Skip to main content
Top
Published in: Forensic Toxicology 2/2017

01-07-2017 | Original Article

In vivo metabolism of the new synthetic cannabinoid APINAC in rats by GC–MS and LC–QTOF-MS

Authors: Sergey Savchuk, Svetlana Appolonova, Alexander Pechnikov, Liliay Rizvanova, Ksenia Shestakova, Franco Tagliaro

Published in: Forensic Toxicology | Issue 2/2017

Login to get access

Abstract

The recent appearance of APINAC (AKB-57, ACBL(N)-018, adamantan-1-yl 1-pentyl-1H-indazole-3-carboxylate) in the market of the so-called novel psychoactive substances resulted in the need of defining its characteristics and searching its metabolites for subsequent detection in biological samples. The structure of the APINAC molecule has great similarity to the molecules of other synthetic cannabinoids. Here we report on the in vivo metabolism of APINAC using rats as an experimental model. Rat urine samples were analyzed by using gas chromatography–mass spectrometry and liquid chromatography–high resolution mass spectrometry. Data were acquired via time-of-flight mass scan, followed by Auto MS and triggered product ion scans. The predominant metabolic pathway for APINAC was ester hydrolysis yielding a wide variety of N-pentylindazole-3-carboxylic acid metabolites and 1-adamantanol metabolites. Ten metabolites for APINAC were identified, with the majority generated by hydroxylation, carbonylation, and carboxylation with or without glucuronidation. Therefore, in vivo metabolic profiles in rats were generated for APINAC. N-Pentylindazole-3-carboxylic acid, hydroxylated N-pentylindazole-3-carboxylic acid, and 1-adamantanol are likely the best targets to incorporate into analytical screening methods for drugs analysis. The presented mass spectra and retention time data may be useful for detection of these compounds in human urine.
Literature
1.
go back to reference Reggio PH (ed) (2009) The cannabinoid receptors. Humana Press, New York Reggio PH (ed) (2009) The cannabinoid receptors. Humana Press, New York
3.
go back to reference Uchiyama N, Kikura-Hanajiri R, Kawahara N, Goda Y (2009) Identification of a cannabimimetic indole as a designer drug in a herbal product. Forensic Toxicol 27:61–66CrossRef Uchiyama N, Kikura-Hanajiri R, Kawahara N, Goda Y (2009) Identification of a cannabimimetic indole as a designer drug in a herbal product. Forensic Toxicol 27:61–66CrossRef
5.
go back to reference Courts J, Maskill V, Gray A, Glue P (2016) Signs and symptoms associated with synthetic cannabinoid toxicity: systematic review. Australas Psychiatry 24:598–601CrossRefPubMed Courts J, Maskill V, Gray A, Glue P (2016) Signs and symptoms associated with synthetic cannabinoid toxicity: systematic review. Australas Psychiatry 24:598–601CrossRefPubMed
6.
go back to reference Lee JH, Park HN, Leem TS, Jeon JH, Cho S, Lee J, Baek SY (2017) Identification of new synthetic cannabinoid analogue APINAC (adamantan-1-yl 1-pentyl-1H-indazole-3-carboxylate) with other synthetic cannabinoid MDMB(N)-Bz-F in illegal products. Forensic Toxicol 35:45–55CrossRef Lee JH, Park HN, Leem TS, Jeon JH, Cho S, Lee J, Baek SY (2017) Identification of new synthetic cannabinoid analogue APINAC (adamantan-1-yl 1-pentyl-1H-indazole-3-carboxylate) with other synthetic cannabinoid MDMB(N)-Bz-F in illegal products. Forensic Toxicol 35:45–55CrossRef
7.
go back to reference Diao X, Huestis MA (2017) Approaches, challenges and advances in metabolism of new synthetic cannabinoids and identification of optimal urinary marker metabolites. Clin Pharmacol Ther 101:239–253CrossRefPubMed Diao X, Huestis MA (2017) Approaches, challenges and advances in metabolism of new synthetic cannabinoids and identification of optimal urinary marker metabolites. Clin Pharmacol Ther 101:239–253CrossRefPubMed
8.
go back to reference Vikingsson S, Josefsson M, Gréen H (2015) Identification of AKB-48 and 5F-AKB-48 metabolites in authentic human urine samples using human liver microsomes and time of flight mass spectrometry. J Anal Toxicol 39:426–435CrossRefPubMed Vikingsson S, Josefsson M, Gréen H (2015) Identification of AKB-48 and 5F-AKB-48 metabolites in authentic human urine samples using human liver microsomes and time of flight mass spectrometry. J Anal Toxicol 39:426–435CrossRefPubMed
9.
go back to reference Sobolevsky T, Prasolov I, Rodchenkov G (2015) Study on the phase I metabolism of novel synthetic cannabinoids, APICA and its fluorinated analogue. Drug Test Anal 7:131–142CrossRefPubMed Sobolevsky T, Prasolov I, Rodchenkov G (2015) Study on the phase I metabolism of novel synthetic cannabinoids, APICA and its fluorinated analogue. Drug Test Anal 7:131–142CrossRefPubMed
10.
