Skip to main content
Top
Published in: Surgery Today 8/2015

01-08-2015 | Original Article

In-vivo trachea regeneration: fabrication of a tissue-engineered trachea in nude mice using the body as a natural bioreactor

Authors: Abdol-Mohammad Kajbafzadeh, Shabnam Sabetkish, Nastaran Sabetkish, Samad Muhammadnejad, Aram Akbarzadeh, Seyyed Mohammad Tavangar, Mohammad Javad Mohseni, Saeid Amanpour

Published in: Surgery Today | Issue 8/2015

Login to get access

Abstract

Purpose

To investigate the outcomes of implanting rat decellularized trachea scaffold (DTS) between the paravertebral muscles of nude mice using the body as a bioreactor for total graft recellularization.

Methods

The tracheas of four rats were aseptically resected and decellularized. To assess the efficiency of the decellularization procedure, all decellularized scaffolds and native control tissues were evaluated with scanning electron microscopy (SEM), DAPI staining, DNA quantification, biomechanical analyses and hydroxyproline measurement. They were then implanted between the paravertebral muscles of four nude mice. The biopsies were precisely evaluated at 1, 3, 6 and 12 months postoperatively for tracheal cartilage and soft tissue recellularization by staining for TTF1, CD34, S100 and leukocyte common antibody.

Results

Hematoxylin and eosin (H&E) staining, SEM and the tensile test confirmed the preservation of the tissue structure and the biophysical and biochemical properties of the DTS. The present study clearly demonstrated that the hydroxyproline content of the DTS was similar to that of the native tissue. On the other hand, in biopsy samples obtained after 12 months, histological evaluation showed superior organization and cell seeding in both the cartilage and connective tissues.

