Skip to main content
Top
Published in: Critical Care 1/2015

Open Access 01-12-2015 | Research

Increase in cerebral oxygenation during advanced life support in out-of-hospital patients is associated with return of spontaneous circulation

Authors: Cornelia Genbrugge, Ingrid Meex, Willem Boer, Frank Jans, René Heylen, Bert Ferdinande, Jo Dens, Cathy De Deyne

Published in: Critical Care | Issue 1/2015

Login to get access

Abstract

Introduction

By maintaining sufficient cerebral blood flow and oxygenation, the goal of cardiopulmonary resuscitation (CPR) is to preserve the pre-arrest neurological state. To date, cerebral monitoring abilities during CPR have been limited. Therefore, we investigated the time-course of cerebral oxygen saturation values (rSO2) during advanced life support in out-of-hospital cardiac arrest. Our primary aim was to compare rSO2 values during advanced life support from patients with return of spontaneous circulation (ROSC) to patients who did not achieve ROSC.

Methods

We performed an observational study to measure rSO2 using Equanox™ (Nonin, Plymouth, MI) from the start of advanced life support in the pre-hospital setting.

Results

rSO2 of 49 consecutive out-of-hospital cardiac arrest patients were analyzed. The total increase from initial rSO2 value until two minutes before ROSC or end of advanced life support efforts was significantly larger in the group with ROSC 16% (9 to 36) compared to the patients without ROSC 10% (4 to 15) (P = 0.02). Mean rSO2 from the start of measurement until two minutes before ROSC or until termination of advanced life support was higher in patients with ROSC than in those without, namely 39% ± 7 and 31% ± 4 (P = 0.05) respectively.

