Skip to main content
Top
Published in: Archives of Dermatological Research 2/2017

01-03-2017 | Original Paper

In vitro cultured fetal fibroblasts have myofibroblast-associated characteristics and produce a fibrotic-like environment upon stimulation with TGF-β1: Is there a thin line between fetal scarless healing and fibrosis?

Authors: M. Walraven, J. J. Akershoek, R. H. J. Beelen, M. M. W. Ulrich

Published in: Archives of Dermatological Research | Issue 2/2017

Login to get access

Abstract

Transforming growth factor-β (TGF-β) is a cytokine occurring in three isoforms with an important function in development and wound healing. In wound healing, prolonged TGF-β signaling results in myofibroblast differentiation and fibrosis. In contrast, the developing second-trimester fetal skin contains high levels of all three TGF-β isoforms but still has the intrinsic capacity to heal without scarring. Insight into TGF-β signal transduction during fetal wound healing might lead to methods to control the signaling pathway during adult wound healing. In this study, we imitated wound healing in vitro by stimulating fibroblasts with TGF-β1 and examining myofibroblast differentiation. The aim was to gain insight into TGF-β signaling in human fibroblasts from fetal and adult dermis. First, TGF-β1 stimulation resulted in similar or even more severe upregulation of myofibroblast-associated genes in fetal fibroblasts compared to adult fibroblasts. Second, fetal fibroblasts also had higher protein levels of myofibroblast-marker α-smooth muscle actin (α-SMA). Third, stimulated fetal fibroblasts in collagen matrices had higher protein levels of α-SMA, produced more of the fibrotic protein fibronectin splice-variant extra domain A (FnEDA), and showed enhanced contraction. Finally, fetal fibroblasts also produced significant higher levels of TGF-β1. Altogether, these data show that in vitro cultured fetal fibroblasts have myofibroblast-associated characteristics and do produce a fibrotic environment. As healthy fetal skin has high levels of TGF-β1, FnEDA, and collagen-III as well, these findings correlate with the in vivo situation. Therefore, our study demonstrates that there are similarities between fetal skin development and fibrosis and shows the necessity to discriminate between these processes.
Literature
1.
go back to reference Arora PD, Narani N, McCulloch CA (1999) The compliance of collagen gels regulates transforming growth factor-beta induction of alpha-smooth muscle actin in fibroblasts. Am J Pathol 154:871–882CrossRefPubMedPubMedCentral Arora PD, Narani N, McCulloch CA (1999) The compliance of collagen gels regulates transforming growth factor-beta induction of alpha-smooth muscle actin in fibroblasts. Am J Pathol 154:871–882CrossRefPubMedPubMedCentral
2.
go back to reference Balaji S, King A, Marsh E, LeSaint M, Bhattacharya SS, Han N, Dhamija Y, Ranjan R, Le LD, Bollyky PL, Crombleholme TM, Keswani SG (2015) The role of interleukin-10 and hyaluronan in murine fetal fibroblast function in vitro: implications for recapitulating fetal regenerative wound healing. PLoS One 10:e0124302CrossRefPubMedPubMedCentral Balaji S, King A, Marsh E, LeSaint M, Bhattacharya SS, Han N, Dhamija Y, Ranjan R, Le LD, Bollyky PL, Crombleholme TM, Keswani SG (2015) The role of interleukin-10 and hyaluronan in murine fetal fibroblast function in vitro: implications for recapitulating fetal regenerative wound healing. PLoS One 10:e0124302CrossRefPubMedPubMedCentral
3.
go back to reference Bernstein AM, Twining SS, Warejcka DJ, Tall E, Masur SK (2007) Urokinase receptor cleavage: a crucial step in fibroblast-to-myofibroblast differentiation. Mol Biol Cell 18:2716–2727CrossRefPubMedPubMedCentral Bernstein AM, Twining SS, Warejcka DJ, Tall E, Masur SK (2007) Urokinase receptor cleavage: a crucial step in fibroblast-to-myofibroblast differentiation. Mol Biol Cell 18:2716–2727CrossRefPubMedPubMedCentral
4.