Conclusion

This study demonstrated the feasibility of using a natural bioreactor for recellularizing DTS; this may have the potential to facilitate homologous transplantation for repairing segmental trachea defects.
Literature
1.
go back to reference Remlinger NT, Czajka CA, Juhas ME, Vorp DA, Stolz DB, Badylak SF, et al. Hydrated xenogeneic decellularized tracheal matrix as a scaffold for tracheal reconstruction. Biomaterials. 2010;31(13):3520–6.PubMedCrossRef Remlinger NT, Czajka CA, Juhas ME, Vorp DA, Stolz DB, Badylak SF, et al. Hydrated xenogeneic decellularized tracheal matrix as a scaffold for tracheal reconstruction. Biomaterials. 2010;31(13):3520–6.PubMedCrossRef
2.
go back to reference Wright CD, Grillo HC, Wain JC, Wong DR, Donahue DM, Gaissert HA, et al. Anastomotic complications after tracheal resection: prognostic factors and management. J Thorac Cardiovasc Surg. 2004;128(5):731.PubMedCrossRef Wright CD, Grillo HC, Wain JC, Wong DR, Donahue DM, Gaissert HA, et al. Anastomotic complications after tracheal resection: prognostic factors and management. J Thorac Cardiovasc Surg. 2004;128(5):731.PubMedCrossRef
3.
go back to reference Cotton R. Management of subglottic stenosis in infancy and childhood. Review of a consecutive series of cases managed by surgical reconstruction. Ann Otol Rhinol Laryngol. 1978;87(5 pt 1):649.PubMedCrossRef Cotton R. Management of subglottic stenosis in infancy and childhood. Review of a consecutive series of cases managed by surgical reconstruction. Ann Otol Rhinol Laryngol. 1978;87(5 pt 1):649.PubMedCrossRef
4.
go back to reference Macchiarini P, Chapelier A, Lenot B, Cerrina J, Dartevelle P. Laryngotracheal resection and reconstruction for postintubation subglottic stenosis: lessons learned. Eur J Cardiothorac Surg. 1993;7(6):300–5.PubMedCrossRef Macchiarini P, Chapelier A, Lenot B, Cerrina J, Dartevelle P. Laryngotracheal resection and reconstruction for postintubation subglottic stenosis: lessons learned. Eur J Cardiothorac Surg. 1993;7(6):300–5.PubMedCrossRef
5.
go back to reference Wright CD, Graham BB, Grillo HC, Wain JC, Mathisen DJ. Pediatric tracheal surgery. Ann Thorac Surg. 2002;74(2):308–14.PubMedCrossRef Wright CD, Graham BB, Grillo HC, Wain JC, Mathisen DJ. Pediatric tracheal surgery. Ann Thorac Surg. 2002;74(2):308–14.PubMedCrossRef
6.
7.
go back to reference Okumus A, Kabakas F, Kuvat SV, Bilir A, Aydin A. Circumferential trachea reconstruction with a prefabricated axial bio-synthetic flap: experimental study. Int J Pediatr Otorhinolaryngol. 2005;69(3):335–44.PubMedCrossRef Okumus A, Kabakas F, Kuvat SV, Bilir A, Aydin A. Circumferential trachea reconstruction with a prefabricated axial bio-synthetic flap: experimental study. Int J Pediatr Otorhinolaryngol. 2005;69(3):335–44.PubMedCrossRef
8.
go back to reference Grimmer JF, Gunnlaugsson CB, Alsberg E, Murphy HS, Kong HJ, Mooney DJ, et al. Tracheal reconstruction using tissue-engineered cartilage. Arch Otolaryngol Head Neck Surg. 2004;130(10):1191.PubMedCrossRef Grimmer JF, Gunnlaugsson CB, Alsberg E, Murphy HS, Kong HJ, Mooney DJ, et al. Tracheal reconstruction using tissue-engineered cartilage. Arch Otolaryngol Head Neck Surg. 2004;130(10):1191.PubMedCrossRef
9.
go back to reference Baiguera S, Jungebluth P, Burns A, Mavilia C, Haag J, De Coppi P et al. Tissue engineered human tracheas for in vivo implantation. Biomaterials. 2010;31(34):8931–8.PubMedCrossRef Baiguera S, Jungebluth P, Burns A, Mavilia C, Haag J, De Coppi P et al. Tissue engineered human tracheas for in vivo implantation. Biomaterials. 2010;31(34):8931–8.PubMedCrossRef
10.
go back to reference Bader A, Macchiarini P. Moving towards in situ tracheal regeneration: the bionic tissue engineered transplantation approach. J Cell Mol Med. 2010;14(7):1877–89.PubMedCentralPubMedCrossRef Bader A, Macchiarini P. Moving towards in situ tracheal regeneration: the bionic tissue engineered transplantation approach. J Cell Mol Med. 2010;14(7):1877–89.PubMedCentralPubMedCrossRef
