Skip to main content
Top
Published in: Breast Cancer Research 2/2000

Open Access 01-04-2000 | Research article

Increased cell survival by inhibition of BRCA1 using an antisense approach in an estrogen responsive ovarian carcinoma cell line

Authors: Lois A Annab, Rebecca Hawkins, Greg Solomon, J Carl Barrett, Cynthia A Afshari

Published in: Breast Cancer Research | Issue 2/2000

Login to get access

Statement of findings

We tested the hypothesis that BRCA1 may play a role in the regulation of ovarian tumor cell death as well as the inhibition of ovarian cell proliferation. Introduction of BRCA1 antisense retroviral constructs into BG-1 estrogen-dependent ovarian adenocarcinoma cells resulted in reduced BRCA1 expression. BRCA1 antisense pooled populations and derived subclones were able to proliferate in monolayer culture without estrogen, whereas control cells began to die after 10 days of estrogen deprivation. In addition, both populations and subclones of BRCA1 antisense infected cells demonstrated a growth advantage in monolayer culture in the presence of estrogen and were able to proliferate in monolayer culture without estrogen, while control cells did not. Furthermore, clonal studies demonstrated that reduced levels of BRCA1 protein correlated with growth in soft agar and greater tumor formation in nude mice in the absence of estrogen. These data suggest that reduction of BRCA1 protein in BG-1 ovarian adenocarcinoma cells may have an effect on cell survival during estrogen deprivation both in vitro and in vivo.
Literature
1.
go back to reference Futreal PA, Liu Q, Shattuck-Eidens D, et al: BRCA1 mutations in primary breast and ovarian carcinomas. Science. 1994, 266: 120-122.CrossRefPubMed Futreal PA, Liu Q, Shattuck-Eidens D, et al: BRCA1 mutations in primary breast and ovarian carcinomas. Science. 1994, 266: 120-122.CrossRefPubMed
2.
go back to reference Miki Y, Swensen J, Shattuck-Eidens D, et al: A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science. 1994, 266: 66-71.CrossRefPubMed Miki Y, Swensen J, Shattuck-Eidens D, et al: A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science. 1994, 266: 66-71.CrossRefPubMed
3.
go back to reference Merajver SD, Pham TM, Caduff RF, et al: Somatic mutations in the BRCA1 gene in sporadic ovarian tumours. Nature Genet. 1995, 9: 439-443.CrossRefPubMed Merajver SD, Pham TM, Caduff RF, et al: Somatic mutations in the BRCA1 gene in sporadic ovarian tumours. Nature Genet. 1995, 9: 439-443.CrossRefPubMed
4.
go back to reference Hosking L, Trowsdale J, Nicolai H, et al: A somatic BRCA1 mutation in an ovarian tumour [letter]. Nature Genet. 1995, 9: 343-344.CrossRefPubMed Hosking L, Trowsdale J, Nicolai H, et al: A somatic BRCA1 mutation in an ovarian tumour [letter]. Nature Genet. 1995, 9: 343-344.CrossRefPubMed
5.
go back to reference Thomas JE, Smith M, Tonkinson JL, Rubinfeld B, Polakis P: Induction of phosphorylation on BRCA1 during the cell cycle and after DNA damage. Cell Growth Differ. 1997, 8: 801-809.PubMed Thomas JE, Smith M, Tonkinson JL, Rubinfeld B, Polakis P: Induction of phosphorylation on BRCA1 during the cell cycle and after DNA damage. Cell Growth Differ. 1997, 8: 801-809.PubMed
7.
go back to reference Scully R, Chen J, Ochs RL, et al: Dynamic changes of BRCA1 sub-nuclear location and phosphorylation state are initiated by DNA damage. Cell. 1997, 90: 425-435.CrossRefPubMed Scully R, Chen J, Ochs RL, et al: Dynamic changes of BRCA1 sub-nuclear location and phosphorylation state are initiated by DNA damage. Cell. 1997, 90: 425-435.CrossRefPubMed
8.
