Skip to main content
Top
Published in: European Radiology 8/2015

01-08-2015 | Magnetic Resonance

In vivo analysis of physiological 3D blood flow of cerebral veins

Authors: Florian Schuchardt, Laure Schroeder, Constantin Anastasopoulos, Michael Markl, Jochen Bäuerle, Anja Hennemuth, Johann Drexl, José M. Valdueza, Irina Mader, Andreas Harloff

Published in: European Radiology | Issue 8/2015

Login to get access

Abstract

Objectives

To visualize and quantify physiological blood flow of intracranial veins in vivo using time-resolved, 3D phase-contrast MRI (4D flow MRI), and to test measurement accuracy.

Methods

Fifteen healthy volunteers underwent repeated ECG-triggered 4D flow MRI (3 Tesla, 32-channel head coil). Intracranial venous blood flow was analysed using dedicated software allowing for blood flow visualization and quantification in analysis planes at the superior sagittal, straight, and transverse sinuses. MRI was evaluated for intra- and inter-observer agreement and scan-rescan reproducibility. Measurements of the transverse sinuses were compared with transcranial two-dimensional duplex ultrasound.

Results

Visualization of 3D blood flow within cerebral sinuses was feasible in 100 % and within at least one deep cerebral vein in 87 % of the volunteers. Blood flow velocity/volume increased along the superior sagittal sinus and was lower in the left compared to the right transverse sinus. Intra- and inter-observer reliability and reproducibility of blood flow velocity (mean difference 0.01/0.02/0.02 m/s) and volume (mean difference 0.0002/-0.0003/0.00003 l/s) were good to excellent. High/low velocities were more pronounced (8 % overestimation/9 % underestimation) in MRI compared to ultrasound.

Conclusions

Four-dimensional flow MRI reliably visualizes and quantifies three-dimensional cerebral venous blood flow in vivo and is promising for studies in patients with sinus thrombosis and related diseases.

Key Points

4D flow MRI can be used to visualize and quantify physiological cerebral venous haemodynamics
Flow quantification within cerebral sinuses reveals high reliability and accuracy of 4D flow MRI
Blood flow volume and velocity increase along the superior sagittal sinus
Limited spatial resolution currently precludes flow quantification in small cerebral veins
Appendix
Available only for authorised users
Literature
1.
go back to reference Einhäupl KM, Villringer A, Meister W et al (1991) Heparin treatment in sinus venous thrombosis. Lancet 338:597–600PubMedCrossRef Einhäupl KM, Villringer A, Meister W et al (1991) Heparin treatment in sinus venous thrombosis. Lancet 338:597–600PubMedCrossRef
2.
go back to reference Masuhr F, Mehraein S, Einhäupl K (2004) Cerebral venous and sinus thrombosis. J Neurol 251:11–23PubMedCrossRef Masuhr F, Mehraein S, Einhäupl K (2004) Cerebral venous and sinus thrombosis. J Neurol 251:11–23PubMedCrossRef
3.
go back to reference Bousser MG, Ferro JM (2007) Cerebral venous thrombosis: an update. Lancet Neurol 2:162–170CrossRef Bousser MG, Ferro JM (2007) Cerebral venous thrombosis: an update. Lancet Neurol 2:162–170CrossRef
4.
go back to reference Manara R, Mardari R, Ermani M, Severino MS, Santelli L, Carollo C (2010) Transverse dural sinuses: incidence of anatomical variants and flow artefacts with 2D time-of-flight MR venography at 1 Tesla. Radiol Med 115:326–338PubMedCrossRef Manara R, Mardari R, Ermani M, Severino MS, Santelli L, Carollo C (2010) Transverse dural sinuses: incidence of anatomical variants and flow artefacts with 2D time-of-flight MR venography at 1 Tesla. Radiol Med 115:326–338PubMedCrossRef
5.
go back to reference Ayanzen RH, Bird CR, Keller PJ, McCully FJ, Theobald MR, Heiserman JE (2000) Cerebral MR venography: normal anatomy and potential diagnostic pitfalls. Am J Neuroradiol 21:74–78PubMed Ayanzen RH, Bird CR, Keller PJ, McCully FJ, Theobald MR, Heiserman JE (2000) Cerebral MR venography: normal anatomy and potential diagnostic pitfalls. Am J Neuroradiol 21:74–78PubMed
6.
go back to reference Stolz E, Kaps M, Kern A, Babacan SS, Dorndorf W (1999) Transcranial color-coded duplex sonography of intracranial veins and sinuses in adults. Reference data from 130 volunteers. Stroke 30:1070–1075PubMedCrossRef Stolz E, Kaps M, Kern A, Babacan SS, Dorndorf W (1999) Transcranial color-coded duplex sonography of intracranial veins and sinuses in adults. Reference data from 130 volunteers. Stroke 30:1070–1075PubMedCrossRef
7.
go back to reference Schreiber SJ, Stolz E, Valdueza JM (2002) Transcranial ultrasonography of cerebral veins and sinuses. Eur J Ultrasound 1–2:59–72CrossRef Schreiber SJ, Stolz E, Valdueza JM (2002) Transcranial ultrasonography of cerebral veins and sinuses. Eur J Ultrasound 1–2:59–72CrossRef
8.
go back to reference Wattjes MP, van Oosten BW, de Graaf WL et al (2011) No association of abnormal cranial venous drainage with multiple sclerosis: a magnetic resonance venography and flow-quantification study. J Neurol Neurosurg Psychiatry 82:429–435PubMedCrossRef Wattjes MP, van Oosten BW, de Graaf WL et al (2011) No association of abnormal cranial venous drainage with multiple sclerosis: a magnetic resonance venography and flow-quantification study. J Neurol Neurosurg Psychiatry 82:429–435PubMedCrossRef
9.
go back to reference Rodger IW, Dilar D, Dwyer J et al (2013) Evidence against the involvement of chronic cerebrospinal venous abnormalities in multiple sclerosis. A case-control study. PLoS One 8:e72495PubMedCentralPubMedCrossRef Rodger IW, Dilar D, Dwyer J et al (2013) Evidence against the involvement of chronic cerebrospinal venous abnormalities in multiple sclerosis. A case-control study. PLoS One 8:e72495PubMedCentralPubMedCrossRef
10.
go back to reference ElSankari S, Balédent O, van Pesch V et al (2013) Concomitant analysis of arterial, venous, and CSF flows using phase-contrast MRI: a quantitative comparison between MS patients and healthy controls. J Cereb Blood Flow Metab 33:1314–1321PubMedCentralPubMedCrossRef ElSankari S, Balédent O, van Pesch V et al (2013) Concomitant analysis of arterial, venous, and CSF flows using phase-contrast MRI: a quantitative comparison between MS patients and healthy controls. J Cereb Blood Flow Metab 33:1314–1321PubMedCentralPubMedCrossRef
11.
go back to reference Bammer R, Hope TA, Aksoy M, Alley MT (2007) Time-resolved 3D quantitative flow MRI of the major intracranial vessels: initial experience and comparative evaluation at 1.5T and 3.0T in combination with parallel imaging. Magn Reson Med 57:127–140PubMedCentralPubMedCrossRef Bammer R, Hope TA, Aksoy M, Alley MT (2007) Time-resolved 3D quantitative flow MRI of the major intracranial vessels: initial experience and comparative evaluation at 1.5T and 3.0T in combination with parallel imaging. Magn Reson Med 57:127–140PubMedCentralPubMedCrossRef
12.
go back to reference Harloff A, Albrecht F, Spreer J et al (2009) 3D blood flow characteristics in the carotid artery bifurcation assessed by flow-sensitive 4D MRI at 3T. Magn Reson Med 61:65–74PubMedCrossRef Harloff A, Albrecht F, Spreer J et al (2009) 3D blood flow characteristics in the carotid artery bifurcation assessed by flow-sensitive 4D MRI at 3T. Magn Reson Med 61:65–74PubMedCrossRef
13.
go back to reference Harloff A, Berg S, Barker AJ et al (2013) Wall shear stress distribution at the carotid bifurcation: influence of eversion carotid endarterectomy. Eur Radiol 23:3361–3369PubMedCrossRef Harloff A, Berg S, Barker AJ et al (2013) Wall shear stress distribution at the carotid bifurcation: influence of eversion carotid endarterectomy. Eur Radiol 23:3361–3369PubMedCrossRef
14.
go back to reference Bogren HG, Buonocore MH (1999) 4D magnetic resonance velocity mapping of blood flow patterns in the aorta in young vs. elderly normal subjects. J Magn Reson Imaging 10:861–869PubMedCrossRef Bogren HG, Buonocore MH (1999) 4D magnetic resonance velocity mapping of blood flow patterns in the aorta in young vs. elderly normal subjects. J Magn Reson Imaging 10:861–869PubMedCrossRef
15.
go back to reference Harloff A, Simon J, Brendecke S et al (2010) Complex plaques in the proximal descending aorta: an underestimated embolic source of stroke. Stroke 41:1145–1450PubMedCrossRef Harloff A, Simon J, Brendecke S et al (2010) Complex plaques in the proximal descending aorta: an underestimated embolic source of stroke. Stroke 41:1145–1450PubMedCrossRef
16.
go back to reference Hope MD, Sedlic T, Dyverfeldt P (2013) Cardiothoracic magnetic resonance flow imaging. J Thorac Imaging 28:217–230PubMedCrossRef Hope MD, Sedlic T, Dyverfeldt P (2013) Cardiothoracic magnetic resonance flow imaging. J Thorac Imaging 28:217–230PubMedCrossRef
17.
go back to reference Santini F, Wetzel SG, Bock J, Markl M, Scheffler K (2009) Time-resolved three-dimensional (3D) phase-contrast (PC) balanced steady-state free precession (bSSFP). Magn Reson Med 62:966–974PubMedCrossRef Santini F, Wetzel SG, Bock J, Markl M, Scheffler K (2009) Time-resolved three-dimensional (3D) phase-contrast (PC) balanced steady-state free precession (bSSFP). Magn Reson Med 62:966–974PubMedCrossRef
19.
go back to reference Markl M, Harloff A, Bley TA et al (2007) Time-resolved 3D MR velocity mapping at 3T: improved navigator-gated assessment of vascular anatomy and blood flow. J Magn Reson Imaging 25:824–831PubMedCrossRef Markl M, Harloff A, Bley TA et al (2007) Time-resolved 3D MR velocity mapping at 3T: improved navigator-gated assessment of vascular anatomy and blood flow. J Magn Reson Imaging 25:824–831PubMedCrossRef
20.
go back to reference Hennemuth A, Friman O, Schumann C et al (2011) Fast Interactive Exploration of 4D MRI Flow Data. SPIE Medical Imaging Conference Hennemuth A, Friman O, Schumann C et al (2011) Fast Interactive Exploration of 4D MRI Flow Data. SPIE Medical Imaging Conference