11.
go back to reference Brown BN, Valentin JE, Stewart-Akers AM, McCabe GP, Badylak SF. Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials. 2009;30(8):1482–91.PubMedCentralPubMedCrossRef Brown BN, Valentin JE, Stewart-Akers AM, McCabe GP, Badylak SF. Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials. 2009;30(8):1482–91.PubMedCentralPubMedCrossRef
13.
go back to reference Zheng M, Chen J, Kirilak Y, Willers C, Xu J, Wood D. Porcine small intestine submucosa (SIS) is not an acellular collagenous matrix and contains porcine DNA: possible implications in human implantation. J Biomed Mater Res B Appl Biomater. 2005;73(1):61–7.PubMedCrossRef Zheng M, Chen J, Kirilak Y, Willers C, Xu J, Wood D. Porcine small intestine submucosa (SIS) is not an acellular collagenous matrix and contains porcine DNA: possible implications in human implantation. J Biomed Mater Res B Appl Biomater. 2005;73(1):61–7.PubMedCrossRef
14.
go back to reference Woessner J. The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch Biochem Biophys. 1961;93(2):440–7.PubMedCrossRef Woessner J. The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch Biochem Biophys. 1961;93(2):440–7.PubMedCrossRef
15.
go back to reference Nakanishi R, Shirakusa T, Mitsudomi T. Maximum length of tracheal autografts in dogs. J Thorac Cardiovasc Surg. 1993;106(6):1081.PubMed Nakanishi R, Shirakusa T, Mitsudomi T. Maximum length of tracheal autografts in dogs. J Thorac Cardiovasc Surg. 1993;106(6):1081.PubMed
16.
go back to reference Cavadas PC. Tracheal reconstruction using a free jejunal flap with cartilage skeleton: experimental study. Plast Reconstr Surg. 1998;101(4):937.PubMedCrossRef Cavadas PC. Tracheal reconstruction using a free jejunal flap with cartilage skeleton: experimental study. Plast Reconstr Surg. 1998;101(4):937.PubMedCrossRef
17.
go back to reference Cull DL, Lally KP, Mair EA, Daidone M, Parsons DS. Tracheal reconstruction with polytetrafluoroethylene graft in dogs. Ann Thorac Surg. 1990;50(6):899–901.PubMedCrossRef Cull DL, Lally KP, Mair EA, Daidone M, Parsons DS. Tracheal reconstruction with polytetrafluoroethylene graft in dogs. Ann Thorac Surg. 1990;50(6):899–901.PubMedCrossRef
18.
go back to reference Teramachi M, Nakamura T, Yamamoto Y, Kiyotani T, Takimoto Y, Shimizu Y. Porous-type tracheal prosthesis sealed with collagen sponge. Ann Thorac Surg. 1997;64(4):965–9.PubMedCrossRef Teramachi M, Nakamura T, Yamamoto Y, Kiyotani T, Takimoto Y, Shimizu Y. Porous-type tracheal prosthesis sealed with collagen sponge. Ann Thorac Surg. 1997;64(4):965–9.PubMedCrossRef
19.
go back to reference Deslauriers J, Ginsberg R, Nelems J, Pearson F. Innominate artery rupture: a major complication of tracheal surgery. Ann Thorac Surg. 1975;20(6):671–7.PubMedCrossRef Deslauriers J, Ginsberg R, Nelems J, Pearson F. Innominate artery rupture: a major complication of tracheal surgery. Ann Thorac Surg. 1975;20(6):671–7.PubMedCrossRef
20.
go back to reference Lenot B, Macchiarini P, Dulmet E, Weiss M, Dartevelle P. Tracheal allograft replacement: an unsuccessful method. Eur J Cardiothorac Surg. 1993;7(12):648–52.PubMedCrossRef Lenot B, Macchiarini P, Dulmet E, Weiss M, Dartevelle P. Tracheal allograft replacement: an unsuccessful method. Eur J Cardiothorac Surg. 1993;7(12):648–52.PubMedCrossRef
21.
go back to reference Carbognani P, Spaggiari L, Solli P, Corradi A, Cantoni AM, Barocelli E, et al. Experimental tracheal transplantation using a cryopreserved aortic allograft. Eur Surg Res. 1999;31(2):210–5.PubMedCrossRef Carbognani P, Spaggiari L, Solli P, Corradi A, Cantoni AM, Barocelli E, et al. Experimental tracheal transplantation using a cryopreserved aortic allograft. Eur Surg Res. 1999;31(2):210–5.PubMedCrossRef
22.
go back to reference Kojji K. Tissue engineered trachea using decellularized aorta. J Bioeng Biomed Sci. 2011. Kojji K. Tissue engineered trachea using decellularized aorta. J Bioeng Biomed Sci. 2011.
23.