go back to reference Biggs LC, Goudy SL, Dunnwald M (2015) Palatogenesis and cutaneous repair: a two-headed coin. Dev Dyn 244:289–310CrossRefPubMed Biggs LC, Goudy SL, Dunnwald M (2015) Palatogenesis and cutaneous repair: a two-headed coin. Dev Dyn 244:289–310CrossRefPubMed
5.
go back to reference Bruno G, Cencetti F, Pertici I, Japtok L, Bernacchioni C, Donati C, Bruni P (2015) CTGF/CCN2 exerts profibrotic action in myoblasts via the up-regulation of sphingosine kinase-1/S1P3 signaling axis: implications in the action mechanism of TGFbeta. Biochim Biophys Acta 1851:194–202CrossRefPubMed Bruno G, Cencetti F, Pertici I, Japtok L, Bernacchioni C, Donati C, Bruni P (2015) CTGF/CCN2 exerts profibrotic action in myoblasts via the up-regulation of sphingosine kinase-1/S1P3 signaling axis: implications in the action mechanism of TGFbeta. Biochim Biophys Acta 1851:194–202CrossRefPubMed
6.
go back to reference Carre AL, James AW, MacLeod L, Kong W, Kawai K, Longaker MT, Lorenz HP (2010) Interaction of wingless protein (Wnt), transforming growth factor-beta1, and hyaluronan production in fetal and postnatal fibroblasts. Plast Reconstr Surg 125:74–88CrossRefPubMed Carre AL, James AW, MacLeod L, Kong W, Kawai K, Longaker MT, Lorenz HP (2010) Interaction of wingless protein (Wnt), transforming growth factor-beta1, and hyaluronan production in fetal and postnatal fibroblasts. Plast Reconstr Surg 125:74–88CrossRefPubMed
7.
go back to reference Cha J, Kwak T, Butmarc J, Kim TA, Yufit T, Carson P, Kim SJ, Falanga V (2008) Fibroblasts from non-healing human chronic wounds show decreased expression of beta ig-h3, a TGF-beta inducible protein. J Dermatol Sci 50:15–23CrossRefPubMed Cha J, Kwak T, Butmarc J, Kim TA, Yufit T, Carson P, Kim SJ, Falanga V (2008) Fibroblasts from non-healing human chronic wounds show decreased expression of beta ig-h3, a TGF-beta inducible protein. J Dermatol Sci 50:15–23CrossRefPubMed
8.
go back to reference Colwell AS, Krummel TM, Longaker MT, Lorenz HP (2006) Fetal and adult fibroblasts have similar TGF-beta-mediated, Smad-dependent signaling pathways. Plast Reconstr Surg 117:2277–2283CrossRefPubMed Colwell AS, Krummel TM, Longaker MT, Lorenz HP (2006) Fetal and adult fibroblasts have similar TGF-beta-mediated, Smad-dependent signaling pathways. Plast Reconstr Surg 117:2277–2283CrossRefPubMed
9.
go back to reference Cukierman E, Pankov R, Yamada KM (2002) Cell interactions with three-dimensional matrices. Curr Opin Cell Biol 14:633–639CrossRefPubMed Cukierman E, Pankov R, Yamada KM (2002) Cell interactions with three-dimensional matrices. Curr Opin Cell Biol 14:633–639CrossRefPubMed
10.
go back to reference Cuttle L, Nataatmadja M, Fraser JF, Kempf M, Kimble RM, Hayes MT (2005) Collagen in the scarless fetal skin wound: detection with picrosirius-polarization. Wound Repair Regen 13:198–204CrossRefPubMed Cuttle L, Nataatmadja M, Fraser JF, Kempf M, Kimble RM, Hayes MT (2005) Collagen in the scarless fetal skin wound: detection with picrosirius-polarization. Wound Repair Regen 13:198–204CrossRefPubMed
11.
go back to reference Darby I, Skalli O, Gabbiani G (1990) Alpha-smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing. Lab Invest 63:21–29PubMed Darby I, Skalli O, Gabbiani G (1990) Alpha-smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing. Lab Invest 63:21–29PubMed
12.
go back to reference Desmouliere A, Geinoz A, Gabbiani F, Gabbiani G (1993) Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol 122:103–111CrossRefPubMed Desmouliere A, Geinoz A, Gabbiani F, Gabbiani G (1993) Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol 122:103–111CrossRefPubMed
13.
