Skip to main content
Top
Published in: BMC Cancer 1/2014

Open Access 01-12-2014 | Research article

Increase of gap junction activities in SW480 human colorectal cancer cells

Authors: Kristina Bigelow, Thu A Nguyen

Published in: BMC Cancer | Issue 1/2014

Login to get access

Abstract

Background

Colorectal cancer is one of the most common cancers in the United States with an early detection rate of only 39%. Colorectal cancer cells along with other cancer cells exhibit many deficiencies in cell-to-cell communication, particularly gap junctional intercellular communication (GJIC). GJIC has been reported to diminish as cancer cells progress. Gap junctions are intercellular channels composed of connexin proteins, which mediate the direct passage of small molecules from one cell to the next. They are involved in the regulation of the cell cycle, cell differentiation, and cell signaling. Since the regulation of gap junctions is lost in colorectal cancer cells, the goal of this study is to determine the effect of GJIC restoration in colorectal cancer cells.

Methods

Gap Junction Activity Assay and protein analysis were performed to evaluate the effects of overexpression of connexin 43 (Cx43) and treatment of PQ1, a small molecule, on GJIC.

Results

Overexpression of Cx43 in SW480 colorectal cancer cells causes a 6-fold increase of gap junction activity compared to control. This suggests that overexpressing Cx43 can restore GJIC. Furthermore, small molecule like PQ1 directly targeting gap junction channel was used to increase GJIC. Gap junction enhancers, PQ1, at 200 nM showed a 4-fold increase of gap junction activity in SW480 cells. A shift from the P0 to the P2 isoform of Cx43 was seen after 1 hour treatment with 200 nM PQ1.