go back to reference Grillo H, Dignan E, Miura T. Experimental reconstruction of cervical trachea after circumferential resection. Plast Reconstr Surg. 1966;38(3):272.CrossRef Grillo H, Dignan E, Miura T. Experimental reconstruction of cervical trachea after circumferential resection. Plast Reconstr Surg. 1966;38(3):272.CrossRef
24.
go back to reference Kato R, Onuki AS, Watanabe M, Hashizume T, Kawamura M, Kikuchi K, et al. Tracheal reconstruction by esophageal interposition: an experimental study. Ann Thorac Surg. 1990;49(6):951–4.PubMedCrossRef Kato R, Onuki AS, Watanabe M, Hashizume T, Kawamura M, Kikuchi K, et al. Tracheal reconstruction by esophageal interposition: an experimental study. Ann Thorac Surg. 1990;49(6):951–4.PubMedCrossRef
25.
go back to reference Letang E, Sanchez-Lloret J, Gimferrer J, Ramirez J, Vicens A. Experimental reconstruction of the canine trachea with a free revascularized small bowel graft. Ann Thorac Surg. 1990;49(6):955–8.PubMedCrossRef Letang E, Sanchez-Lloret J, Gimferrer J, Ramirez J, Vicens A. Experimental reconstruction of the canine trachea with a free revascularized small bowel graft. Ann Thorac Surg. 1990;49(6):955–8.PubMedCrossRef
26.
go back to reference Vacanti CA, Paige KT, Kim WS, Sakata J, Upton J, Vacanti JP. Experimental tracheal replacement using tissue-engineered cartilage. J Pediatr Surg. 1994;29(2):201–5.PubMedCrossRef Vacanti CA, Paige KT, Kim WS, Sakata J, Upton J, Vacanti JP. Experimental tracheal replacement using tissue-engineered cartilage. J Pediatr Surg. 1994;29(2):201–5.PubMedCrossRef
27.
go back to reference Sakata J, Vacanti C, Schloo B, Healy G, Langer R, Vacanti J. Tracheal composites tissue engineered from chondrocytes, tracheal epithelial cells, and synthetic degradable scaffolding. 1994. London: Elsevier. Sakata J, Vacanti C, Schloo B, Healy G, Langer R, Vacanti J. Tracheal composites tissue engineered from chondrocytes, tracheal epithelial cells, and synthetic degradable scaffolding. 1994. London: Elsevier.
28.
go back to reference Elliott MJ, De Coppi P, Speggiorin S, Roebuck D, Butler CR, Samuel E et al. Stem-cell-based tissue engineered trachea replacement in a child: a 2-year follow-up study. Lancet. 2012;380(9846):994–1000.PubMedCentralPubMedCrossRef Elliott MJ, De Coppi P, Speggiorin S, Roebuck D, Butler CR, Samuel E et al. Stem-cell-based tissue engineered trachea replacement in a child: a 2-year follow-up study. Lancet. 2012;380(9846):994–1000.PubMedCentralPubMedCrossRef
29.
go back to reference Macchiarini P, Jungebluth P, Go T, Asnaghi M, Rees LE, Cogan TA, et al. Clinical transplantation of a tissue-engineered airway. Lancet. 2008;372(9655):2023–30.PubMedCrossRef Macchiarini P, Jungebluth P, Go T, Asnaghi M, Rees LE, Cogan TA, et al. Clinical transplantation of a tissue-engineered airway. Lancet. 2008;372(9655):2023–30.PubMedCrossRef
30.
go back to reference Jungebluth P, Go T, Asnaghi A, Bellini S, Martorell J, Calore C, et al. Structural and morphologic evaluation of a novel detergent-enzymatic tissue-engineered tracheal tubular matrix. J Thorac Cardiovasc Surg. 2009;138(3):586.PubMedCrossRef Jungebluth P, Go T, Asnaghi A, Bellini S, Martorell J, Calore C, et al. Structural and morphologic evaluation of a novel detergent-enzymatic tissue-engineered tracheal tubular matrix. J Thorac Cardiovasc Surg. 2009;138(3):586.PubMedCrossRef
31.
go back to reference Baiguera S, Del Gaudio C, Jaus MO, Polizzi L, Gonfiotti A, Comin CE et al. Long-term changes to in vitro preserved bioengineered human trachea and their implications for decellularized tissues. Biomaterials. 2012;33(14):3662–72.PubMedCrossRef Baiguera S, Del Gaudio C, Jaus MO, Polizzi L, Gonfiotti A, Comin CE et al. Long-term changes to in vitro preserved bioengineered human trachea and their implications for decellularized tissues. Biomaterials. 2012;33(14):3662–72.PubMedCrossRef
32.