go back to reference Desmouliere A, Redard M, Darby I, Gabbiani G (1995) Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am J Pathol 146:56–66PubMedPubMedCentral Desmouliere A, Redard M, Darby I, Gabbiani G (1995) Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am J Pathol 146:56–66PubMedPubMedCentral
14.
go back to reference Fringer J, Grinnell F (2001) Fibroblast quiescence in floating or released collagen matrices: contribution of the ERK signaling pathway and actin cytoskeletal organization. J Biol Chem 276:31047–31052CrossRefPubMed Fringer J, Grinnell F (2001) Fibroblast quiescence in floating or released collagen matrices: contribution of the ERK signaling pathway and actin cytoskeletal organization. J Biol Chem 276:31047–31052CrossRefPubMed
16.
go back to reference Glim JE, Niessen FB, Everts V, van Egmond M, Beelen RH (2013) Platelet derived growth factor-CC secreted by M2 macrophages induces alpha-smooth muscle actin expression by dermal and gingival fibroblasts. Immunobiology 218:924–929CrossRefPubMed Glim JE, Niessen FB, Everts V, van Egmond M, Beelen RH (2013) Platelet derived growth factor-CC secreted by M2 macrophages induces alpha-smooth muscle actin expression by dermal and gingival fibroblasts. Immunobiology 218:924–929CrossRefPubMed
17.
go back to reference Gosiewska A, Yi CF, Brown LJ, Cullen B, Silcock D, Geesin JC (2001) Differential expression and regulation of extracellular matrix-associated genes in fetal and neonatal fibroblasts. Wound Repair Regen 9:213–222CrossRefPubMed Gosiewska A, Yi CF, Brown LJ, Cullen B, Silcock D, Geesin JC (2001) Differential expression and regulation of extracellular matrix-associated genes in fetal and neonatal fibroblasts. Wound Repair Regen 9:213–222CrossRefPubMed
18.
go back to reference Hanasono MM, Kita M, Mikulec AA, Lonergan D, Koch RJ (2003) Autocrine growth factor production by fetal, keloid, and normal dermal fibroblasts. Arch Facial Plast Surg 5:26–30CrossRefPubMed Hanasono MM, Kita M, Mikulec AA, Lonergan D, Koch RJ (2003) Autocrine growth factor production by fetal, keloid, and normal dermal fibroblasts. Arch Facial Plast Surg 5:26–30CrossRefPubMed
19.
go back to reference Heng NH, Zahlten J, Cordes V, Ong MM, Goh BT, N’Guessan PD, Pischon N (2015) Effects of enamel matrix derivative and transforming growth factor-beta1 on connective tissue growth factor in human periodontal ligament fibroblasts. J Periodontol 86:569–577CrossRefPubMed Heng NH, Zahlten J, Cordes V, Ong MM, Goh BT, N’Guessan PD, Pischon N (2015) Effects of enamel matrix derivative and transforming growth factor-beta1 on connective tissue growth factor in human periodontal ligament fibroblasts. J Periodontol 86:569–577CrossRefPubMed
20.
go back to reference Hinz B (2006) Masters and servants of the force: the role of matrix adhesions in myofibroblast force perception and transmission. Eur J Cell Biol 85:175–181CrossRefPubMed Hinz B (2006) Masters and servants of the force: the role of matrix adhesions in myofibroblast force perception and transmission. Eur J Cell Biol 85:175–181CrossRefPubMed
21.
go back to reference Hinz B, Celetta G, Tomasek JJ, Gabbiani G, Chaponnier C (2001) Alpha-smooth muscle actin expression upregulates fibroblast contractile activity. Mol Biol Cell 12:2730–2741CrossRefPubMedPubMedCentral Hinz B, Celetta G, Tomasek JJ, Gabbiani G, Chaponnier C (2001) Alpha-smooth muscle actin expression upregulates fibroblast contractile activity. Mol Biol Cell 12:2730–2741CrossRefPubMedPubMedCentral
23.
go back to reference Hinz B, Phan SH, Thannickal VJ, Galli A, Bochaton-Piallat ML, Gabbiani G (2007) The myofibroblast: one function, multiple origins. Am J Pathol 170:1807–1816CrossRefPubMedPubMedCentral Hinz B, Phan SH, Thannickal VJ, Galli A, Bochaton-Piallat ML, Gabbiani G (2007) The myofibroblast: one function, multiple origins. Am J Pathol 170:1807–1816CrossRefPubMedPubMedCentral
24.