Conclusion

Overexpression of Cx43 and treatment of PQ1 can directly increase gap junction activity. The findings provide an important implication in which restoration of gap junction activity can be targeted for drug development.
Appendix
Available only for authorised users
Literature
1.
go back to reference Haggar FA, Boushey RP: Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clin Colon Rectal Surg. 2009, 22 (4): 191-197.CrossRefPubMedPubMedCentral Haggar FA, Boushey RP: Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clin Colon Rectal Surg. 2009, 22 (4): 191-197.CrossRefPubMedPubMedCentral
2.
3.
go back to reference Siegel R, Desantis C, Jemal A: Colorectal cancer statistics, 2014. CA Cancer J Clin. 2014, 64 (2): 104-117.CrossRefPubMed Siegel R, Desantis C, Jemal A: Colorectal cancer statistics, 2014. CA Cancer J Clin. 2014, 64 (2): 104-117.CrossRefPubMed
4.
go back to reference Laird DW, Fistouris P, Batist G, Alpert L, Huynh HT, Carystinos GD, Alaoui-Jamali MA: Deficiency of connexin43 gap junctions is an independent marker for breast tumors. Cancer Res. 1999, 59 (16): 4104-4110.PubMed Laird DW, Fistouris P, Batist G, Alpert L, Huynh HT, Carystinos GD, Alaoui-Jamali MA: Deficiency of connexin43 gap junctions is an independent marker for breast tumors. Cancer Res. 1999, 59 (16): 4104-4110.PubMed
5.
go back to reference Mehta PP, Lokeshwar BL, Schiller PC, Bendix MV, Ostenson RC, Howard GA, Roos BA: Gap-junctional communication in normal and neoplastic prostate epithelial cells and its regulation by cAMP. Mol Carcinog. 1996, 15 (1): 18-32.CrossRefPubMed Mehta PP, Lokeshwar BL, Schiller PC, Bendix MV, Ostenson RC, Howard GA, Roos BA: Gap-junctional communication in normal and neoplastic prostate epithelial cells and its regulation by cAMP. Mol Carcinog. 1996, 15 (1): 18-32.CrossRefPubMed
6.
go back to reference Söhl G, Willecke K: An update on connexin genes and their nomenclature in mouse and man. Cell Commun Adhes. 2003, 10 (4–6): 173-180.CrossRefPubMed Söhl G, Willecke K: An update on connexin genes and their nomenclature in mouse and man. Cell Commun Adhes. 2003, 10 (4–6): 173-180.CrossRefPubMed
7.
go back to reference Loewenstein WR, Kanno Y: Intercellular communication and the control of tissue growth: lack of communication between cancer cells. Nature. 1966, 209 (5029): 1248-1249.CrossRefPubMed Loewenstein WR, Kanno Y: Intercellular communication and the control of tissue growth: lack of communication between cancer cells. Nature. 1966, 209 (5029): 1248-1249.CrossRefPubMed
8.
go back to reference Spray DC, Rozental R, Srinivas M: Prospects for rational development of pharmacological gap junction channel blockers. Curr Drug Targets. 2002, 3 (6): 455-464.CrossRefPubMed Spray DC, Rozental R, Srinivas M: Prospects for rational development of pharmacological gap junction channel blockers. Curr Drug Targets. 2002, 3 (6): 455-464.CrossRefPubMed
9.
go back to reference Segretain D, Falk MM: Regulation of connexin biosynthesis, assembly, gap junction formation, and removal. Biochim Biophys Acta. 2004, 1662 (1–2): 3-21.CrossRefPubMed Segretain D, Falk MM: Regulation of connexin biosynthesis, assembly, gap junction formation, and removal. Biochim Biophys Acta. 2004, 1662 (1–2): 3-21.CrossRefPubMed
10.
go back to reference Oyamada M, Oyamada Y, Takamatsu T: Regulation of connexin expression. Biochim Biophys Acta - Biomembr. 2005, 1719 (1–2): 6-23.CrossRef Oyamada M, Oyamada Y, Takamatsu T: Regulation of connexin expression. Biochim Biophys Acta - Biomembr. 2005, 1719 (1–2): 6-23.CrossRef
11.
12.
go back to reference Dunn CA, Lampe PD: Injury-triggered Akt phosphorylation of Cx43: a ZO-1-driven molecular switch that regulates gap junction size. J Cell Sci. 2014, 127 (Pt 2): 455-464.CrossRefPubMedPubMedCentral Dunn CA, Lampe PD: Injury-triggered Akt phosphorylation of Cx43: a ZO-1-driven molecular switch that regulates gap junction size. J Cell Sci. 2014, 127 (Pt 2): 455-464.CrossRefPubMedPubMedCentral
13.