go back to reference Grigoryev A, Kavanagh P, Melnik A (2012) The detection of the urinary metabolites of 3-[(adamantan-1-yl)carbonyl]-1-pentylindole (AB-001), a novel cannabimimetic, by gas chromatography–mass spectrometry. Drug Test Anal 4:519–524CrossRefPubMed Grigoryev A, Kavanagh P, Melnik A (2012) The detection of the urinary metabolites of 3-[(adamantan-1-yl)carbonyl]-1-pentylindole (AB-001), a novel cannabimimetic, by gas chromatography–mass spectrometry. Drug Test Anal 4:519–524CrossRefPubMed
11.
go back to reference Wohlfarth A, Gandhi AS, Pang S, Zhu M, Scheidweiler KB, Huestis MA (2014) Metabolism of synthetic cannabinoids PB-22 and its 5-fluoro analog, 5F-PB-22, by human hepatocyte incubation and high-resolution mass spectrometry. Anal Bioanal Chem 406:1763–1780CrossRefPubMed Wohlfarth A, Gandhi AS, Pang S, Zhu M, Scheidweiler KB, Huestis MA (2014) Metabolism of synthetic cannabinoids PB-22 and its 5-fluoro analog, 5F-PB-22, by human hepatocyte incubation and high-resolution mass spectrometry. Anal Bioanal Chem 406:1763–1780CrossRefPubMed
12.
go back to reference Diao X, Scheidweiler KB, Wohlfarth A, Pang S, Kronstrand R, Huestis MA (2016) In vitro and in vivo human metabolism of synthetic cannabinoids FDU-PB-22 and FUB-PB-22. AAPS J 18:455–464CrossRefPubMedPubMedCentral Diao X, Scheidweiler KB, Wohlfarth A, Pang S, Kronstrand R, Huestis MA (2016) In vitro and in vivo human metabolism of synthetic cannabinoids FDU-PB-22 and FUB-PB-22. AAPS J 18:455–464CrossRefPubMedPubMedCentral
13.
go back to reference Diao X, Wohlfarth A, Pang S, Scheidweiler KB, Huestis MA (2016) High-resolution mass spectrometry for characterizing the metabolism of synthetic cannabinoid THJ-018 and its 5-fluoro analog THJ-2201 after incubation in human hepatocytes. Clin Chem 62:157–169CrossRefPubMed Diao X, Wohlfarth A, Pang S, Scheidweiler KB, Huestis MA (2016) High-resolution mass spectrometry for characterizing the metabolism of synthetic cannabinoid THJ-018 and its 5-fluoro analog THJ-2201 after incubation in human hepatocytes. Clin Chem 62:157–169CrossRefPubMed
14.
go back to reference Gandhi AS, Zhu M, Pang S, Wohlfarth A, Scheidweiler KB, Liu H, Huestis MA (2013) First characterization of AKB-48 metabolism, a novel synthetic cannabinoid, using human hepatocytes and high-resolution mass spectrometry. AAPS J 15:1091–1098CrossRefPubMedPubMedCentral Gandhi AS, Zhu M, Pang S, Wohlfarth A, Scheidweiler KB, Liu H, Huestis MA (2013) First characterization of AKB-48 metabolism, a novel synthetic cannabinoid, using human hepatocytes and high-resolution mass spectrometry. AAPS J 15:1091–1098CrossRefPubMedPubMedCentral
15.
go back to reference Grigoryev A, Savchuk S, Melnik A, Moskaleva N, Dzhurko J, Ershov M, Nosyrev A, Vedenin A, Izotov B, Zabirova I, Rozhanets V (2011) Chromatography-mass spectrometry studies on the metabolism of synthetic cannabinoids JWH-018 and JWH-073, psychoactive components of smocking mixtures. J Chromatogr B 879:1126–1136CrossRef Grigoryev A, Savchuk S, Melnik A, Moskaleva N, Dzhurko J, Ershov M, Nosyrev A, Vedenin A, Izotov B, Zabirova I, Rozhanets V (2011) Chromatography-mass spectrometry studies on the metabolism of synthetic cannabinoids JWH-018 and JWH-073, psychoactive components of smocking mixtures. J Chromatogr B 879:1126–1136CrossRef
16.
go back to reference Grigoryev A, Melnik A, Savchuk S, Simonov A, Rozhanets V (2011) Gas and liquid chromatography–mass spectrometry studies on the metabolism of synthetic phenylacetylindole cannabimimetic JWH-250, psychoactive component of smoking mixtures. J Chromatogr B 879:2519–2526CrossRef Grigoryev A, Melnik A, Savchuk S, Simonov A, Rozhanets V (2011) Gas and liquid chromatography–mass spectrometry studies on the metabolism of synthetic phenylacetylindole cannabimimetic JWH-250, psychoactive component of smoking mixtures. J Chromatogr B 879:2519–2526CrossRef
17.
go back to reference Diao X, Deng P, Xie C, Li X, Zhong D, Zhang Y, Chen X (2013) Metabolism and pharmacokinetics of 3-n-butylphthalide (NBP) in humans: the role of cytochrome P450s and alcohol dehydrogenase in biotransformation. Drug Metab Dispos 41:430–433CrossRefPubMed Diao X, Deng P, Xie C, Li X, Zhong D, Zhang Y, Chen X (2013) Metabolism and pharmacokinetics of 3-n-butylphthalide (NBP) in humans: the role of cytochrome P450s and alcohol dehydrogenase in biotransformation. Drug Metab Dispos 41:430–433CrossRefPubMed
Metadata
Title
In vivo metabolism of the new synthetic cannabinoid APINAC in rats by GC–MS and LC–QTOF-MS
Authors
Sergey Savchuk
Svetlana Appolonova
Alexander Pechnikov
Liliay Rizvanova
Ksenia Shestakova
Franco Tagliaro
Publication date
01-07-2017
Publisher
Springer Japan
Published in
Forensic Toxicology / Issue 2/2017
Print ISSN: 1860-8965
Electronic ISSN: 1860-8973
DOI
https://doi.org/10.1007/s11419-017-0364-y

Other articles of this Issue 2/2017

Forensic Toxicology 2/2017 Go to the issue