21.
go back to reference Lankhaar JW, Hofman MBM, Marcus JT et al (2005) Correction of phase offset errors in main pulmonary artery flow quantification. J Magn Reson Imaging 22:73–79PubMedCrossRef Lankhaar JW, Hofman MBM, Marcus JT et al (2005) Correction of phase offset errors in main pulmonary artery flow quantification. J Magn Reson Imaging 22:73–79PubMedCrossRef
22.
go back to reference Diaz C, Altamirano-Robles L (2004) Fast noncontinuous path phase-unwrapping algorithm based on gradients and mask. In: Sanfeliu A, Martinez-Trinidad J, Carrasco-Ochoa JA (eds) Lecture notes in computer science. Springer, Berlin/Heidelberg, pp 116–123 Diaz C, Altamirano-Robles L (2004) Fast noncontinuous path phase-unwrapping algorithm based on gradients and mask. In: Sanfeliu A, Martinez-Trinidad J, Carrasco-Ochoa JA (eds) Lecture notes in computer science. Springer, Berlin/Heidelberg, pp 116–123
23.
go back to reference Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310PubMedCrossRef Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310PubMedCrossRef
24.
go back to reference Canstein C, Cachot P, Faust A et al (2008) 3D MR flow analysis in realistic rapid-prototyping model systems of the thoracic aorta: comparison with in vivo data and computational fluid dynamics in identical vessel geometries. Magn Reson Med 59:535–546PubMedCrossRef Canstein C, Cachot P, Faust A et al (2008) 3D MR flow analysis in realistic rapid-prototyping model systems of the thoracic aorta: comparison with in vivo data and computational fluid dynamics in identical vessel geometries. Magn Reson Med 59:535–546PubMedCrossRef
25.
go back to reference Harloff A, Zech T, Wegent F, Strecker C, Weiller C, Markl M (2013) Comparison of blood flow velocity quantification by 4D flow MR imaging with ultrasound at the carotid bifurcation. AJNR Am J Neuroradiol 34:1407–1413PubMedCrossRef Harloff A, Zech T, Wegent F, Strecker C, Weiller C, Markl M (2013) Comparison of blood flow velocity quantification by 4D flow MR imaging with ultrasound at the carotid bifurcation. AJNR Am J Neuroradiol 34:1407–1413PubMedCrossRef
26.
go back to reference Hope MD, Purcell DD, Hope TA et al (2009) Complete intracranial arterial and venous blood flow evaluation with 4D Flow MR imaging. Am J Neuroradiol 30:362–366PubMedCrossRef Hope MD, Purcell DD, Hope TA et al (2009) Complete intracranial arterial and venous blood flow evaluation with 4D Flow MR imaging. Am J Neuroradiol 30:362–366PubMedCrossRef
27.
go back to reference Ansari SA, Schnell S, Carroll T et al (2013) Intracranial 4D Flow MRI: toward individualized assessment of arteriovenous malformation hemodynamics and treatment-induced changes. Am J Neuroradiol 34:1922–1928PubMedCrossRef Ansari SA, Schnell S, Carroll T et al (2013) Intracranial 4D Flow MRI: toward individualized assessment of arteriovenous malformation hemodynamics and treatment-induced changes. Am J Neuroradiol 34:1922–1928PubMedCrossRef
28.
go back to reference Sagduyu A, Sirin H, Mulayim S et al (2006) Cerebral cortical and deep venous thrombosis without sinus thrombosis: clinical MRI correlates. Acta Neurol Scand 114:254–260PubMedCrossRef Sagduyu A, Sirin H, Mulayim S et al (2006) Cerebral cortical and deep venous thrombosis without sinus thrombosis: clinical MRI correlates. Acta Neurol Scand 114:254–260PubMedCrossRef
29.
go back to reference Frydrychowicz A, Berger A, Munoz del Rio A et al (2011) Interdependencies of aortic arch secondary flow patterns, geometry, and age analysed by 4-dimensional phase contrast magnetic resonance imaging at 3 Tesla. Eur Radiol 22:1122–1130PubMedCrossRef Frydrychowicz A, Berger A, Munoz del Rio A et al (2011) Interdependencies of aortic arch secondary flow patterns, geometry, and age analysed by 4-dimensional phase contrast magnetic resonance imaging at 3 Tesla. Eur Radiol 22:1122–1130PubMedCrossRef
30.
go back to reference Cosar M, Seker A, Ceylan D, et al (2014) Determining the morphometry and variations of the confluens sinuum and related structures via a silicone painting technique on autopsy patients. J Craniofac Surg 6:2199–2204 Cosar M, Seker A, Ceylan D, et al (2014) Determining the morphometry and variations of the confluens sinuum and related structures via a silicone painting technique on autopsy patients. J Craniofac Surg 6:2199–2204
31.
go back to reference Alper F, Kantarci M, Dane S, Gumustekin K, Onbas O, Durur I (2004) Importance of anatomical asymmetries of transverse sinuses: an MR venographic study. Cerebrovasc Dis 18:236–239PubMedCrossRef Alper F, Kantarci M, Dane S, Gumustekin K, Onbas O, Durur I (2004) Importance of anatomical asymmetries of transverse sinuses: an MR venographic study. Cerebrovasc Dis 18:236–239PubMedCrossRef
32.
go back to reference Surendrababu NR, Subathira, Livingstone RS (2006) Variations in the cerebral venous anatomy and pitfalls in the diagnosis of cerebral venous sinus thrombosis: low field MR experience. Indian J Med Sci 60:135–142PubMedCrossRef Surendrababu NR, Subathira, Livingstone RS (2006) Variations in the cerebral venous anatomy and pitfalls in the diagnosis of cerebral venous sinus thrombosis: low field MR experience. Indian J Med Sci 60:135–142PubMedCrossRef
33.
go back to reference Mattle H, Edelman RR, Reis MA, Atkinson DJ (1990) Flow quantification in the superior sagittal sinus using magnetic resonance. Neurology 40:813–815PubMedCrossRef Mattle H, Edelman RR, Reis MA, Atkinson DJ (1990) Flow quantification in the superior sagittal sinus using magnetic resonance. Neurology 40:813–815PubMedCrossRef
34.
go back to reference Kuriyama N, Tokuda T, Yamada K et al (2011) Flow velocity of the superior sagittal sinus is reduced in patients with idiopathic normal pressure hydrocephalus. J Neuroimaging 21:365–369PubMedCrossRef Kuriyama N, Tokuda T, Yamada K et al (2011) Flow velocity of the superior sagittal sinus is reduced in patients with idiopathic normal pressure hydrocephalus. J Neuroimaging 21:365–369PubMedCrossRef
35.
go back to reference Stolz E, Kaps M, Dorndorf W (1999) Assessment of intracranial venous hemodynamics in normal individuals and patients with cerebral venous thrombosis. Stroke 30:70–75PubMedCrossRef Stolz E, Kaps M, Dorndorf W (1999) Assessment of intracranial venous hemodynamics in normal individuals and patients with cerebral venous thrombosis. Stroke 30:70–75PubMedCrossRef
36.
go back to reference Valdueza JM, Schmierer K, Mehraein S, Einhäupl KM (1996) Assessment of normal flow velocity in basal cerebral veins. Stroke 27:1221–1225PubMedCrossRef Valdueza JM, Schmierer K, Mehraein S, Einhäupl KM (1996) Assessment of normal flow velocity in basal cerebral veins. Stroke 27:1221–1225PubMedCrossRef
37.
go back to reference Tariq U, Hsiao A, Alley M, Zhang T, Lustig M, Vasanawala SS (2013) Venous and arterial flow quantification are equally accurate and precise with parallel imaging compressed sensing 4D phase contrast MRI. J Magn Reson Imaging 37:1419–1426PubMedCentralPubMedCrossRef Tariq U, Hsiao A, Alley M, Zhang T, Lustig M, Vasanawala SS (2013) Venous and arterial flow quantification are equally accurate and precise with parallel imaging compressed sensing 4D phase contrast MRI. J Magn Reson Imaging 37:1419–1426PubMedCentralPubMedCrossRef
Metadata
Title
In vivo analysis of physiological 3D blood flow of cerebral veins
Authors
Florian Schuchardt
Laure Schroeder
Constantin Anastasopoulos
Michael Markl
Jochen Bäuerle
Anja Hennemuth
Johann Drexl
José M. Valdueza
Irina Mader
Andreas Harloff
Publication date
01-08-2015
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 8/2015
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-014-3587-x

Other articles of this Issue 8/2015

European Radiology 8/2015 Go to the issue