go back to reference Hossain MZ, Jagdale AB, Ao P, Kazlauskas A, Alton L: Disruption of gap junctional communication by the platelet-derived growth factor is mediated via multiple signaling pathways. J Biol Chem. 1999, 274: 10489-10496.CrossRefPubMed Hossain MZ, Jagdale AB, Ao P, Kazlauskas A, Alton L: Disruption of gap junctional communication by the platelet-derived growth factor is mediated via multiple signaling pathways. J Biol Chem. 1999, 274: 10489-10496.CrossRefPubMed
14.
go back to reference Warn-Cramer BJ: Regulation of connexin-43 gap junctional intercellular communication by mitogen-activated protein kinase. J Biol Chem. 1998, 273 (15): 9188-9196.CrossRefPubMed Warn-Cramer BJ: Regulation of connexin-43 gap junctional intercellular communication by mitogen-activated protein kinase. J Biol Chem. 1998, 273 (15): 9188-9196.CrossRefPubMed
15.
go back to reference Dunn CA, Su V, Lau AF, Lampe PD: Activation of AKT, but not connexin43 ubiquitination, regulates gap junction stability. J Biol Chem. 2012, 287 (4): 2600-2607.CrossRefPubMed Dunn CA, Su V, Lau AF, Lampe PD: Activation of AKT, but not connexin43 ubiquitination, regulates gap junction stability. J Biol Chem. 2012, 287 (4): 2600-2607.CrossRefPubMed
16.
go back to reference Solan JL, Marquez-Rosado L, Sorgen PL, Thornton PJ, Gafken PR, Lampe PD: Phosphorylation at S365 is a gatekeeper event that changes the structure of Cx43 and prevents down-regulation by PKC. J Cell Biol. 2007, 179 (6): 1301-1309.CrossRefPubMedPubMedCentral Solan JL, Marquez-Rosado L, Sorgen PL, Thornton PJ, Gafken PR, Lampe PD: Phosphorylation at S365 is a gatekeeper event that changes the structure of Cx43 and prevents down-regulation by PKC. J Cell Biol. 2007, 179 (6): 1301-1309.CrossRefPubMedPubMedCentral
17.
go back to reference Srisakuldee W, Jeyaraman MM, Nickel BE, Tanguy S, Jiang ZS, Kardami E: Phosphorylation of connexin-43 at serine 262 promotes a cardiac injury-resistant state. Cardiovasc Res. 2009, 83 (4): 672-681.CrossRefPubMed Srisakuldee W, Jeyaraman MM, Nickel BE, Tanguy S, Jiang ZS, Kardami E: Phosphorylation of connexin-43 at serine 262 promotes a cardiac injury-resistant state. Cardiovasc Res. 2009, 83 (4): 672-681.CrossRefPubMed
18.
go back to reference Solan JL, Lampe PD: Key connexin43 phosphorylation events regulate the gap junction life cycle. J Membr Biol. 2008, 217 (206): 35-41. Solan JL, Lampe PD: Key connexin43 phosphorylation events regulate the gap junction life cycle. J Membr Biol. 2008, 217 (206): 35-41.
19.
go back to reference Doble BW, Dang X, Ping P, Fandrich RR, Nickel BE, Jin Y, Cattini PA, Kardami E: Phosphorylation of serine 262 in the gap junction protein connexin-43 regulates DNA synthesis in cell-cell contact forming cardiomyocytes. J Cell Sci. 2004, 117 (3): 507-514.CrossRefPubMed Doble BW, Dang X, Ping P, Fandrich RR, Nickel BE, Jin Y, Cattini PA, Kardami E: Phosphorylation of serine 262 in the gap junction protein connexin-43 regulates DNA synthesis in cell-cell contact forming cardiomyocytes. J Cell Sci. 2004, 117 (3): 507-514.CrossRefPubMed
20.
go back to reference Leithe E, Rivedal E: Ubiquitination and down-regulation of gap junction protein connexin-43 in response to 12-O-tetradecanoylphorbol 13-acetate treatment. J Biol Chem. 2004, 279 (48): 50089-50096.CrossRefPubMed Leithe E, Rivedal E: Ubiquitination and down-regulation of gap junction protein connexin-43 in response to 12-O-tetradecanoylphorbol 13-acetate treatment. J Biol Chem. 2004, 279 (48): 50089-50096.CrossRefPubMed
21.
go back to reference Gakhar G, Ohira T, Shi A, Hua DH, Nguyen TA: Antitumor effect of substituted quinolines in breast cancer cells. Drug Dev Res. 2008, 69 (8): 526-534.CrossRef Gakhar G, Ohira T, Shi A, Hua DH, Nguyen TA: Antitumor effect of substituted quinolines in breast cancer cells. Drug Dev Res. 2008, 69 (8): 526-534.CrossRef
22.
go back to reference Ding Y, Nguyen TA: PQ1, a quinoline derivative, induces apoptosis in T47D breast cancer cells through activation of caspase-8 and caspase-9. Apoptosis. 2013, 18: 1071-1082.CrossRefPubMedPubMedCentral Ding Y, Nguyen TA: PQ1, a quinoline derivative, induces apoptosis in T47D breast cancer cells through activation of caspase-8 and caspase-9. Apoptosis. 2013, 18: 1071-1082.CrossRefPubMedPubMedCentral
