Skip to main content
Top
Published in: European Journal of Applied Physiology 5/2008

01-03-2008 | Original Article

Increased erythropoietin concentration after repeated apneas in humans

Authors: Robert de Bruijn, Matt Richardson, Erika Schagatay

Published in: European Journal of Applied Physiology | Issue 5/2008

Login to get access

Abstract

Hypoxia-induced increases in red blood cell production have been found in both altitude-adapted populations and acclimatized lowlanders. This process is mediated by erythropoietin (EPO) released mainly by the hypoxic kidney. We have previously observed high hemoglobin concentrations in elite breath-hold divers and our aim was to investigate whether apnea-induced hypoxia could increase EPO concentration. Ten healthy volunteers performed 15 maximal duration apneas, divided into three series of five apneas, each series separated by 10 min of rest. Apneas within series were separated by 2 min and preceded by 1 min of hyperventilation to increase apnea duration and arterial oxygen desaturation. When EPO concentration after serial apneas was compared to baseline values, an average maximum increase of 24% was found (< 0.01). No changes in EPO concentration were observed during a control day without apnea, eliminating possible effects of a diurnal rhythm or blood loss. We therefore conclude that serial apneas increase circulating EPO concentration in humans.
Literature
go back to reference Andersson JP, Liner MH, Fredsted A, Schagatay EK (2004) Cardiovascular and respiratory responses to apneas with and without face immersion in exercising humans. J Appl Physiol 96:1005–1010PubMedCrossRef Andersson JP, Liner MH, Fredsted A, Schagatay EK (2004) Cardiovascular and respiratory responses to apneas with and without face immersion in exercising humans. J Appl Physiol 96:1005–1010PubMedCrossRef
go back to reference Balestra C, Germonpre P, Poortmans JR, Marroni A (2006) Serum erythropoietin levels in healthy humans after a short period of normobaric and hyperbaric oxygen breathing: the “normobaric oxygen paradox”. J Appl Physiol 100:512–518PubMedCrossRef Balestra C, Germonpre P, Poortmans JR, Marroni A (2006) Serum erythropoietin levels in healthy humans after a short period of normobaric and hyperbaric oxygen breathing: the “normobaric oxygen paradox”. J Appl Physiol 100:512–518PubMedCrossRef
go back to reference Cahan C, Decker MJ, Arnold JL, Washington LH, Veldhuis JD, Goldwasser E, Strohl KP (1992) Diurnal variations in serum erythropoietin levels in healthy subjects and sleep apnea patients. J Appl Physiol 72:2112–2117PubMed Cahan C, Decker MJ, Arnold JL, Washington LH, Veldhuis JD, Goldwasser E, Strohl KP (1992) Diurnal variations in serum erythropoietin levels in healthy subjects and sleep apnea patients. J Appl Physiol 72:2112–2117PubMed
go back to reference Cahan C, Decker MJ, Arnold JL, Goldwasser E, Strohl KP (1995) Erythropoietin levels with treatment of obstructive sleep apnea. J Appl Physiol 79:1278–1285PubMed Cahan C, Decker MJ, Arnold JL, Goldwasser E, Strohl KP (1995) Erythropoietin levels with treatment of obstructive sleep apnea. J Appl Physiol 79:1278–1285PubMed
go back to reference Choi JB, Loredo JS, Norman D, Mills PJ, Ancoli-Israel S, Ziegler MG, Dimsdale JE (2006) Does obstructive sleep apnea increase hematocrit? Sleep Breath 10:155–160PubMedCrossRef Choi JB, Loredo JS, Norman D, Mills PJ, Ancoli-Israel S, Ziegler MG, Dimsdale JE (2006) Does obstructive sleep apnea increase hematocrit? Sleep Breath 10:155–160PubMedCrossRef
go back to reference de Bruijn R, Richardson M, Haughey H, Holmberg H-C, Björklund G, Schagatay E (2004) Hemoglobin levels in elite divers, elite skiers and untrained humans. Abstract at the 30th annual meeting of EUBS, Ajaccio, France de Bruijn R, Richardson M, Haughey H, Holmberg H-C, Björklund G, Schagatay E (2004) Hemoglobin levels in elite divers, elite skiers and untrained humans. Abstract at the 30th annual meeting of EUBS, Ajaccio, France
go back to reference Eckardt KU, Boutellier U, Kurtz A, Schopen M, Koller EA, Bauer C (1989) Rate of erythropoietin formation in humans in response to acute hypobaric hypoxia. J Appl Physiol 66:1785–1788PubMed Eckardt KU, Boutellier U, Kurtz A, Schopen M, Koller EA, Bauer C (1989) Rate of erythropoietin formation in humans in response to acute hypobaric hypoxia. J Appl Physiol 66:1785–1788PubMed
go back to reference Erslev A (1953) Humoral regulation of red cell production. Blood 8:349–357PubMed Erslev A (1953) Humoral regulation of red cell production. Blood 8:349–357PubMed
go back to reference Ge RL, Witkowski S, Zhang Y, Alfrey C, Sivieri M, Karlsen T, Resaland GK, Harber M, Stray-Gundersen J, Levine BD (2002) Determinants of erythropoietin release in response to short-term hypobaric hypoxia. J Appl Physiol 92:2361–2367PubMed Ge RL, Witkowski S, Zhang Y, Alfrey C, Sivieri M, Karlsen T, Resaland GK, Harber M, Stray-Gundersen J, Levine BD (2002) Determinants of erythropoietin release in response to short-term hypobaric hypoxia. J Appl Physiol 92:2361–2367PubMed