go back to reference Kishi K, Nakajima H, Tajima S (1999) Differential responses of collagen and glycosaminoglycan syntheses and cell proliferation to exogenous transforming growth factor beta 1 in the developing mouse skin fibroblasts in culture. Br J Plast Surg 52:579–582CrossRefPubMed Kishi K, Nakajima H, Tajima S (1999) Differential responses of collagen and glycosaminoglycan syntheses and cell proliferation to exogenous transforming growth factor beta 1 in the developing mouse skin fibroblasts in culture. Br J Plast Surg 52:579–582CrossRefPubMed
25.
go back to reference Klass BR, Grobbelaar AO, Rolfe KJ (2009) Transforming growth factor beta1 signalling, wound healing and repair: a multifunctional cytokine with clinical implications for wound repair, a delicate balance. Postgrad Med J 85:9–14CrossRefPubMed Klass BR, Grobbelaar AO, Rolfe KJ (2009) Transforming growth factor beta1 signalling, wound healing and repair: a multifunctional cytokine with clinical implications for wound repair, a delicate balance. Postgrad Med J 85:9–14CrossRefPubMed
26.
go back to reference Lee NJ, Wang SJ, Durairaj KK, Srivatsan ES, Wang MB (2000) Increased expression of transforming growth factor-beta1, acidic fibroblast growth factor, and basic fibroblast growth factor in fetal versus adult fibroblast cell lines. Laryngoscope 110:616–619CrossRefPubMed Lee NJ, Wang SJ, Durairaj KK, Srivatsan ES, Wang MB (2000) Increased expression of transforming growth factor-beta1, acidic fibroblast growth factor, and basic fibroblast growth factor in fetal versus adult fibroblast cell lines. Laryngoscope 110:616–619CrossRefPubMed
27.
go back to reference Li-Korotky HS, Hebda PA, Lo CY, Dohar JE (2007) Age-dependent differential expression of fibronectin variants in skin and airway mucosal wounds. Arch Otolaryngol Head Neck Surg 133:919–924CrossRefPubMed Li-Korotky HS, Hebda PA, Lo CY, Dohar JE (2007) Age-dependent differential expression of fibronectin variants in skin and airway mucosal wounds. Arch Otolaryngol Head Neck Surg 133:919–924CrossRefPubMed
28.
go back to reference Moulin V, Tam BY, Castilloux G, Auger FA, O’Connor-McCourt MD, Philip A, Germain L (2001) Fetal and adult human skin fibroblasts display intrinsic differences in contractile capacity. J Cell Physiol 188:211–222CrossRefPubMed Moulin V, Tam BY, Castilloux G, Auger FA, O’Connor-McCourt MD, Philip A, Germain L (2001) Fetal and adult human skin fibroblasts display intrinsic differences in contractile capacity. J Cell Physiol 188:211–222CrossRefPubMed
29.
go back to reference Muro AF, Chauhan AK, Gajovic S, Iaconcig A, Porro F, Stanta G, Baralle FE (2003) Regulated splicing of the fibronectin EDA exon is essential for proper skin wound healing and normal lifespan. J Cell Biol 162:149–160CrossRefPubMedPubMedCentral Muro AF, Chauhan AK, Gajovic S, Iaconcig A, Porro F, Stanta G, Baralle FE (2003) Regulated splicing of the fibronectin EDA exon is essential for proper skin wound healing and normal lifespan. J Cell Biol 162:149–160CrossRefPubMedPubMedCentral
30.
go back to reference Pratsinis H, Giannouli CC, Zervolea I, Psarras S, Stathakos D, Kletsas D (2004) Differential proliferative response of fetal and adult human skin fibroblasts to transforming growth factor-beta. Wound Repair Regen 12:374–383CrossRefPubMed Pratsinis H, Giannouli CC, Zervolea I, Psarras S, Stathakos D, Kletsas D (2004) Differential proliferative response of fetal and adult human skin fibroblasts to transforming growth factor-beta. Wound Repair Regen 12:374–383CrossRefPubMed
31.