Conclusions

During pre-hospital advanced life support, higher increases in rSO2 are observed in patients attaining ROSC, even before ROSC was clinically determined. Our findings suggest that rSO2 could be used in the future to guide patient tailored treatment during cardiac arrest and could therefore be a surrogate marker of the systemic oxygenation state of the patient.
Literature
1.
go back to reference Nolan JP. Cerebral oximetry during cardiac arrest – feasible, but benefit yet to be determined. Crit Care Med. 2014;42:1001–2.CrossRef Nolan JP. Cerebral oximetry during cardiac arrest – feasible, but benefit yet to be determined. Crit Care Med. 2014;42:1001–2.CrossRef
2.
go back to reference Lemiale V, Dumas F, Mongardon N, Giovanetti O, Charpentier J, Chiche J-D, et al. Intensive care unit mortality after cardiac arrest: the relative contribution of shock and brain injury in a large cohort. Intensive Care Med. 2013;39:1972–80.CrossRef Lemiale V, Dumas F, Mongardon N, Giovanetti O, Charpentier J, Chiche J-D, et al. Intensive care unit mortality after cardiac arrest: the relative contribution of shock and brain injury in a large cohort. Intensive Care Med. 2013;39:1972–80.CrossRef
3.
go back to reference Laver S, Farrow C, Turner D, Nolan J. Mode of death after admission to an intensive care unit following cardiac arrest. Intensive Care Med. 2004;30:2126–8.CrossRef Laver S, Farrow C, Turner D, Nolan J. Mode of death after admission to an intensive care unit following cardiac arrest. Intensive Care Med. 2004;30:2126–8.CrossRef
4.
go back to reference Kern KB. Optimal treatment of patients surviving out-of-hospital cardiac arrest. JACC Cardiovasc Interv. 2012;5:597–605.CrossRef Kern KB. Optimal treatment of patients surviving out-of-hospital cardiac arrest. JACC Cardiovasc Interv. 2012;5:597–605.CrossRef
5.
go back to reference Meaney PA, Bobrow BJ, Mancini ME, Christenson J, de Caen AR, Bhanji F, et al. Cardiopulmonary resuscitation quality: [corrected] improving cardiac resuscitation outcomes both inside and outside the hospital: a consensus statement from the American Heart Association. Circulation. 2013;128:417–35.CrossRef Meaney PA, Bobrow BJ, Mancini ME, Christenson J, de Caen AR, Bhanji F, et al. Cardiopulmonary resuscitation quality: [corrected] improving cardiac resuscitation outcomes both inside and outside the hospital: a consensus statement from the American Heart Association. Circulation. 2013;128:417–35.CrossRef
6.
go back to reference Deakin CD, Nolan JP, Soar J, Sunde K, Koster RW, Smith GB, et al. European Resuscitation Council Guidelines for Resuscitation 2010 Section 4. Adult advanced life support. Resuscitation. 2010;81:1305–52.CrossRef Deakin CD, Nolan JP, Soar J, Sunde K, Koster RW, Smith GB, et al. European Resuscitation Council Guidelines for Resuscitation 2010 Section 4. Adult advanced life support. Resuscitation. 2010;81:1305–52.CrossRef
7.
go back to reference Touma O, Davies M. The prognostic value of end tidal carbon dioxide during cardiac arrest: a systematic review. Resuscitation. 2013;84:1470–9.CrossRef Touma O, Davies M. The prognostic value of end tidal carbon dioxide during cardiac arrest: a systematic review. Resuscitation. 2013;84:1470–9.CrossRef
8.
go back to reference Ghosh A, Elwell C, Smith M. Review article: cerebral near-infrared spectroscopy in adults: a work in progress. Anesth Analg. 2012;115:1373–83.CrossRef Ghosh A, Elwell C, Smith M. Review article: cerebral near-infrared spectroscopy in adults: a work in progress. Anesth Analg. 2012;115:1373–83.CrossRef
9.
go back to reference Parnia S, Nasir A, Ahn A, Malik H, Yang J, Zhu J, et al. A feasibility study of cerebral oximetry during in-hospital mechanical and manual cardiopulmonary resuscitation. Crit Care Med. 2013;42:930–3.CrossRef Parnia S, Nasir A, Ahn A, Malik H, Yang J, Zhu J, et al. A feasibility study of cerebral oximetry during in-hospital mechanical and manual cardiopulmonary resuscitation. Crit Care Med. 2013;42:930–3.CrossRef
10.
