasiorowska A, Mikulski T, Piotrowski W, Nazar K, et al. Influence of dynamic training on hemodynamic, neurohormonal responses to static exercise and on inflammatory markers in patients after coronary artery bypass grafting. Circ J. 2010;74:2598–604.CrossRefPubMed
23.
go back to reference Geleris P, Stavrati A, Boudoulas H. Effect of cold, isometric exercise, and combination of both on aortic pulse in healthy subjects. Am J Cardiol. 2004;93:265–7.CrossRefPubMed Geleris P, Stavrati A, Boudoulas H. Effect of cold, isometric exercise, and combination of both on aortic pulse in healthy subjects. Am J Cardiol. 2004;93:265–7.CrossRefPubMed
24.
go back to reference Lydakis C, Momen A, Blaha C, Gugoff S, Gray K, Herr M, et al. Changes of central haemodynamic parameters during mental stress and acute bouts of static and dynamic exercise. J Hum Hypertens. 2008;22:320–8.CrossRefPubMed Lydakis C, Momen A, Blaha C, Gugoff S, Gray K, Herr M, et al. Changes of central haemodynamic parameters during mental stress and acute bouts of static and dynamic exercise. J Hum Hypertens. 2008;22:320–8.CrossRefPubMed
Metadata
Title
Increased pulse wave velocity and augmentation index after isometric handgrip exercise in patients with coronary artery disease
Authors
Shin-Hang Moon
Jae-Cheol Moon
Da-Hee Heo
Young-Hyup Lim
Joon-Hyouk Choi
Song-Yi Kim
Ki-Seok Kim
Seung-Jae Joo
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Clinical Hypertension / Issue 1/2015
Electronic ISSN: 2056-5909
DOI
https://doi.org/10.1186/s40885-015-0016-7

Other articles of this Issue 1/2015

Clinical Hypertension 1/2015 Go to the issue