go back to reference Rolfe KJ, Richardson J, Vigor C, Irvine LM, Grobbelaar AO, Linge C (2007) A role for TGF-beta1-induced cellular responses during wound healing of the non-scarring early human fetus? J Invest Dermatol 127:2656–2667CrossRefPubMed Rolfe KJ, Richardson J, Vigor C, Irvine LM, Grobbelaar AO, Linge C (2007) A role for TGF-beta1-induced cellular responses during wound healing of the non-scarring early human fetus? J Invest Dermatol 127:2656–2667CrossRefPubMed
32.
go back to reference Rollins BJ, O’Connell TM, Bennett G, Burton LE, Stiles CD, Rheinwald JG (1989) Environment-dependent growth inhibition of human epidermal keratinocytes by recombinant human transforming growth factor-beta. J Cell Physiol 139:455–462CrossRefPubMed Rollins BJ, O’Connell TM, Bennett G, Burton LE, Stiles CD, Rheinwald JG (1989) Environment-dependent growth inhibition of human epidermal keratinocytes by recombinant human transforming growth factor-beta. J Cell Physiol 139:455–462CrossRefPubMed
33.
go back to reference Santibanez JF, Quintanilla M, Bernabeu C (2011) TGF-beta/TGF-beta receptor system and its role in physiological and pathological conditions. Clin Sci (Lond) 121:233–251CrossRef Santibanez JF, Quintanilla M, Bernabeu C (2011) TGF-beta/TGF-beta receptor system and its role in physiological and pathological conditions. Clin Sci (Lond) 121:233–251CrossRef
34.
go back to reference Schor SL, Ellis IR, Jones SJ, Woolston AM, Schor AM (2012) Bistable switch in migration stimulating factor expression: regulation by the concerted signalling of transforming growth factor-beta1 and the extracellular matrix. Int J Cancer 130:2024–2032CrossRefPubMed Schor SL, Ellis IR, Jones SJ, Woolston AM, Schor AM (2012) Bistable switch in migration stimulating factor expression: regulation by the concerted signalling of transforming growth factor-beta1 and the extracellular matrix. Int J Cancer 130:2024–2032CrossRefPubMed
35.
go back to reference Shinde AV, Kelsh R, Peters JH, Sekiguchi K, Van De Water L, McKeown-Longo PJ (2015) The alpha4beta1 integrin and the EDA domain of fibronectin regulate a profibrotic phenotype in dermal fibroblasts. Matrix Biol 41:26–35CrossRefPubMed Shinde AV, Kelsh R, Peters JH, Sekiguchi K, Van De Water L, McKeown-Longo PJ (2015) The alpha4beta1 integrin and the EDA domain of fibronectin regulate a profibrotic phenotype in dermal fibroblasts. Matrix Biol 41:26–35CrossRefPubMed
36.
go back to reference Thapa N, Lee BH, Kim IS (2007) TGFBIp/betaig-h3 protein: a versatile matrix molecule induced by TGF-beta. Int J Biochem Cell Biol 39:2183–2194CrossRefPubMed Thapa N, Lee BH, Kim IS (2007) TGFBIp/betaig-h3 protein: a versatile matrix molecule induced by TGF-beta. Int J Biochem Cell Biol 39:2183–2194CrossRefPubMed
37.
go back to reference van den Bogaerdt AJ, van Zuijlen PP, van Galen M, Lamme EN, Middelkoop E (2002) The suitability of cells from different tissues for use in tissue-engineered skin substitutes. Arch Dermatol Res 294:135–142CrossRefPubMed van den Bogaerdt AJ, van Zuijlen PP, van Galen M, Lamme EN, Middelkoop E (2002) The suitability of cells from different tissues for use in tissue-engineered skin substitutes. Arch Dermatol Res 294:135–142CrossRefPubMed
38.
go back to reference van der Slot AJ, van Dura EA, de Wit EC, De Groot J, Huizinga TW, Bank RA, Zuurmond AM (2005) Elevated formation of pyridinoline cross-links by profibrotic cytokines is associated with enhanced lysyl hydroxylase 2b levels. Biochim Biophys Acta 1741:95–102CrossRefPubMed van der Slot AJ, van Dura EA, de Wit EC, De Groot J, Huizinga TW, Bank RA, Zuurmond AM (2005) Elevated formation of pyridinoline cross-links by profibrotic cytokines is associated with enhanced lysyl hydroxylase 2b levels. Biochim Biophys Acta 1741:95–102CrossRefPubMed
39.