23.
go back to reference Ding Y, Prasain K, Nguyen TDT, Hua DH, Nguyen TA: The effect of the PQ1 anti-breast cancer agent on normal tissues. Anticancer Drugs. 2012, 23 (9): 897-905.PubMedPubMedCentral Ding Y, Prasain K, Nguyen TDT, Hua DH, Nguyen TA: The effect of the PQ1 anti-breast cancer agent on normal tissues. Anticancer Drugs. 2012, 23 (9): 897-905.PubMedPubMedCentral
24.
go back to reference Kanczuga-Koda L, Koda M, Sulkowski S, Wincewicz A, Zalewski B, Sulkowska M: Gradual loss of functional gap junction within progression of colorectal cancer — a shift from membranous CX32 and CX43 expression to cytoplasmic pattern during colorectal carcinogenesis. In Vivo. 2010, 24 (1): 101-107.PubMed Kanczuga-Koda L, Koda M, Sulkowski S, Wincewicz A, Zalewski B, Sulkowska M: Gradual loss of functional gap junction within progression of colorectal cancer — a shift from membranous CX32 and CX43 expression to cytoplasmic pattern during colorectal carcinogenesis. In Vivo. 2010, 24 (1): 101-107.PubMed
25.
go back to reference Banerjee D, Das S, Molina SA, Madgwick D, Katz MR, Jena S, Bossmann LK, Pal D, Takemoto DJ: Investigation of the reciprocal relationship between the expression of two gap junction connexin proteins, connexin46 and connexin43. J Biol Chem. 2011, 286 (27): 24519-24533.CrossRefPubMedPubMedCentral Banerjee D, Das S, Molina SA, Madgwick D, Katz MR, Jena S, Bossmann LK, Pal D, Takemoto DJ: Investigation of the reciprocal relationship between the expression of two gap junction connexin proteins, connexin46 and connexin43. J Biol Chem. 2011, 286 (27): 24519-24533.CrossRefPubMedPubMedCentral
27.
go back to reference Oh SY, Dupont E, Madhukar BV, Briand JP, Chang CC, Beyer E, Trosko JE: Characterization of gap junctional communication-deficient mutants of a rat liver epithelial cell line. Eur J Cell Biol. 1993, 60 (2): 250-255.PubMed Oh SY, Dupont E, Madhukar BV, Briand JP, Chang CC, Beyer E, Trosko JE: Characterization of gap junctional communication-deficient mutants of a rat liver epithelial cell line. Eur J Cell Biol. 1993, 60 (2): 250-255.PubMed
28.
go back to reference Laird DW: Connexin phosphorylation as a regulatory event linked to gap junction internalization and degradation. Biochim Biophys Acta. 2005, 1711 (2): 172-182.CrossRefPubMed Laird DW: Connexin phosphorylation as a regulatory event linked to gap junction internalization and degradation. Biochim Biophys Acta. 2005, 1711 (2): 172-182.CrossRefPubMed
29.
go back to reference Saez JC, Berthoud VM, Branes MC, Martinez AD, Beyer EC: Plasma membrane channels formed by connexins: their regulation and functions. Physiol Rev. 2003, 83 (4): 1359-1400.CrossRefPubMed Saez JC, Berthoud VM, Branes MC, Martinez AD, Beyer EC: Plasma membrane channels formed by connexins: their regulation and functions. Physiol Rev. 2003, 83 (4): 1359-1400.CrossRefPubMed
30.
go back to reference Söhl G, Willecke K: Gap junctions and the connexin protein family. Cardiovasc Res. 2004, 62 (2): 228-232.CrossRefPubMed Söhl G, Willecke K: Gap junctions and the connexin protein family. Cardiovasc Res. 2004, 62 (2): 228-232.CrossRefPubMed
31.
go back to reference Sáez JC, Martínez AD, Brañes MC, González HE: Regulation of gap junctions by protein phosphorylation. Brazilian J Med Biol Res. 1998, 31 (5): 593-600.CrossRef Sáez JC, Martínez AD, Brañes MC, González HE: Regulation of gap junctions by protein phosphorylation. Brazilian J Med Biol Res. 1998, 31 (5): 593-600.CrossRef
Metadata
Title
Increase of gap junction activities in SW480 human colorectal cancer cells
Authors
Kristina Bigelow
Thu A Nguyen
Publication date
01-12-2014
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2014
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-14-502

Other articles of this Issue 1/2014

BMC Cancer 1/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine