Skip to main content
Top
Published in: Intensive Care Medicine 3/2012

01-03-2012 | Original

In vivo effects on human skeletal muscle oxygen delivery and metabolism of cardiopulmonary bypass and perioperative hemodilution

Authors: R. A. De Blasi, E. Tonelli, R. Arcioni, M. Mercieri, L. Cigognetti, R. Romano, G. Pinto

Published in: Intensive Care Medicine | Issue 3/2012

Login to get access

Abstract

Purpose

To investigate the in vivo effects of cardiopulmonary bypass (CPB) and perioperative hemodilution on human skeletal muscle oxygen delivery and metabolism and to determine the dilution state at which these effects arise.

Methods

We conducted this observational study in adult patients undergoing CPB surgery. Microcirculatory data were obtained by near-infrared spectroscopy from the brachioradial muscle in 20 consecutive patients undergoing hemodilution for CPB. Outcome variables included tissue oxy- and deoxyhemoglobin concentration ([HbO2], [HHb]), oxygen content, blood flow, oxygen delivery, and oxygen consumption.

Results

Although CPB left tissue blood flow and oxygen delivery unchanged, both microcirculatory variables correlated significantly and inversely with hematocrit (Hct) (r = −0.39, p < 0.001; r = −0.50, p < 0.001). CPB also left muscle oxygen consumption (mVO2) unchanged and this variable correlated with the tissue hemoglobin concentration and tissue oxygen delivery (r = 0.40, p = 0.001; r = 0.35, p = 0.005). During CPB most of the systemic cardiovascular variables remained unchanged. Conversely at Hct lower than 30%, mean arterial pressure and pH decreased and lactate values increased twofold, whereas microvascular blood volume and oxygen delivery increased. At Hct lower than 20% blood flow and oxygen delivery increased, whereas hemoglobin and oxygen content variables decreased.

Conclusions

CPB leaves skeletal muscle oxygen delivery and metabolism as measured by near-infrared spectroscopy unchanged. The only factor that correlates directly with the oxygen content variables and inversely with blood flow, and induces significant changes in tissue hemoglobin content and oxygen delivery, is hemodilution.
Appendix
Available only for authorised users
Literature
1.
go back to reference Patila T, Kukkonen S, Vento A, Pettila V, Suojaranta-Ylinen R (2006) Relation of the sequential organ failure assessment score to morbidity and mortality after cardiac surgery. Ann Thorac Surg 82:2072–2078PubMedCrossRef Patila T, Kukkonen S, Vento A, Pettila V, Suojaranta-Ylinen R (2006) Relation of the sequential organ failure assessment score to morbidity and mortality after cardiac surgery. Ann Thorac Surg 82:2072–2078PubMedCrossRef
2.
go back to reference Bauer A, Kofler S, Thiel M, Eifert S, Christ F (2007) Monitoring of the sublingual microcirculation in cardiac surgery using orthogonal polarization spectral imaging. Anesthesiology 107:939–945PubMedCrossRef Bauer A, Kofler S, Thiel M, Eifert S, Christ F (2007) Monitoring of the sublingual microcirculation in cardiac surgery using orthogonal polarization spectral imaging. Anesthesiology 107:939–945PubMedCrossRef
3.
go back to reference Doerschug KC, Delsing AS, Schmidt GA, Haynes WG (2007) Impairments in microvascular reactivity are related to organ failure in human sepsis. Am J Physiol Heart Circ Physiol 293:H1065–H1071PubMedCrossRef Doerschug KC, Delsing AS, Schmidt GA, Haynes WG (2007) Impairments in microvascular reactivity are related to organ failure in human sepsis. Am J Physiol Heart Circ Physiol 293:H1065–H1071PubMedCrossRef
4.
go back to reference den Uil CA, Lagrand WK, Spronk PE, Spronk PE, van Domburg RT, Hofland J, Lüthen C, Brugts JJ, van der Ent M, Simoons ML (2008) Impaired sublingual microvascular perfusion during surgery with cardiopulmonary bypass: a pilot study. J Thorac Cardiovasc Surg 136:129–134CrossRef den Uil CA, Lagrand WK, Spronk PE, Spronk PE, van Domburg RT, Hofland J, Lüthen C, Brugts JJ, van der Ent M, Simoons ML (2008) Impaired sublingual microvascular perfusion during surgery with cardiopulmonary bypass: a pilot study. J Thorac Cardiovasc Surg 136:129–134CrossRef
5.
go back to reference De Backer D, Dubois MJ, Schmartz D, Schmartz D, Marc Koch, Anne Ducart, Luc Barvais, Vincent JL (2009) Microcirculatory alterations in cardiac surgery: effects of cardiopulmonary bypass and anesthesia. Ann Thorac Surg 88:1396–1403PubMedCrossRef De Backer D, Dubois MJ, Schmartz D, Schmartz D, Marc Koch, Anne Ducart, Luc Barvais, Vincent JL (2009) Microcirculatory alterations in cardiac surgery: effects of cardiopulmonary bypass and anesthesia. Ann Thorac Surg 88:1396–1403PubMedCrossRef
6.
go back to reference Riddington DW, Venkatesh B, Boivin CM, Bonser RS, Elliott TSJ, Marshall T, Mountford PJ, Bion JF (1996) Intestinal permeability, gastric intramucosal pH, and systemic endotoxemia in patients undergoing cardiopulmonary bypass. JAMA 275:1007–1012PubMedCrossRef Riddington DW, Venkatesh B, Boivin CM, Bonser RS, Elliott TSJ, Marshall T, Mountford PJ, Bion JF (1996) Intestinal permeability, gastric intramucosal pH, and systemic endotoxemia in patients undergoing cardiopulmonary bypass. JAMA 275:1007–1012PubMedCrossRef
7.
go back to reference Kirklin JW, Barrat-Boyes BG (1993) Hypothermia, circulatory arrest, and cardiopulmonary bypass. In: Cardiac surgery. Churchill Livingstone, New York, pp 62–73 Kirklin JW, Barrat-Boyes BG (1993) Hypothermia, circulatory arrest, and cardiopulmonary bypass. In: Cardiac surgery. Churchill Livingstone, New York, pp 62–73
8.
go back to reference Cooper MM, Elliott MJ (1994) Cardiopulmonary bypass in neonates, infants and young children. In: Jonas RA, Elliott MJ (eds) Haemodilution. Butterworth-Heinemann, Oxford, pp 82–89 Cooper MM, Elliott MJ (1994) Cardiopulmonary bypass in neonates, infants and young children. In: Jonas RA, Elliott MJ (eds) Haemodilution. Butterworth-Heinemann, Oxford, pp 82–89
9.
go back to reference Trzeciak S, McCoy JV, Phillip Dellinger R, Arnold RC, Rizzuto M, Abate NL, Shapiro NI, Parrillo JE, Hollenberg SM (2008) Early increases in microcirculatory perfusion during protocol-directed resuscitation are associated with reduced multi-organ failure at 24 h in patients with sepsis. Intensive Care Med 34:2210–2217PubMedCrossRef Trzeciak S, McCoy JV, Phillip Dellinger R, Arnold RC, Rizzuto M, Abate NL, Shapiro NI, Parrillo JE, Hollenberg SM (2008) Early increases in microcirculatory perfusion during protocol-directed resuscitation are associated with reduced multi-organ failure at 24 h in patients with sepsis. Intensive Care Med 34:2210–2217PubMedCrossRef