go back to reference Gudas JM, Nguyen H, Li T, Cowan KH: Hormone-dependent regulation of BRCA1 in human breast cancer cells. Cancer Res. 1995, 55: 4561-4565.PubMed Gudas JM, Nguyen H, Li T, Cowan KH: Hormone-dependent regulation of BRCA1 in human breast cancer cells. Cancer Res. 1995, 55: 4561-4565.PubMed
9.
go back to reference Marks JR, Huper G, Vaughn JP, et al: BRCA1 expression is not directly responsive to estrogen. Oncogene. 1997, 14: 115-121.CrossRefPubMed Marks JR, Huper G, Vaughn JP, et al: BRCA1 expression is not directly responsive to estrogen. Oncogene. 1997, 14: 115-121.CrossRefPubMed
10.
go back to reference Romagnolo D, Annab LA, Thompson TE, et al: Estrogen upregulation of BRCA1 expression with no effect on localization. Mol Carcinogenesis. 1998, 22: 102-109.CrossRef Romagnolo D, Annab LA, Thompson TE, et al: Estrogen upregulation of BRCA1 expression with no effect on localization. Mol Carcinogenesis. 1998, 22: 102-109.CrossRef
11.
go back to reference Xu CF, Chambers JA, Solomon E: Complex regulation of the BRCA1 gene. J Biol Chem. 1997, 272: 20994-20997.CrossRefPubMed Xu CF, Chambers JA, Solomon E: Complex regulation of the BRCA1 gene. J Biol Chem. 1997, 272: 20994-20997.CrossRefPubMed
12.
go back to reference Gayther SA, Warren W, Mazoyer S, et al: Germline mutations of the BRCA1 gene in breast and ovarian cancer families provide evidence for a genotype-phenotype correlation. Nature Genet. 1995, 11: 428-433.CrossRefPubMed Gayther SA, Warren W, Mazoyer S, et al: Germline mutations of the BRCA1 gene in breast and ovarian cancer families provide evidence for a genotype-phenotype correlation. Nature Genet. 1995, 11: 428-433.CrossRefPubMed
13.
go back to reference Geisinger KR, Kute TE, Pettenati MJ, et al: Characterization of a human ovarian carcinoma cell line with estrogen and progesterone receptors. Cancer. 1989, 63: 280-288.CrossRefPubMed Geisinger KR, Kute TE, Pettenati MJ, et al: Characterization of a human ovarian carcinoma cell line with estrogen and progesterone receptors. Cancer. 1989, 63: 280-288.CrossRefPubMed
14.
go back to reference Shao N, Chai YL, Shyam E, Reddy P, Rao VN: Induction of apoptosis by the tumor suppressor protein BRCA1. Oncogene. 1996, 13: 1-7.PubMed Shao N, Chai YL, Shyam E, Reddy P, Rao VN: Induction of apoptosis by the tumor suppressor protein BRCA1. Oncogene. 1996, 13: 1-7.PubMed
15.
go back to reference Zhang H, Somasundaram K, Peng Y, et al: BRCA1 physically associates with p53 and stimulates its transcriptional activity. Oncogene. 1998, 16: 1713-1721.CrossRefPubMed Zhang H, Somasundaram K, Peng Y, et al: BRCA1 physically associates with p53 and stimulates its transcriptional activity. Oncogene. 1998, 16: 1713-1721.CrossRefPubMed
16.
go back to reference Wilson CA, Ramos L, Villasenor MR, et al: Localization of human BRCA1 and its loss in high-grade, non-inherited breast carcinomas. Nature Genet. 1999, 21: 236-240.CrossRefPubMed Wilson CA, Ramos L, Villasenor MR, et al: Localization of human BRCA1 and its loss in high-grade, non-inherited breast carcinomas. Nature Genet. 1999, 21: 236-240.CrossRefPubMed
17.
go back to reference Taylor J, Lymboura M, Pace PE, et al: An important role for BRCA1 in breast cancer progression is indicated by its loss in a large proportion of non-familial breast cancers. Int J Cancer. 1998, 79: 334-342.CrossRefPubMed Taylor J, Lymboura M, Pace PE, et al: An important role for BRCA1 in breast cancer progression is indicated by its loss in a large proportion of non-familial breast cancers. Int J Cancer. 1998, 79: 334-342.CrossRefPubMed
18.
go back to reference Ozcelik H, To MD, Couture J, Bull SB, Anrulis IL: Preferential allelic expression can lead to reduced expression of BRCA1 in sporadic breast cancers. Int J Cancer. 1998, 77: 1-6.CrossRefPubMed Ozcelik H, To MD, Couture J, Bull SB, Anrulis IL: Preferential allelic expression can lead to reduced expression of BRCA1 in sporadic breast cancers. Int J Cancer. 1998, 77: 1-6.CrossRefPubMed
19.
go back to reference Thompson ME, Jensen RA, Obermiller PS, Page DL, Holt JT: Decreased expression of BRCA1 accelerates growth and is often present during sporadic breast cancer progression. Nature Genet. 1995, 9: 444-450.CrossRefPubMed Thompson ME, Jensen RA, Obermiller PS, Page DL, Holt JT: Decreased expression of BRCA1 accelerates growth and is often present during sporadic breast cancer progression. Nature Genet. 1995, 9: 444-450.CrossRefPubMed
20.
21.
go back to reference Gudas JM, Li T, Nguyen H, et al: Cell cycle regulation of BRCA1 messenger RNA in human breast epithelial cells. Cell Growth Differ. 1996, 7: 717-723.PubMed Gudas JM, Li T, Nguyen H, et al: Cell cycle regulation of BRCA1 messenger RNA in human breast epithelial cells. Cell Growth Differ. 1996, 7: 717-723.PubMed
22.
go back to reference Ford D, Easton DF, Bishop DT, Narod SA, Goldgar DE: Risks of cancer in BRCA1-mutation carriers. Breast Cancer Linkage Consortium. Lancet. 1994, 343: 692-695.CrossRefPubMed Ford D, Easton DF, Bishop DT, Narod SA, Goldgar DE: Risks of cancer in BRCA1-mutation carriers. Breast Cancer Linkage Consortium. Lancet. 1994, 343: 692-695.CrossRefPubMed
23.
go back to reference Struewing JP, Hartge P, Wacholder S, et al: The risk of cancer associated with specific mutations of BRCA1 and BRCA2 among Ashkenazi Jews. N Engl J Med. 1997, 336: 1401-1408.CrossRefPubMed Struewing JP, Hartge P, Wacholder S, et al: The risk of cancer associated with specific mutations of BRCA1 and BRCA2 among Ashkenazi Jews. N Engl J Med. 1997, 336: 1401-1408.CrossRefPubMed
24.
go back to reference Wu LC, Wang ZW, Tsan JT, et al: Identification of a RING protein that can interact in vivo with the BRCA1 gene product. Nature Genet. 1996, 14: 430-440.CrossRefPubMed Wu LC, Wang ZW, Tsan JT, et al: Identification of a RING protein that can interact in vivo with the BRCA1 gene product. Nature Genet. 1996, 14: 430-440.CrossRefPubMed
25.
26.
go back to reference Chapman MS, Verma IM: Transcriptional activation by BRCA1 [letter; comment]. Nature. 1996, 382: 678-679.CrossRefPubMed Chapman MS, Verma IM: Transcriptional activation by BRCA1 [letter; comment]. Nature. 1996, 382: 678-679.CrossRefPubMed
27.
go back to reference Monteiro AN, August A, Hanafusa H: Evidence for a transcriptional activation function of BRCA1 C-terminal region. Proc Natl Acad Sci USA. 1996, 93: 13595-13599.CrossRefPubMedPubMedCentral Monteiro AN, August A, Hanafusa H: Evidence for a transcriptional activation function of BRCA1 C-terminal region. Proc Natl Acad Sci USA. 1996, 93: 13595-13599.CrossRefPubMedPubMedCentral
28.
go back to reference Marquis ST, Rajan JV, Wynshaw-Boris A, et al: The developmental pattern of Brca1 expression implies a role in differentiation of the breast and other tissues. Nature Genet. 1995, 11: 17-26.CrossRefPubMed Marquis ST, Rajan JV, Wynshaw-Boris A, et al: The developmental pattern of Brca1 expression implies a role in differentiation of the breast and other tissues. Nature Genet. 1995, 11: 17-26.CrossRefPubMed
29.