go back to reference Ahn A, Nasir A, Malik H, D’Orazi F, Parnia S. A pilot study examining the role of regional cerebral oxygen saturation monitoring as a marker of return of spontaneous circulation in shockable (VF/VT) and non-shockable (PEA/Asystole) causes of cardiac arrest. Resuscitation. 2013;84:1713–6.CrossRef Ahn A, Nasir A, Malik H, D’Orazi F, Parnia S. A pilot study examining the role of regional cerebral oxygen saturation monitoring as a marker of return of spontaneous circulation in shockable (VF/VT) and non-shockable (PEA/Asystole) causes of cardiac arrest. Resuscitation. 2013;84:1713–6.CrossRef
11.
go back to reference Parnia S, Nasir A, Shah C, Patel R, Mani A, Richman P. A feasibility study evaluating the role of cerebral oximetry in predicting return of spontaneous circulation in cardiac arrest. Resuscitation. 2012;83:982–5.CrossRef Parnia S, Nasir A, Shah C, Patel R, Mani A, Richman P. A feasibility study evaluating the role of cerebral oximetry in predicting return of spontaneous circulation in cardiac arrest. Resuscitation. 2012;83:982–5.CrossRef
12.
go back to reference Singer AJ, Ahn A, Inigo-Santiago LA, Thode HC Jr, Henry MC, Parnia S. Cerebral oximetry levels during CPR are associated with return of spontaneous circulation following cardiac arrest: an observational study. Emerg Med J 2014. doi:10.1136/emermed-2013-203467. Singer AJ, Ahn A, Inigo-Santiago LA, Thode HC Jr, Henry MC, Parnia S. Cerebral oximetry levels during CPR are associated with return of spontaneous circulation following cardiac arrest: an observational study. Emerg Med J 2014. doi:10.1136/emermed-2013-203467.
13.
go back to reference Koyama Y, Wada T, Lohman BD, Takamatsu Y, Matsumoto J, Fujitani S, et al. A new method to detect cerebral blood flow waveform in synchrony with chest compression by near-infrared spectroscopy during CPR. Am J Emerg Med. 2013;31:1504–8.CrossRef Koyama Y, Wada T, Lohman BD, Takamatsu Y, Matsumoto J, Fujitani S, et al. A new method to detect cerebral blood flow waveform in synchrony with chest compression by near-infrared spectroscopy during CPR. Am J Emerg Med. 2013;31:1504–8.CrossRef
14.
go back to reference Meex I, De Deyne C, Dens J, Scheyltjens S, Lathouwers K, Boer W, et al. Feasibility of absolute cerebral tissue oxygen saturation during cardiopulmonary resuscitation. Crit Care. 2013;17:R36.CrossRef Meex I, De Deyne C, Dens J, Scheyltjens S, Lathouwers K, Boer W, et al. Feasibility of absolute cerebral tissue oxygen saturation during cardiopulmonary resuscitation. Crit Care. 2013;17:R36.CrossRef
15.
go back to reference Ito N, Nishiyama K, Callaway CW, Orita T, Hayashida K, Arimoto H, et al. Noninvasive regional cerebral oxygen saturation for neurological prognostication of patients with out-of-hospital cardiac arrest: a prospective multicenter observational study. Resuscitation. 2014;85:778–84.CrossRef Ito N, Nishiyama K, Callaway CW, Orita T, Hayashida K, Arimoto H, et al. Noninvasive regional cerebral oxygen saturation for neurological prognostication of patients with out-of-hospital cardiac arrest: a prospective multicenter observational study. Resuscitation. 2014;85:778–84.CrossRef
16.
go back to reference Asim K, Gokhan E, Ozlem B, Ozcan Y, Deniz O, Kamil K, et al. An assessment of the use of near infrared spectrophotometry (cerebral oximetry) in predicting the return of spontaneous circulation in out-of-hospital cardiac arrest. Am J Emerg Med. 2013;32:14–7.CrossRef Asim K, Gokhan E, Ozlem B, Ozcan Y, Deniz O, Kamil K, et al. An assessment of the use of near infrared spectrophotometry (cerebral oximetry) in predicting the return of spontaneous circulation in out-of-hospital cardiac arrest. Am J Emerg Med. 2013;32:14–7.CrossRef
17.
go back to reference Newman DH, Callaway CW, Greenwald IB, Freed J. Cerebral oximetry in out-of-hospital cardiac arrest: standard CPR rarely provides detectable hemoglobin-oxygen saturation to the frontal cortex. Resuscitation. 2004;63:189–94.CrossRef Newman DH, Callaway CW, Greenwald IB, Freed J. Cerebral oximetry in out-of-hospital cardiac arrest: standard CPR rarely provides detectable hemoglobin-oxygen saturation to the frontal cortex. Resuscitation. 2004;63:189–94.CrossRef
18.