10.
go back to reference De Blasi RA, Palmisani S, Alampi D, Mercieri M, Romano R, Collini S, Pinto G (2005) Microvascular dysfunction and skeletal muscle oxygenation assessed by phase-modulation near infrared spectroscopy in patients with septic shock. Intensive Care Med 31:1661–1668PubMedCrossRef De Blasi RA, Palmisani S, Alampi D, Mercieri M, Romano R, Collini S, Pinto G (2005) Microvascular dysfunction and skeletal muscle oxygenation assessed by phase-modulation near infrared spectroscopy in patients with septic shock. Intensive Care Med 31:1661–1668PubMedCrossRef
11.
go back to reference De Blasi RA, Luciani R, Punzo G, Arcioni R, Romano R, Boezi M, Menè P (2009) Microcirculatory changes and skeletal muscle oxygenation measured at rest by non-infrared spectroscopy in patients with and without diabetes undergoing haemodialysis. Crit Care 13(5):S9–S19PubMedCrossRef De Blasi RA, Luciani R, Punzo G, Arcioni R, Romano R, Boezi M, Menè P (2009) Microcirculatory changes and skeletal muscle oxygenation measured at rest by non-infrared spectroscopy in patients with and without diabetes undergoing haemodialysis. Crit Care 13(5):S9–S19PubMedCrossRef
12.
go back to reference Homma S, Eda H, Ogasawara S, Kagaya A (1996) Near infrared estimation of O2 supply and consumption in forearm muscles working at varying intensity. J Appl Physiol 80:1279–1284PubMed Homma S, Eda H, Ogasawara S, Kagaya A (1996) Near infrared estimation of O2 supply and consumption in forearm muscles working at varying intensity. J Appl Physiol 80:1279–1284PubMed
13.
go back to reference Van Beekvelt MCP, Colier WNJM, Van Engelen BGM, Hopman MTE, Wevers RA, Oeseburg B (1998) Validation of measurement protocols to assess oxygen consumption and blood flow in the human forearm by near infrared spectroscopy. In: Benaron DA, Chance B, and Ferrari M (eds) Photon propagation in tissues. III. Proc SPIE 3194:133–144 Van Beekvelt MCP, Colier WNJM, Van Engelen BGM, Hopman MTE, Wevers RA, Oeseburg B (1998) Validation of measurement protocols to assess oxygen consumption and blood flow in the human forearm by near infrared spectroscopy. In: Benaron DA, Chance B, and Ferrari M (eds) Photon propagation in tissues. III. Proc SPIE 3194:133–144
14.
go back to reference Yoshitani K, Kawaguchi M, Okuno T, Kanoda T, Ohnishi Y, Kuro M, Nishizawa M (2007) Measurements of optical pathlength using phase-resolved spectroscopy in patients undergoing cardiopulmonary bypass. Anesth Analg 104:341–346PubMedCrossRef Yoshitani K, Kawaguchi M, Okuno T, Kanoda T, Ohnishi Y, Kuro M, Nishizawa M (2007) Measurements of optical pathlength using phase-resolved spectroscopy in patients undergoing cardiopulmonary bypass. Anesth Analg 104:341–346PubMedCrossRef
15.
go back to reference Roques F, Michel P, Goldstone AR, Nashef SA (2003) The logistic EuroSCORE. Eur Heart J 24(9):882–883CrossRef Roques F, Michel P, Goldstone AR, Nashef SA (2003) The logistic EuroSCORE. Eur Heart J 24(9):882–883CrossRef
16.
go back to reference Fantini S, Franceschini MA, Maier JS, Walker SA, Barbieri B, Gratton E (1995) Frequency domain multichannel optical detector for non-invasive tissue spectroscopy and oxymetry. Opt Eng 34:32–42CrossRef Fantini S, Franceschini MA, Maier JS, Walker SA, Barbieri B, Gratton E (1995) Frequency domain multichannel optical detector for non-invasive tissue spectroscopy and oxymetry. Opt Eng 34:32–42CrossRef
17.
go back to reference De Blasi RA, Ferrari M, Natali A, Conti G, Mega A, Gasparetto A (1994) Noninvasive measurement of forearm blood flow and oxygen consumption by near infrared spectroscopy. J Appl Physiol 76:1388–1393PubMed De Blasi RA, Ferrari M, Natali A, Conti G, Mega A, Gasparetto A (1994) Noninvasive measurement of forearm blood flow and oxygen consumption by near infrared spectroscopy. J Appl Physiol 76:1388–1393PubMed
18.
go back to reference Van Beekvelt M, Borghuis M, Van Engelen B, Wevers R, Collier W (2001) Adipose tissue thickness affects in vivo quantitative near-IR spectroscopy in human skeletal muscle. Clin Sci (Lond) 101:21–28CrossRef Van Beekvelt M, Borghuis M, Van Engelen B, Wevers R, Collier W (2001) Adipose tissue thickness affects in vivo quantitative near-IR spectroscopy in human skeletal muscle. Clin Sci (Lond) 101:21–28CrossRef
19.