go back to reference Hakem R, de la Pompa JL, Sirard C, et al: The tumor suppressor gene Brca1 is required for embryonic cellular proliferation in the mouse. Cell. 1996, 85: 1009-1023.CrossRefPubMed Hakem R, de la Pompa JL, Sirard C, et al: The tumor suppressor gene Brca1 is required for embryonic cellular proliferation in the mouse. Cell. 1996, 85: 1009-1023.CrossRefPubMed
30.
go back to reference Gowen LC, Johnson BL, Latour AM, Sulik KK, Koller BH: Brca1 deficiency results in early embryonic lethality characterized by neu-roepithelial abnormalities. Nature Genet. 1996, 12: 191-194.CrossRefPubMed Gowen LC, Johnson BL, Latour AM, Sulik KK, Koller BH: Brca1 deficiency results in early embryonic lethality characterized by neu-roepithelial abnormalities. Nature Genet. 1996, 12: 191-194.CrossRefPubMed
31.
go back to reference Miller AD, Rosman GJ: Improved retroviral vectors for gene transfer and expression. Biotechniques. 1989, 7: 980-990, 984-986, 989-990. Miller AD, Rosman GJ: Improved retroviral vectors for gene transfer and expression. Biotechniques. 1989, 7: 980-990, 984-986, 989-990.
32.
go back to reference Haendler B, Hofer E: Characterization of the human cyclophilin gene and of related processed pseudogenes. Eur J Biochem. 1990, 190: 477-482.CrossRefPubMed Haendler B, Hofer E: Characterization of the human cyclophilin gene and of related processed pseudogenes. Eur J Biochem. 1990, 190: 477-482.CrossRefPubMed
33.
go back to reference Finney DJ: . Statistical Method in Biological Assay. New York: Hafner Publishing Co, . 1964 Finney DJ: . Statistical Method in Biological Assay. New York: Hafner Publishing Co, . 1964
34.
go back to reference Siegel S: . Nonparametric Statistics. New York: McGraw-Hill. 1956 Siegel S: . Nonparametric Statistics. New York: McGraw-Hill. 1956
35.
go back to reference Baldwin WS, Curtis SW, Cauthen CA, et al: BG-1 ovarian cell line: an alternative model for examining estrogen-dependent growth in vitro. In Vitro Cell Dev Biol . 1998, 19: 1895-1900. Baldwin WS, Curtis SW, Cauthen CA, et al: BG-1 ovarian cell line: an alternative model for examining estrogen-dependent growth in vitro. In Vitro Cell Dev Biol . 1998, 19: 1895-1900.
36.
go back to reference Foghi A, Teerds KJ, van der Donk H, Dorrington J: Induction of apop-tosis in rat thecal/interstitial cells by transforming growth factor alpha plus transforming growth factor beta in vitro. J Endocrinol. 1997, 153: 169-178.CrossRefPubMed Foghi A, Teerds KJ, van der Donk H, Dorrington J: Induction of apop-tosis in rat thecal/interstitial cells by transforming growth factor alpha plus transforming growth factor beta in vitro. J Endocrinol. 1997, 153: 169-178.CrossRefPubMed
37.
go back to reference Kenny N, Williams RE, Kelm LB: Spontaneous apoptosis of cells prepared from the nonregressing corpus luteum. Biochem Cell Biol . 1994, 72: 531-536.CrossRefPubMed Kenny N, Williams RE, Kelm LB: Spontaneous apoptosis of cells prepared from the nonregressing corpus luteum. Biochem Cell Biol . 1994, 72: 531-536.CrossRefPubMed
38.
go back to reference Einspanier R, Lauer B, Gabler C, Kamhuber M, Schams D: Egg-cumulus-oviduct interactions and fertilization. Adv Exp Med Biol. 1997, 424: 279-289.CrossRefPubMed Einspanier R, Lauer B, Gabler C, Kamhuber M, Schams D: Egg-cumulus-oviduct interactions and fertilization. Adv Exp Med Biol. 1997, 424: 279-289.CrossRefPubMed
39.
go back to reference Rueda BR, Tilly KI, Botros IW, et al: Increased bax and interleukin-1beta-converting enzyme messenger ribonucleic acid levels coincide with apoptosis in the bovine corpus luteum during structural regression. Biol Reprod. 1997, 56: 186-193.CrossRefPubMed Rueda BR, Tilly KI, Botros IW, et al: Increased bax and interleukin-1beta-converting enzyme messenger ribonucleic acid levels coincide with apoptosis in the bovine corpus luteum during structural regression. Biol Reprod. 1997, 56: 186-193.CrossRefPubMed
40.