go back to reference Go T, Jungebluth P, Baiguero S, Asnaghi A, Martorell J, Ostertag H, et al. Both epithelial cells and mesenchymal stem cell-derived chondrocytes contribute to the survival of tissue-engineered airway transplants in pigs. J Thorac Cardiovasc Surg. 2010;139(2):437–43.PubMedCrossRef Go T, Jungebluth P, Baiguero S, Asnaghi A, Martorell J, Ostertag H, et al. Both epithelial cells and mesenchymal stem cell-derived chondrocytes contribute to the survival of tissue-engineered airway transplants in pigs. J Thorac Cardiovasc Surg. 2010;139(2):437–43.PubMedCrossRef
33.
go back to reference Jungebluth P, Bader A, Baiguera S, Moller S, Jaus M, Lim ML, et al. The concept of in vivo airway tissue engineering. Biomaterials. 2012;33(17):4319–26.PubMedCrossRef Jungebluth P, Bader A, Baiguera S, Moller S, Jaus M, Lim ML, et al. The concept of in vivo airway tissue engineering. Biomaterials. 2012;33(17):4319–26.PubMedCrossRef
34.
go back to reference Kojima K, Ignotz RA, Kushibiki T, Tinsley KW, Tabata Y, Vacanti CA. Tissue-engineered trachea from sheep marrow stromal cells with transforming growth factor [beta] 2 released from biodegradable microspheres in a nude rat recipient. J Thorac Cardiovasc Surg. 2004;128(1):147–53.PubMedCrossRef Kojima K, Ignotz RA, Kushibiki T, Tinsley KW, Tabata Y, Vacanti CA. Tissue-engineered trachea from sheep marrow stromal cells with transforming growth factor [beta] 2 released from biodegradable microspheres in a nude rat recipient. J Thorac Cardiovasc Surg. 2004;128(1):147–53.PubMedCrossRef
35.
go back to reference Sekine T, Nakamura T, Liu Y, Ueda H, Matsumoto K, Shimizu Y. Collagen coated Y-shaped prosthesis for cardinal replacement promotes regeneration of the tracheal epithelium. ASAIO J. 2000;46(4):421.PubMedCrossRef Sekine T, Nakamura T, Liu Y, Ueda H, Matsumoto K, Shimizu Y. Collagen coated Y-shaped prosthesis for cardinal replacement promotes regeneration of the tracheal epithelium. ASAIO J. 2000;46(4):421.PubMedCrossRef
36.
go back to reference Baiguera S, Gonfiotti A, Jaus M, Comin CE, Paglierani M, Del Gaudio C et al. Development of bioengineered human larynx. Biomaterials. 2011;32(19):4433–42.PubMedCrossRef Baiguera S, Gonfiotti A, Jaus M, Comin CE, Paglierani M, Del Gaudio C et al. Development of bioengineered human larynx. Biomaterials. 2011;32(19):4433–42.PubMedCrossRef
37.
go back to reference Curcio E, Macchiarini P, De Bartolo L. Oxygen mass transfer in a human tissue-engineered trachea. Biomaterials. 2010;31(19):5131–6.PubMedCrossRef Curcio E, Macchiarini P, De Bartolo L. Oxygen mass transfer in a human tissue-engineered trachea. Biomaterials. 2010;31(19):5131–6.PubMedCrossRef
38.
go back to reference Haag J, Baiguera S, Jungebluth P, Barale D, Del Gaudio C, Castiglione F et al. Biomechanical and angiogenic properties of tissue-engineered rat trachea using genipin cross-linked decellularized tissue. Biomaterials. 2011. Haag J, Baiguera S, Jungebluth P, Barale D, Del Gaudio C, Castiglione F et al. Biomechanical and angiogenic properties of tissue-engineered rat trachea using genipin cross-linked decellularized tissue. Biomaterials. 2011.
39.
go back to reference Walles T, Herden T, Haverich A, Mertsching H. Influence of scaffold thickness and scaffold composition on bioartificial graft survival. Biomaterials. 2003;24(7):1233–9.PubMedCrossRef Walles T, Herden T, Haverich A, Mertsching H. Influence of scaffold thickness and scaffold composition on bioartificial graft survival. Biomaterials. 2003;24(7):1233–9.PubMedCrossRef
Metadata
Title
In-vivo trachea regeneration: fabrication of a tissue-engineered trachea in nude mice using the body as a natural bioreactor
Authors
Abdol-Mohammad Kajbafzadeh
Shabnam Sabetkish
Nastaran Sabetkish
Samad Muhammadnejad
Aram Akbarzadeh
Seyyed Mohammad Tavangar
Mohammad Javad Mohseni
Saeid Amanpour
Publication date
01-08-2015
Publisher
Springer Japan
Published in
Surgery Today / Issue 8/2015
Print ISSN: 0941-1291
Electronic ISSN: 1436-2813
DOI
https://doi.org/10.1007/s00595-014-0993-2

Other articles of this Issue 8/2015

Surgery Today 8/2015 Go to the issue