go back to reference De Backer D, Creteur J, Dubois MJ, Sakr Y, Koch M, Verdant C, Vincent JL (2006) The effects of dobutamine on microcirculatory alterations in patients with septic shock are independent of its systemic effects. Crit Care Med 34:403–408PubMedCrossRef De Backer D, Creteur J, Dubois MJ, Sakr Y, Koch M, Verdant C, Vincent JL (2006) The effects of dobutamine on microcirculatory alterations in patients with septic shock are independent of its systemic effects. Crit Care Med 34:403–408PubMedCrossRef
20.
go back to reference Gaehtgens P (1984) ‘Regulation’ of capillary haematocrit. Int J Microcirc Clin Exp 3(2):147–160PubMed Gaehtgens P (1984) ‘Regulation’ of capillary haematocrit. Int J Microcirc Clin Exp 3(2):147–160PubMed
21.
go back to reference Lindbom L, Mirhashemi S, Intaglietta M, Arfors KE (1988) Increase in capillary blood flow and relative haematocrit in rabbit skeletal muscle following acute normovolaemic anaemia. Acta Physiol Scand 134(4):503–512PubMedCrossRef Lindbom L, Mirhashemi S, Intaglietta M, Arfors KE (1988) Increase in capillary blood flow and relative haematocrit in rabbit skeletal muscle following acute normovolaemic anaemia. Acta Physiol Scand 134(4):503–512PubMedCrossRef
22.
go back to reference Gonzàlez-Alonso J, Mortensen SP, Dawson EA, Secher NH, Damsgaard R (2006) Erythrocytes and the regulation of human skeletal muscle blood flow and oxygen delivery: role of erythrocyte count and oxygenation state of haemoglobin. J Physiol 572(1):295–305PubMed Gonzàlez-Alonso J, Mortensen SP, Dawson EA, Secher NH, Damsgaard R (2006) Erythrocytes and the regulation of human skeletal muscle blood flow and oxygen delivery: role of erythrocyte count and oxygenation state of haemoglobin. J Physiol 572(1):295–305PubMed
23.
go back to reference Wolff CB (2007) Normal cardiac output, oxygen delivery and oxygen extraction. Adv Exp Med Biol 599:169–182PubMedCrossRef Wolff CB (2007) Normal cardiac output, oxygen delivery and oxygen extraction. Adv Exp Med Biol 599:169–182PubMedCrossRef
24.
go back to reference Ellsworth ML (2004) Red blood cell-derived ATP as a regulator of skeletal muscle perfusion. Med Sci Sports Exerc 36:35–41PubMedCrossRef Ellsworth ML (2004) Red blood cell-derived ATP as a regulator of skeletal muscle perfusion. Med Sci Sports Exerc 36:35–41PubMedCrossRef
25.
go back to reference Singel DJ, Stamler JS (2005) Chemical physiology of blood flow regulation by red blood cells: the role of nitric oxide and S-nitrosohaemoglobin. Annu Rev Physiol 67:99–145PubMedCrossRef Singel DJ, Stamler JS (2005) Chemical physiology of blood flow regulation by red blood cells: the role of nitric oxide and S-nitrosohaemoglobin. Annu Rev Physiol 67:99–145PubMedCrossRef
26.
go back to reference Wan S, LeClerc JL, Vincent JL (1997) Cytokine responses to cardiopulmonary bypass: lessons learned from cardiac transplantation. Ann Thorac Surg 63:269–276PubMedCrossRef Wan S, LeClerc JL, Vincent JL (1997) Cytokine responses to cardiopulmonary bypass: lessons learned from cardiac transplantation. Ann Thorac Surg 63:269–276PubMedCrossRef
27.
go back to reference Kamler M, Goedeke J, Pizanis N, Milekhin V, Schade FU, Jakob H (2005) In vivo effects of hypothermia on the microcirculation during extracorporeal circulation. Eur J Cardiothorac Surg 28:259–265PubMedCrossRef Kamler M, Goedeke J, Pizanis N, Milekhin V, Schade FU, Jakob H (2005) In vivo effects of hypothermia on the microcirculation during extracorporeal circulation. Eur J Cardiothorac Surg 28:259–265PubMedCrossRef
28.
go back to reference De Backer D, Ortiz JA, Salgado D (2010) Coupling microcirculation to systemic hemodynamics. Curr Opin Crit Care 16:250–254PubMedCrossRef De Backer D, Ortiz JA, Salgado D (2010) Coupling microcirculation to systemic hemodynamics. Curr Opin Crit Care 16:250–254PubMedCrossRef
29.
go back to reference Gaehtgens P (1984) ‘Regulation’ of capillary haematocrit. Int J Microcirc Clin Exp 3(2):147–160PubMed Gaehtgens P (1984) ‘Regulation’ of capillary haematocrit. Int J Microcirc Clin Exp 3(2):147–160PubMed
Metadata
Title
In vivo effects on human skeletal muscle oxygen delivery and metabolism of cardiopulmonary bypass and perioperative hemodilution
Authors
R. A. De Blasi
E. Tonelli
R. Arcioni
M. Mercieri
L. Cigognetti
R. Romano
G. Pinto
Publication date
01-03-2012
Publisher
Springer-Verlag
Published in
Intensive Care Medicine / Issue 3/2012
Print ISSN: 0342-4642
Electronic ISSN: 1432-1238
DOI
https://doi.org/10.1007/s00134-011-2404-0

Other articles of this Issue 3/2012

Intensive Care Medicine 3/2012 Go to the issue