go back to reference Jacobs I, Nadkarni V, Bahr J, Berg RA, Billi JE, Bossaert L, et al. Cardiac arrest and cardiopulmonary resuscitation outcome reports: update and simplification of the Utstein templates for resuscitation registries: a statement for healthcare professionals from a task force of the International Liaison Committee on Resuscitation (American Heart Association, European Resuscitation Council, Australian Resuscitation Council, New Zealand Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Councils of Southern Africa). Circulation. 2004;110:3385–97.CrossRef Jacobs I, Nadkarni V, Bahr J, Berg RA, Billi JE, Bossaert L, et al. Cardiac arrest and cardiopulmonary resuscitation outcome reports: update and simplification of the Utstein templates for resuscitation registries: a statement for healthcare professionals from a task force of the International Liaison Committee on Resuscitation (American Heart Association, European Resuscitation Council, Australian Resuscitation Council, New Zealand Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Councils of Southern Africa). Circulation. 2004;110:3385–97.CrossRef
19.
go back to reference Cummins RO, Chamberlain DA, Abramson NS, Allen M, Baskett PJ, Becker L, et al. Recommended guidelines for uniform reporting of data from out-of-hospital cardiac arrest: the Utstein Style. A statement for health professionals from a task force of the American Heart Association, the European Resuscitation Council, the Heart and Stroke Foundation of Canada, and the Australian Resuscitation Council. Circulation. 1991;84:960–75.CrossRef Cummins RO, Chamberlain DA, Abramson NS, Allen M, Baskett PJ, Becker L, et al. Recommended guidelines for uniform reporting of data from out-of-hospital cardiac arrest: the Utstein Style. A statement for health professionals from a task force of the American Heart Association, the European Resuscitation Council, the Heart and Stroke Foundation of Canada, and the Australian Resuscitation Council. Circulation. 1991;84:960–75.CrossRef
20.
go back to reference MacLeod DB, Ikeda K, Vacchiano C, Lobbestael A, Wahr JA, Shaw AD. Development and validation of a cerebral oximeter capable of absolute accuracy. J Cardiothorac Vasc Anesth. 2012;26:1007–14.CrossRef MacLeod DB, Ikeda K, Vacchiano C, Lobbestael A, Wahr JA, Shaw AD. Development and validation of a cerebral oximeter capable of absolute accuracy. J Cardiothorac Vasc Anesth. 2012;26:1007–14.CrossRef
21.
go back to reference Schewe J-C, Thudium MO, Kappler J, Steinhagen F, Eichhorn L, Erdfelder F, et al. Monitoring of cerebral oxygen saturation during resuscitation in out-of-hospital cardiac arrest: a feasibility study in a physician staffed emergency medical system. Scand J Trauma Resusc Emerg Med. 2014;22:58.CrossRef Schewe J-C, Thudium MO, Kappler J, Steinhagen F, Eichhorn L, Erdfelder F, et al. Monitoring of cerebral oxygen saturation during resuscitation in out-of-hospital cardiac arrest: a feasibility study in a physician staffed emergency medical system. Scand J Trauma Resusc Emerg Med. 2014;22:58.CrossRef
22.
go back to reference Genbrugge C, Dens J, Meex I, Boer W, Jans F, De Deyne C. Cerebral saturation monitoring during cardiopulmonary resuscitation should be used as dynamic, rather than static, information. Resuscitation. 2013;84:e111–2.CrossRef Genbrugge C, Dens J, Meex I, Boer W, Jans F, De Deyne C. Cerebral saturation monitoring during cardiopulmonary resuscitation should be used as dynamic, rather than static, information. Resuscitation. 2013;84:e111–2.CrossRef
23.
go back to reference Hachimi-Idrissi S. Letter to editor: a pilot study examining the role of regional cerebral oxygen saturation monitoring as a marker of return of spontaneous circulation in shockable (VF/VT) and non-shockable (PEA/asystole) cause of cardiac arrest. Resuscitation. 2014;85:e125–6.CrossRef Hachimi-Idrissi S. Letter to editor: a pilot study examining the role of regional cerebral oxygen saturation monitoring as a marker of return of spontaneous circulation in shockable (VF/VT) and non-shockable (PEA/asystole) cause of cardiac arrest. Resuscitation. 2014;85:e125–6.CrossRef
Metadata
Title
Increase in cerebral oxygenation during advanced life support in out-of-hospital patients is associated with return of spontaneous circulation
Authors
Cornelia Genbrugge
Ingrid Meex
Willem Boer
Frank Jans
René Heylen
Bert Ferdinande
Jo Dens
Cathy De Deyne
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2015
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-015-0837-5

Other articles of this Issue 1/2015

Critical Care 1/2015 Go to the issue