go back to reference Hoffstein V, Herridge M, Mateika S, Redline S, Strohl KP (1994) Hematocrit levels in sleep apnea. Chest 106:787–791PubMedCrossRef Hoffstein V, Herridge M, Mateika S, Redline S, Strohl KP (1994) Hematocrit levels in sleep apnea. Chest 106:787–791PubMedCrossRef
go back to reference Imagawa S, Yamaguchi Y, Higuchi M, Neichi T, Hasegawa Y, Mukai HY, Suzuki N, Yamamoto M, Nagasawa T (2001) Levels of vascular endothelial growth factor are elevated in patients with obstructive sleep apnea–hypopnea syndrome. Blood 98:1255–1257PubMedCrossRef Imagawa S, Yamaguchi Y, Higuchi M, Neichi T, Hasegawa Y, Mukai HY, Suzuki N, Yamamoto M, Nagasawa T (2001) Levels of vascular endothelial growth factor are elevated in patients with obstructive sleep apnea–hypopnea syndrome. Blood 98:1255–1257PubMedCrossRef
go back to reference Jacobson LO, Goldwasser E, Fried W, Plzak L (1957) Role of the kidney in erythropoiesis. Nature 179:633–634PubMedCrossRef Jacobson LO, Goldwasser E, Fried W, Plzak L (1957) Role of the kidney in erythropoiesis. Nature 179:633–634PubMedCrossRef
go back to reference Julian CG, Gore CJ, Wilber RL, Daniels JT, Fredericson M, Stray-Gundersen J, Hahn AG, Parisotto R, Levine BD (2004) Intermittent normobaric hypoxia does not alter performance or erythropoietic markers in highly trained distance runners. J Appl Physiol 96:1800–1807PubMedCrossRef Julian CG, Gore CJ, Wilber RL, Daniels JT, Fredericson M, Stray-Gundersen J, Hahn AG, Parisotto R, Levine BD (2004) Intermittent normobaric hypoxia does not alter performance or erythropoietic markers in highly trained distance runners. J Appl Physiol 96:1800–1807PubMedCrossRef
go back to reference Jung K, Stolle W (1981) Behavior of heart rate and incidence of arrhythmia in swimming and diving. Biotelem Patient Monit 8:228–239PubMed Jung K, Stolle W (1981) Behavior of heart rate and incidence of arrhythmia in swimming and diving. Biotelem Patient Monit 8:228–239PubMed
go back to reference Klausen T, Poulsen TD, Fogh-Andersen N, Richalet JP, Nielsen OJ, Olsen NV (1996) Diurnal variations of serum erythropoietin at sea level and altitude. Eur J Appl Physiol Occup Physiol 72:297–302PubMedCrossRef Klausen T, Poulsen TD, Fogh-Andersen N, Richalet JP, Nielsen OJ, Olsen NV (1996) Diurnal variations of serum erythropoietin at sea level and altitude. Eur J Appl Physiol Occup Physiol 72:297–302PubMedCrossRef
go back to reference Knaupp W, Khilnani S, Sherwood J, Scharf S, Steinberg H (1992) Erythropoietin response to acute normobaric hypoxia in humans. J Appl Physiol 73:837–840PubMed Knaupp W, Khilnani S, Sherwood J, Scharf S, Steinberg H (1992) Erythropoietin response to acute normobaric hypoxia in humans. J Appl Physiol 73:837–840PubMed
go back to reference Schagatay E, Andersson J (1998) Diving response and apneic time in humans. Undersea Hyperb Med 25:13–19PubMed Schagatay E, Andersson J (1998) Diving response and apneic time in humans. Undersea Hyperb Med 25:13–19PubMed
go back to reference Schagatay E, van Kampen M, Andersson J (1999) Effects of repeated apneas on apneic time and diving response in non-divers. Undersea Hyperb Med 26:143–149PubMed Schagatay E, van Kampen M, Andersson J (1999) Effects of repeated apneas on apneic time and diving response in non-divers. Undersea Hyperb Med 26:143–149PubMed
go back to reference Schagatay E, van Kampen M, Emanuelsson S, Holm B (2000) Effects of physical and apnea training on apneic time and the diving response in humans. Eur J Appl Physiol 82:161–169PubMedCrossRef Schagatay E, van Kampen M, Emanuelsson S, Holm B (2000) Effects of physical and apnea training on apneic time and the diving response in humans. Eur J Appl Physiol 82:161–169PubMedCrossRef
go back to reference Wang GL, Semenza GL (1993) General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci USA 90:4304–4308PubMedCrossRef Wang GL, Semenza GL (1993) General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci USA 90:4304–4308PubMedCrossRef
go back to reference Zapol WM, Liggins GC, Schneider RC, Qvist J, Snider MT, Creasy RK, Hochachka PW (1979) Regional blood flow during simulated diving in the conscious Weddell seal. J Appl Physiol 47:968–973PubMed Zapol WM, Liggins GC, Schneider RC, Qvist J, Snider MT, Creasy RK, Hochachka PW (1979) Regional blood flow during simulated diving in the conscious Weddell seal. J Appl Physiol 47:968–973PubMed
Metadata
Title
Increased erythropoietin concentration after repeated apneas in humans
Authors
Robert de Bruijn
Matt Richardson
Erika Schagatay
Publication date
01-03-2008
Publisher
Springer-Verlag
Published in
European Journal of Applied Physiology / Issue 5/2008
Print ISSN: 1439-6319
Electronic ISSN: 1439-6327
DOI
https://doi.org/10.1007/s00421-007-0639-9

Other articles of this Issue 5/2008

European Journal of Applied Physiology 5/2008 Go to the issue