41.
go back to reference Phillips KW, Goldsworthy SM, Bennett LM, et al: Brca1 is expressed independently of hormonal stimulation in the mouse ovary. Lab Invest. 1997, 76: 419-425.PubMed Phillips KW, Goldsworthy SM, Bennett LM, et al: Brca1 is expressed independently of hormonal stimulation in the mouse ovary. Lab Invest. 1997, 76: 419-425.PubMed
42.
go back to reference Blackshear PE, Goldsworthy SM, Foley JF, et al: Brca1 and Brca2 expression patterns in mitotic and meiotic cells of mice. Oncogene. 1998, 16: 61-68.CrossRefPubMed Blackshear PE, Goldsworthy SM, Foley JF, et al: Brca1 and Brca2 expression patterns in mitotic and meiotic cells of mice. Oncogene. 1998, 16: 61-68.CrossRefPubMed
43.
go back to reference Schmutzler RK, Bierhoff E, Werkhausen T, et al: Genomic deletions in the BRCA1, BRCA2 and TP53 regions associate with low expression of the estrogen receptor in sporadic breast carcinoma. Int J Cancer. 1997, 74: 322-325.CrossRefPubMed Schmutzler RK, Bierhoff E, Werkhausen T, et al: Genomic deletions in the BRCA1, BRCA2 and TP53 regions associate with low expression of the estrogen receptor in sporadic breast carcinoma. Int J Cancer. 1997, 74: 322-325.CrossRefPubMed
44.
go back to reference Karp SE, Tonin PN, Begin LR, et al: Influence of BRCA1 mutations on nuclear grade and estrogen receptor status of breast carcinoma in Ashkenazi Jewish women. Cancer. 1997, 80: 435-441.CrossRefPubMed Karp SE, Tonin PN, Begin LR, et al: Influence of BRCA1 mutations on nuclear grade and estrogen receptor status of breast carcinoma in Ashkenazi Jewish women. Cancer. 1997, 80: 435-441.CrossRefPubMed
45.
go back to reference Johannsson OT, Idvall I, Anderson C, et al: Tumour biological features of BRCA1-induced breast and ovarian cancer. Eur J Cancer. 1997, 33: 362-371.CrossRefPubMed Johannsson OT, Idvall I, Anderson C, et al: Tumour biological features of BRCA1-induced breast and ovarian cancer. Eur J Cancer. 1997, 33: 362-371.CrossRefPubMed
46.
go back to reference Bu SZ, Yin DL, Ren XH, et al: Progesterone induces apoptosis and up-regulation of p53 expression in human ovarian carcinoma cell lines. Cancer. 1997, 79: 1944-1950.CrossRefPubMed Bu SZ, Yin DL, Ren XH, et al: Progesterone induces apoptosis and up-regulation of p53 expression in human ovarian carcinoma cell lines. Cancer. 1997, 79: 1944-1950.CrossRefPubMed
47.
go back to reference Rajan JV, Wang M, Marquis ST, Chodosh LA: Brca2 is coordinately regulated with Brca1 during proliferation and differentiation in mammary epithelial cells. Proc Natl Acad Sci USA. 1996, 93: 13078-13083.CrossRefPubMedPubMedCentral Rajan JV, Wang M, Marquis ST, Chodosh LA: Brca2 is coordinately regulated with Brca1 during proliferation and differentiation in mammary epithelial cells. Proc Natl Acad Sci USA. 1996, 93: 13078-13083.CrossRefPubMedPubMedCentral
48.
go back to reference Scully R, Chen J, Plug A, et al: Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell. 1997, 88: 265-275.CrossRefPubMed Scully R, Chen J, Plug A, et al: Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell. 1997, 88: 265-275.CrossRefPubMed
49.