go back to reference Verrecchia F, Chu ML, Mauviel A (2001) Identification of novel TGF-beta/Smad gene targets in dermal fibroblasts using a combined cDNA microarray/promoter transactivation approach. J Biol Chem 276:17058–17062CrossRefPubMed Verrecchia F, Chu ML, Mauviel A (2001) Identification of novel TGF-beta/Smad gene targets in dermal fibroblasts using a combined cDNA microarray/promoter transactivation approach. J Biol Chem 276:17058–17062CrossRefPubMed
40.
go back to reference Visscher M, Narendran V (2014) The Ontogeny of Skin. Adv Wound Care (New Rochelle) 3:291–303CrossRef Visscher M, Narendran V (2014) The Ontogeny of Skin. Adv Wound Care (New Rochelle) 3:291–303CrossRef
42.
go back to reference Walraven M, Beelen RH, Ulrich MM (2015) Transforming growth factor-beta (TGF-beta) signaling in healthy human fetal skin: a descriptive study. J Dermatol Sci 78:117–124CrossRefPubMed Walraven M, Beelen RH, Ulrich MM (2015) Transforming growth factor-beta (TGF-beta) signaling in healthy human fetal skin: a descriptive study. J Dermatol Sci 78:117–124CrossRefPubMed
43.
go back to reference Walraven M, Gouverneur M, Middelkoop E, Beelen RH, Ulrich MM (2014) Altered TGF-beta signaling in fetal fibroblasts: what is known about the underlying mechanisms? Wound Repair Regen 22:3–13CrossRefPubMed Walraven M, Gouverneur M, Middelkoop E, Beelen RH, Ulrich MM (2014) Altered TGF-beta signaling in fetal fibroblasts: what is known about the underlying mechanisms? Wound Repair Regen 22:3–13CrossRefPubMed
44.
go back to reference Walraven M, Talhout W, Beelen RH, van Egmond M, Ulrich MM (2016) Healthy human second-trimester fetal skin is deficient in leukocytes and associated homing chemokines. Wound Repair Regen 24:533–541CrossRefPubMed Walraven M, Talhout W, Beelen RH, van Egmond M, Ulrich MM (2016) Healthy human second-trimester fetal skin is deficient in leukocytes and associated homing chemokines. Wound Repair Regen 24:533–541CrossRefPubMed
45.
go back to reference Walraven M, van Vliet SJ, Beelen RH, van Egmond M, Ulrich MM (2016) Blocking alpha1-integrin reverts the adhesive phenotype of adult fibroblasts towards a foetal-like migratory phenotype. Exp Dermatol 25:480–482CrossRefPubMed Walraven M, van Vliet SJ, Beelen RH, van Egmond M, Ulrich MM (2016) Blocking alpha1-integrin reverts the adhesive phenotype of adult fibroblasts towards a foetal-like migratory phenotype. Exp Dermatol 25:480–482CrossRefPubMed
46.
go back to reference Wipff PJ, Rifkin DB, Meister JJ, Hinz B (2007) Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J Cell Biol 179:1311–1323CrossRefPubMedPubMedCentral Wipff PJ, Rifkin DB, Meister JJ, Hinz B (2007) Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J Cell Biol 179:1311–1323CrossRefPubMedPubMedCentral
Metadata
Title
In vitro cultured fetal fibroblasts have myofibroblast-associated characteristics and produce a fibrotic-like environment upon stimulation with TGF-β1: Is there a thin line between fetal scarless healing and fibrosis?
Authors
M. Walraven
J. J. Akershoek
R. H. J. Beelen
M. M. W. Ulrich
Publication date
01-03-2017
Publisher
Springer Berlin Heidelberg
Published in
Archives of Dermatological Research / Issue 2/2017
Print ISSN: 0340-3696
Electronic ISSN: 1432-069X
DOI
https://doi.org/10.1007/s00403-016-1710-3

Other articles of this Issue 2/2017

Archives of Dermatological Research 2/2017 Go to the issue