go back to reference Somasundaram K, Zhang H, Zeng YX, et al: Arrest of the cell cycle by the tumour-suppressor BRCA1 requires the CDK-inhibitor p21WAF1/CiP1. Nature. 1997, 389: 187-190.CrossRefPubMed Somasundaram K, Zhang H, Zeng YX, et al: Arrest of the cell cycle by the tumour-suppressor BRCA1 requires the CDK-inhibitor p21WAF1/CiP1. Nature. 1997, 389: 187-190.CrossRefPubMed
50.
go back to reference Rao VN, Shao N, Ahmad M, Reddy ES: Antisense RNA to the putative tumor suppressor gene BRCA1 transforms mouse fibroblasts. Oncogene. 1996, 12: 523-528.PubMed Rao VN, Shao N, Ahmad M, Reddy ES: Antisense RNA to the putative tumor suppressor gene BRCA1 transforms mouse fibroblasts. Oncogene. 1996, 12: 523-528.PubMed
51.
go back to reference Holt JT, Thompson ME, Szabo C, et al: Growth retardation and tumour inhibition by BRCA1. Nature Genet. 1996, 12: 298-302.CrossRefPubMed Holt JT, Thompson ME, Szabo C, et al: Growth retardation and tumour inhibition by BRCA1. Nature Genet. 1996, 12: 298-302.CrossRefPubMed
52.
go back to reference Ludwig T, Chapman DL, Papaioannou VE, Efstratiadis A: Targeted mutations of breast cancer susceptibility gene homologs in mice: lethal phenotypes of Brca1, Brca2, Brca1/Brca2, Brca1/p53, and Brca2/p53 nullizygous embryos. Genes Dev. 1997, 11: 1226-1241.CrossRefPubMed Ludwig T, Chapman DL, Papaioannou VE, Efstratiadis A: Targeted mutations of breast cancer susceptibility gene homologs in mice: lethal phenotypes of Brca1, Brca2, Brca1/Brca2, Brca1/p53, and Brca2/p53 nullizygous embryos. Genes Dev. 1997, 11: 1226-1241.CrossRefPubMed
53.
go back to reference Fan S, Wang J-A, Yuan R-q, et al: BRCA1 as a potential human prostate tumor suppressor: modulation of proliferation, damage responses and expression of cell regulatory proteins. Oncogene. 1998, 16: 3069-3082.CrossRefPubMed Fan S, Wang J-A, Yuan R-q, et al: BRCA1 as a potential human prostate tumor suppressor: modulation of proliferation, damage responses and expression of cell regulatory proteins. Oncogene. 1998, 16: 3069-3082.CrossRefPubMed
54.
go back to reference Brugarolas J, Jacks T: Double indemnity: p53, BRCA and cancer. p53 mutation partially rescues developmental arrest in Brca1 and Brca2 null mice, suggesting a role for familial breast cancer genes in DNA damage repair [news]. Nature Med. 1997, 3: 721-722.CrossRefPubMed Brugarolas J, Jacks T: Double indemnity: p53, BRCA and cancer. p53 mutation partially rescues developmental arrest in Brca1 and Brca2 null mice, suggesting a role for familial breast cancer genes in DNA damage repair [news]. Nature Med. 1997, 3: 721-722.CrossRefPubMed
55.
go back to reference Dobrovic A, Simpfendorfer D: Methylation of the BRCA1 gene in sporadic breast cancer. Cancer Res. 1997, 57: 3347-3350.PubMed Dobrovic A, Simpfendorfer D: Methylation of the BRCA1 gene in sporadic breast cancer. Cancer Res. 1997, 57: 3347-3350.PubMed
Metadata
Title
Increased cell survival by inhibition of BRCA1 using an antisense approach in an estrogen responsive ovarian carcinoma cell line
Authors
Lois A Annab
Rebecca Hawkins
Greg Solomon
J Carl Barrett
Cynthia A Afshari
Publication date
01-04-2000
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 2/2000
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/bcr45

Other articles of this Issue 2/2000

Breast Cancer Research 2/2000 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine